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Abstract

IN today’s world, staying connected is more important than ever, but achieving reliablewireless communication everywhere can be a challenge. This dissertation introduces a

cutting-edge technology known as Intelligent Reflecting Surfaces (IRSs) that promises to

revolutionize how we connect. Imagine a smart, invisible “mirror” that can bend and direct

wireless signals precisely where needed, overcoming obstacles and ensuring your device always

gets a strong connection. That is what the IRS does.

IRS, at its core, is a sophisticated planar array, composed of numerous passive or active

elements capable of individually manipulating electromagnetic waves to reshape the wireless

signal propagation environment. By smartly adjusting the phase and amplitude of these

elements, an IRS can seamlessly steer signals toward intended receivers, effectively creating

optimized communication paths even in scenarios where direct Line-of-Sight (LoS) is ob-

structed. This ability to mold the propagation environment on demand, without additional

energy for signal transmission, enables the IRS to enhance connectivity in diverse environ-

ments, from densely built urban areas to indoor spaces. Furthermore, the ability of the IRS

to operate without the need for active power amplification allows for a significant reduc-

tion in energy consumption, making it an eco-friendly solution for extending and improving

wireless network coverage.

In this dissertation, IRS is presented as a key enabler for a myriad of advanced technolo-

gies, unlocking new potentials across various high-tech fields by enhancing their performance

and efficiency. By strategically manipulating electromagnetic waves, IRS provides a solu-

tion to enhance power efficiency in multi-user Simultaneous Wireless Information and Power

Transfer (SWIPT) networks. This capability allows for a steady flow of information and

power transfer, illustrating the dual capability of the IRS to support energy harvesting and

data transmission. Furthermore, the integration of IRS into Ultra-Reliable Low-Latency

Communication (URLLC) and Machine Type Communication (MTC) systems emerges as

a game-changer, significantly reducing latency and increasing reliability. IRS can signifi-

cantly benefit Virtual Reality (VR) users facing considerable path loss or blockages, ensuring

immersive experiences without latency or loss of quality.

IRS also enhances Mobile Edge Computing (MEC) by optimizing signal delivery for efficient

edge data processing. These improvements are essential for critical applications requiring

instantaneous feedback and high levels of data integrity, such as autonomous vehicles and

industrial automation, underpinning the role of the IRS in facilitating the next wave of

communication needs. This work delves into the strategic deployment of IRS across a

broad frequency spectrum, from Frequency Range 1 (FR1) to Frequency Range 2 (FR2),

extending into the higher frequency domains of millimeter-Wave (mmWave) and TeraHertz

(THz) frequencies, illustrating its profound impact on the future of telecommunications.
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In order to investigate the performance of IRS-assisted networks, this dissertation defines a

range of Key Performance Indicators (KPIs), such as data rate, power efficiency, energy ef-

ficiency, Signal-to-Interference-plus-Noise Ratio (SINR), transmit signal power budget, and

received power strength. These KPIs serve as metrics to assess and optimize the network’s

performance based on designing an efficient resource allocation policy. Non-linear, non-

convex, and Mixed Integer Nonlinear Programming (MINLP) problems arise when addressing

the resource allocation optimization problem. These problems are Non-deterministic Poly-

nomial time (NP)-hard due to the complex relationship between variables and the system’s

constraints. Given the complexity of these optimization problems, different strategies are

used to simplify and approach their solution. By relaxing the objective function (the NPs)

and constraints that are non-convex to a more tractable format, the problems became more

manageable. This relaxation approach often involved transforming the optimization prob-

lem into its convex equivalent or utilizing approximation techniques to linearize or convexify

non-convex terms.

Algorithms are developed that are capable of solving the main problem either globally or sub-

optimally but sufficiently close to the global optimum. These solutions employ optimization

solvers and computer simulations, exploiting advanced mathematical tools and techniques

such as the big-M method for linearizing product terms involving binary variables and Suc-

cessive Convex Approximation (SCA) to obtain convex approximations of non-convex terms.

The iterative nature of these solutions allowed for step-by-step refinement, gradually moving

towards an optimal configuration of a resource allocation design despite the initial problem’s

complexity.

Through exhaustive simulations, this dissertation unveils the diverse performance improve-

ments achievable through resource allocation in IRS-assisted networks, providing rich insights

into how IRS technology can improve wireless communication systems. These simulations

serve as a critical bridge, connecting theoretical predictions with empirical evidence and val-

idating the practical feasibility of the proposed IRS-enhanced network. By exploring various

IRS configurations — examining both passive and active types and varying the number of

reflective elements — and their implementation in different environments and settings, this

study not only confirms the theoretical models’ accuracy but also explains the conditions un-

der which IRS deployments yield maximal performance gains, manifesting the IRS versatility

in adapting new technologies.

Collectively, this dissertation studies the impact of IRS across a broad range of technologies.

By enhancing the performance of SWIPT networks, facilitating URLLC and MTC, enabling

MEC, and revolutionizing VR, mmWave, and THz applications, IRS stands at the forefront

of wireless communication innovation. This work demonstrates the diverse applications of

IRS technology and lays the foundation for future research aimed at utilizing IRS to tackle the

dynamic challenges of modern wireless networks. It charts a path toward the development

of more robust, efficient, and engaging communication ecosystems.



Samenvatting

IN de wereld van vandaag is constant verbonden zijn essentieel, maar overal betrouwbaredraadloze communicatie bieden is complex. Deze dissertatie onthult een vooruitstrevende

technologie, Intelligente Reflecterende Oppervlakken (IRS), die draadloze connectiviteit zal

transformeren. Denk aan een slimme, onzichtbare ”spiegel” die draadloze signalen buigt en

richt naar waar nodig, obstakels omzeilt en een sterke verbinding garandeert. Dat is wat IRS

doet.

IRS, in zijn kern, is een geavanceerde vlakke antennematrix, bestaande uit talrijke passieve of

actieve elementen die in staat zijn om elektromagnetische golven individueel te manipuleren

om de draadloze signaalpropagatieomgeving te hervormen. Door de fase en amplitude van

deze elementen slim aan te passen, kan een IRS signalen naadloos naar bedoelde ontvangers

sturen, waardoor geoptimaliseerde communicatiepaden worden gecreëerd, zelfs in scenario’s

waar het directe zicht (LoS) wordt belemmerd. Dit vermogen om de propagatieomgev-

ing naar behoefte te vormen, zonder extra energie voor signaaltransmissie, stelt de IRS in

staat de connectiviteit in diverse omgevingen te verbeteren, van dichtbebouwde stedelijke

gebieden tot binnenshuis. Bovendien maakt het vermogen van de IRS om te werken zon-

der de noodzaak van actieve vermogensversterking een aanzienlijke vermindering van het

energieverbruik mogelijk, waardoor het een milieuvriendelijke oplossing is voor het uitbreiden

en verbeteren van de draadloze netwerkdekking.

In deze dissertatie wordt de IRS gepresenteerd als een sleutelfactor voor een breed scala aan

geavanceerde technologieën, waardoor nieuwe mogelijkheden worden ontsloten in diverse

high-tech velden door hun prestaties en efficiëntie te verbeteren. Door elektromagnetische

golven strategisch te manipuleren, biedt IRS een oplossing om de energie-efficiëntie in multi-

gebruiker Simultane Draadloze Informatie- en Energieoverdracht (SWIPT)-netwerken te ver-

beteren. Deze mogelijkheid zorgt voor een constante stroom van informatie- en energieover-

dracht, waarbij de dubbele capaciteit van de IRS wordt gëıllustreerd om energieoogst en

datatransmissie te ondersteunen. Bovendien biedt de integratie van IRS in Ultra-Reliable

Low-Latency Communication (URLLC) en Machine Type Communication (MTC)-systemen

unieke voordelen, waardoor de vertraging aanzienlijk wordt verminderd en de betrouwbaarheid

wordt verhoogd. IRS kan Virtual Reality (VR)-gebruikers die aanzienlijke padverliezen of

blokkages tegenkomen aanzienlijk ten goede komen, waarbij realistische virtuele ervaringen

zonder vertragingvertraging of kwaliteitsverlies worden gegarandeerd.

IRS verbetert ook Mobile Edge Computing (MEC) door de signaallevering te optimalis-

eren voor efficiënte gegevensverwerking aan de rand van het netwerk. Deze verbeterin-

gen zijn essentieel voor kritieke toepassingen die onmiddellijke feedback en hoge niveaus

van gegevensintegriteit vereisen, zoals autonome voertuigen en industriële automatisering,

waardoor de rol van IRS wordt onderstreept bij het faciliteren van de volgende golf van

communicatiebehoeften. Dit werk verdiept zich in de strategische inzet van IRS over een

breed frequentiespectrum, van Frequentiebereik 1 (FR1) tot Frequentiebereik 2 (FR2), en

breidt uit naar de hogere frequentiedomeinen van millimetergolf (mmWaves) en terahertz
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(THz)-frequenties, waarbij de diepgaande impact op de toekomst van telecommunicatie

wordt gëıllustreerd.

Om de prestaties van IRS-ondersteunde netwerken te onderzoeken, definieert deze dissertatie

een reeks Kernprestatie-indicatoren (KPI’s), zoals datasnelheid, energie-efficiëntie, vermo-

gensefficiëntie, SINR (Signaal tot Interferentie plus Ruisverhouding), zendvermogensbudget

en ontvangen vermogenssterkte. Deze KPI’s dienen als meetwaarden om de prestaties van

het netwerk te beoordelen en te optimaliseren op basis van het ontwerpen van een efficiënt re-

source allocatiebeleid. Niet-lineaire, niet-convexe en Gemengde Gehele Getallen Niet-lineaire

Programmering (MINLP)-problemen ontstaan bij het aanpakken van het resource allocatie

optimalisatieprobleem. Deze problemen zijn niet-deterministisch polynomiale tijd (NP)-hard

vanwege de complexe relatie tussen variabelen en de systeembeperkingen. Gezien de com-

plexiteit van deze optimalisatieproblemen worden verschillende strategieën gebruikt om hun

oplossing te vereenvoudigen en te benaderen. Door de doelfunctie (de KPI’s) en beperkingen

die niet-convex zijn te ontspannen naar een beter hanteerbaar formaat, werden de problemen

beheersbaarder. Deze ontspanningsbenadering omvatte vaak het transformeren van het op-

timalisatieprobleem naar zijn convexe equivalent of het gebruik van benaderingstechnieken

om niet-convexe termen te lineariseren of convex te maken.

Algoritmen worden ontwikkeld die in staat zijn het hoofdprobleem op te lossen, hetzij globaal

of suboptimaal, maar voldoende dicht bij het globale optimum. Deze oplossingen maken ge-

bruik van optimalisatie-oplossers en computersimulaties, waarbij geavanceerde wiskundige

hulpmiddelen en technieken zoals de grote-M-methode voor het lineariseren van productter-

men met binaire variabelen en opeenvolgende convexe benadering (SCA) worden ingezet om

convexe benaderingen van niet-convexe termen te verkrijgen. De iteratieve aard van deze

oplossingen maakte stapsgewijze verfijning mogelijk, waardoor geleidelijk naar een optimale

configuratie van een resource allocatieontwerp werd bewogen ondanks de complexiteit van

het initiële probleem.

Door uitputtende simulaties onthult deze dissertatie de diverse prestatieverbeteringen die

haalbaar zijn door resource allocatie in IRS-ondersteunde netwerken, waarbij rijke inzichten

worden geboden in hoe IRS-technologie draadloze communicatiesystemen kan verbeteren.

Deze simulaties fungeren als een cruciale brug, die theoretische voorspellingen verbindt met

empirisch bewijs en de praktische haalbaarheid van het voorgestelde IRS-versterkte netwerk

valideert. Door verschillende IRS-configuraties te verkennen - zowel passieve als actieve typen

onderzoeken en het aantal reflecterende elementen variëren - en hun implementatie in ver-

schillende omgevingen en instellingen, bevestigt deze studie niet alleen de nauwkeurigheid van

de theoretische modellen, maar verklaart ook de voorwaarden waaronder IRS-implementaties

maximale prestatieverbeteringen opleveren, waarbij de veelzijdigheid van IRS in het aanpassen

van nieuwe technologieën wordt getoond.

Deze dissertatie bestudeert de impact van IRS op een breed scala aan technologieën. Door

de prestaties van SWIPT-netwerken te verbeteren, URLLC en MTC te faciliteren, MEC

mogelijk te maken en VR, mmWave en THz-toepassingen te revolutioneren, staat IRS aan

de voorhoede van draadloze communicatie-innovatie. Dit werk toont de diverse toepassingen

van IRS-technologie en legt de basis voor toekomstig onderzoek gericht op het gebruik van

IRS om de dynamische uitdagingen van moderne draadloze netwerken aan te pakken. Het

wijst de weg naar de ontwikkeling van robuustere, efficiëntere en boeiendere communicatie-

ecosystemen.
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Introduction

THE surge in innovative technologies like Artificial Intelligence (AI), Virtual Reality (VR),

three-Dimensional (3D) media, and the Internet of Everything (IoE) has significantly

increased data traffic worldwide. In the second quarter of 2023, global mobile data traffic

was recorded at 133.86 EexaBytes (EB) per month, with projections suggesting a rise to

5016 EB per month by 2030 [15]. These figures suggest the critical need for advancements

in communication technology as we move towards a future dominated by fully automated

remote systems. Autonomous technologies are gaining ground across various sectors, such

as manufacturing, healthcare, transportation, maritime, and space exploration. This trend

is supported by the widespread integration of millions of sensors in urban areas, vehicles,

homes, and industries, facilitating a smarter, automated lifestyle. As a result, there is an

imminent need for communication networks that can handle high data rates and provide

reliable connectivity to accommodate these evolving applications.

Despite their substantial advancements over current technologies, the fifth-Generation (5G)

wireless networks are anticipated to fall short in delivering a fully automated, intelligent

network capable of offering everything as a service and providing a fully immersive expe-

rience [16]. While 5G systems have marked a significant upgrade, they are not expected

to meet the needs of the next wave of intelligent and automated systems in a few years’

time [17]. 5G introduced numerous enhancements, including access to new frequency bands

like millimeter-wave (mmWave) and optical spectra, improved spectrum usage and man-

agement, and the combination of licensed and unlicensed bands [18, 19]. Yet, the rapid

expansion of data-driven and automated systems might surpass what 5G networks can han-

dle. One of the critical areas where 5G may lag is in its integration of communication,

intelligence, sensing, control, and computing capabilities, a fusion essential for future IoE

applications. For instance, devices like VR headsets require Beyond 5G (B5G) capabilities,

needing data rates of at least 10 Gigabits per second (Gbps) [20]. Therefore, as 5G ap-

proaches its capacity limits by 2030, discussions and research are already underway to outline

the objectives for the subsequent generation of wireless communication technologies [21].

Items poised to necessitate the capabilities of a sixth-Generation (6G) system include (i) ex-

pansive interfaces for human and machine interaction, (ii) pervasive computing that bridges

local devices with cloud services, (iii) the integration of sensory data to construct comprehen-

sive multi-reality environments, and (iv) enhanced precision in sensing and communication

for control over physical environments [22]. 6G networks aim to address the shortcomings of

1
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5G by weaving together futuristic services, including ambient sensing intelligence and novel

forms of interaction between humans and machines, as well as between humans themselves.

This next step in network evolution will heavily incorporate AI and introduce cutting-edge

technologies like terahertz (THz) communication, 3D networking, quantum communica-

tions, holographic beamforming, backscatter communications, Intelligent Reflecting Surface

(IRS), and proactive caching [23]. The driving forces behind 6G involve a fusion of previ-

ous network advancements — network densification, superior throughput, utmost reliability,

minimal energy consumption, and extensive connectivity — while also pushing forward with

innovative services and technologies such as AI, smart wearables, implants, autonomous

vehicles, augmented reality devices, sensing technologies, and 3D mapping [24]. A fun-

damental expectation from 6G wireless networks is their ability to manage enormous data

volumes and provide exceptionally high data rates [25].

The ambition for the 6G communication system is to serve as a comprehensive global

communication infrastructure, offering per-user bit rates of around 1 Terabits per second

(Tbps) in many scenarios. This represents a connectivity capacity 1000 times greater than

that of 5G, alongside ultra-long-distance communication capabilities with sub-millisecond

latency [26]. A standout feature of 6G will be its full integration of AI to support au-

tonomous systems, with video-type traffic expected to dominate data transmission in 6G

networks. Leading technologies propelling 6G forward will include the THz spectrum, AI,

Optical Wireless Communication (OWC), 3D networking, UAVs, IRS, and wireless power

transfer, setting the stage for an unprecedented era of connectivity and technological inte-

gration [27].

In the transition from 5G to 6G wireless systems, there is an anticipated move away from the

traditional massive Multiple Input Multiple Output (m-MIMO) configurations towards the

adoption of IRS [28]. IRS represents a novel hardware innovation to significantly enhance

energy efficiency in communication systems, often referred to as green communication. Also

known as meta-surfaces, IRS comprises numerous reflective diode units capable of altering

the phase of incoming electromagnetic signals in a controllable manner 1. This capability

positions IRS as a pivotal evolution in communication technology, sometimes referred to as

“m-MIMO 2.0” for 6G networks [35]. These surfaces are expected to incorporate index mod-

ulation techniques, further boosting spectral efficiency and representing a key advancement

in the infrastructure of 6G wireless communications.

1.1 Motivation

The 6G wireless network aims to surpass the capabilities of 5G by targeting more ambitious

goals such as ultra-high data rates, superior energy efficiency, comprehensive global connec-

tivity, and unmatched reliability and low latency. Achieving these objectives may be beyond

the reach of current technology trends designed for 5G services, such as enhanced mobile

broadband (eMBB), ultra-reliable and low latency communication (URLLC), and massive

Machine Type Communication (mMTC), due to several challenges [36, 37, 38]:

1An IRS can be a meta-surface (generally deep subwavelength) or a conventional passive reflectarray.

Also, we acknowledge IRS can use other mechanisms than diode units to provide reconfigurability, e.g., [29,

30, 31, 32, 33, 34].
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• Increasing the number of active nodes like Base Stations (BSs), Access Points (APs),
relays, and distributed antennas/Remote Radio Heads (RRHs) to reduce communica-

tion distance and enhance network coverage and capacity, which leads to higher energy

consumption, and increased deployment, backhaul, and maintenance costs, along with

more complex network interference issues.

• Adding significantly more antennas to BSs/APs/relays to leverage the benefits of m-
MIMO technology, necessitating greater hardware investment and energy expenditure,

along with increased signal processing complexity.

• Shifting to higher frequency bands, such as mmWave and THz frequencies, to exploit
their vast available bandwidth. This shift requires the deployment of additional active

nodes and the installation of even more antennas (i.e., super MIMO) to offset the

greater propagation loss associated with these higher frequencies.

Given these limitations, it is crucial to explore radically new and innovative technologies

to ensure future wireless networks can grow sustainably, maintaining low costs, complexity,

and energy consumption. Conversely, a primary obstacle in realizing ultra-reliable wireless

communication stems from the dynamic nature of wireless channels, which fluctuate due to

user movement. Traditional strategies to address this variability involve compensating for

channel fading through a range of modulation, coding, and diversity techniques, or adjusting

to it with adaptive power/rate control and beamforming methods [39, 40]. Yet, these

approaches introduce extra overhead and provide only limited management of the inherently

unpredictable wireless channels. This leaves the critical challenge of achieving both high-

capacity and ultra-reliable wireless communications unresolved.

In this dissertation, IRSs are highlighted as a crucial technology that catalyzes advancements

in a range of high-tech sectors by boosting their operational performance and energy effi-

ciency. By adjusting the reflection of signals through numerous low-cost passive elements,

IRS dynamically enhances communication performance, marking a significant step towards

energy-efficient green communication. Known as meta-surfaces, these devices can modify

the phase of impinging electromagnetic signals, positioning IRS as a pivotal innovation in

6G networks.

A notable breakthrough for IRS-aided wireless systems, especially in single-user scenarios,

is the ability to form a “signal hot spot” through a combination of active beamforming at

the BS/AP and passive beamforming at the IRS [41]. It has been demonstrated that IRS

can achieve a significant asymptotic increase in Reference Signal Received Power (RSRP)

or Signal-to-Noise Ratio (SNR), scaling quadratically in the order of O(N2), where N repre-
sents the number of IRS reflecting elements [42]. This gain surpasses the linear enhancement

O(N) seen with m-MIMO systems, attributable to IRS’s dual functionality, effectively dou-
bling the gain compared to m-MIMO under the same total transmit power. Moreover, unlike

traditional MIMO relays which, even in an ideal Full-Duplex (FD) mode with perfect Self-

Interference Cancellation (SIC), only achieve a linear SNR improvement with the increase

in active antennas due to relay noise, IRS benefits from a full-duplex, noise-free reflection
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mechanism, thus providing a greater SNR boost [43]. An analysis comparing the perfor-

mance between an IRS-assisted Single-Input Single-Output (SISO) system and a m-MIMO

setup reveals the superior efficiency of IRS in enhancing wireless communications [44].

Furthermore, in multi-user systems supported by IRS, it is shown that IRS not only boosts the

signal power/SNR at the user’s receiver but also establishes an almost “interference-free”

zone around it. This is achieved by utilizing the IRS’s capability to nullify spatial inter-

ference, enabling users close to the IRS to withstand more interference from the BS/AP

than those outside the IRS coverage. This advantage allows for more versatile transmit

precoding strategies at the BS/AP for users located outside the IRS’s influence, thereby

enhancing the overall signal-to-interference-plus-noise ratio (SINR) for all users in the net-

work. This dissertation also explores the integration of active and passive beamforming in

various system designs [45, 46, 47], including physical layer security, simultaneous wireless

information and power transfer (SWIPT) [48, 49, 50, 51], and NOMA [52, 53], underscoring

the transformative impact of IRS across multiple wireless communication paradigms [54].

This dissertation explores the potential of the IRS in revolutionizing next-generation wireless

networks. Below, we summarize the key contributions of this work.

1.2 Contributions

In this section, we detail the key contributions of our research, emphasizing the notable

progress made in understanding and implementing IRS in wireless communication networks.

Drawing from the 3rd Generation Partnership Project (3GPP) technical reports (38.101 and

38.101, cf. [55, 56, 57]) which examine channel models for frequencies ranging from 0.5 to

100 GHz and categorize the frequency spectrum into two distinct ranges — below 7.125

GHz as Frequency Range 1 (FR1) and above it as Frequency Range 2 (FR2)2— the primary

contributions of this dissertation are divided into two main areas:

Frequency Range 1 (FR1) Contributions (Chapter 3, 4, 5 ,6)

1. Establishing the baseline with SWIPT network optimization. (Chapter 3)

This dissertation’s initial contribution lays the groundwork by enhancing power effi-

ciency in single-cell networks with multi-antenna and multi-user setups, specifically

through SWIPT. By aiming to maximize energy harvesting while minimizing power

consumption, we present an optimization framework that simplifies beamforming and

antenna selection. This foundational work provides the theoretical basis and estab-

lishes a baseline for advancing energy efficiency and operational effectiveness in future

wireless networks, paving the way for subsequent studies on the impact of IRS.

2Due to the lack of established channel models for THz frequencies in the standardization community, we

provisionally place THz frequencies into FR2. It is possible that this could lead to the creation of a Frequency

Range X (FRX) in the future, although a consensus on this classification has not yet been reached. While

it may seem counterintuitive, Frequency Range 3 (FR3) is an unofficial term that refers to the spectrum

between 7.125 and 24.25 GHz, which lies between FR1 and FR2 [58]. In this dissertation, we loosely classify

THz frequencies within FR2, despite anticipating that a more appropriate frequency range will soon be

assigned to such high frequencies.
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2. Optimizing URLLC through IRS-enhanced beamforming. (Chapter 4)

The second key contribution of this work is the integration of IRS in multi-user MISO

systems, aiming to improve URLLC services. This is achieved by minimizing the overall

transmission power via the concurrent optimization of both active and passive beam-

forming, facilitated by a sophisticated Alternating Optimization (AO) algorithm. Our

method sheds light on the complex interplay between active and passive beamforming,

demonstrating the significant potential of IRS to advance URLLC systems. Empirical

evidence from simulation studies supports the effectiveness of our proposed solutions,

representing an essential advancement towards fully leveraging IRS in the evolution of

wireless communications.

3. Enhancing MTC in IoT networks with IRS for better energy efficiency and ser-

viceability. (Chapter 5)

This study investigates the incorporation of Machine-Type Communication (MTC)

within a multi-user MISO setup. Our focus was on enhancing the network’s overall

energy efficiency and improving the capacity to support an extensive range of IoT users

by finely tuning both active and passive beamforming strategies. The adoption of a

new AO algorithm served to demonstrate the effect of IRS on network performance,

particularly in terms of energy savings and the ability to cater to a broader IoT user

base.

4. Improving edge computing efficiency in multi-user MTC networks with IRS in-

tegration. (Chapter 6)

This portion of the dissertation investigates the integration of Mobile Edge Computing

(MEC) with MTC in settings that involve multiple users. It emphasizes the crucial role

played by IRS in boosting computational offloading, thereby enhancing both latency

and reliability for MTC devices. Through the strategic optimization of radio resource

allocation and decisions regarding edge offloading in networks supported by IRS, a

groundbreaking method to increase the efficacy of edge computing in MTC scenarios

is introduced.

Frequency Range 2 (FR2) Contributions (Chapter 7, 8)

6. Exploring FR2 with active and passive IRS in mmWave networks (Chapter 7)

This contribution is an exploration of FR2, diving into the domain of mmWave wireless

networks. By introducing an active IRS-enhanced MISO system operating at mmWave

frequencies, we tackled the optimization of the system’s sum rate. This involved

leveraging the unique benefits of active IRS configurations. Through a comprehensive

optimization framework and the introduction of two algorithms, we highlighted active

IRS’s capabilities to boost network performance and established a new benchmark for

applying IRS technology in mmWave spectra, paving the way for novel research and

development avenues.

6. Exploring FR2 in THz miniature UAV networks (Chapter 8)

For the last contribution of this dissertation, we investigate the cutting-edge domain

of THz band communication. A framework is developed to optimize energy efficiency

through the strategic deployment of a miniature UAV trajectory alongside a refined
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network resource allocation strategy. Our investigation focuses on the pivotal influ-

ences of miniature UAV mobility, NOMA power allocations, and SWIPT power-splitting

ratios on system-wide performance.

The above contributions are described in detail in the following publications:

1. J. Jalali, A. Khalili, A. Rezaei, J. Famaey and W. Saad, “Power-efficient Antenna

Switching and Beamforming Design for Multi-User SWIPT with Non-Linear Energy

Harvesting”, in 2023 IEEE 20th Consumer Communications & Networking Conference

(CCNC). Las Vegas, NV, USA, Jan. 2023, pp. 746–751. (IEEE Student Travel

Grant) (Chapter 3)

2. J. Jalali, A. Rezaei, A. Khalili and J. Famaey, “Power-efficient Joint Resource Allo-

cation and Decoding Error Probability for Multiuser Downlink MISO with Finite Block

Length Codes”, in 2022 25th International Symposium on Wireless Personal Multime-

dia Communications (WPMC), Herning, Denmark, Oct. 2022, pp. 232–237. (Best

Paper Award) (Chapter 4)

3. J. Jalali, A. Khalili, A. Rezaei, R. Berkvens, M. Weyn and J. Famaey, “IRS-Based En-

ergy Efficiency and Admission Control Maximization for IoT Users With Short Packet

Lengths”, IEEE Transactions on Vehicular Technology, vol. 72, no. 9, pp. 12 379–

12 384, Sept. 2023. (Chapter 5)

4. J. Jalali, F. Lemic, H. Tabassum, R. Berkvens, and J. Famaey, “Toward Energy Effi-

cient Multiuser IRS-Assisted URLLC Systems: A Novel Rank Relaxation Method”, in

GLOBECOM 2023 - 2023 IEEE Global Communications Conference - 6G Communi-

cation Workshop, Kuala Lumpur, Malaysia, Dec. 2023, pp. 1–7. (Chapter 5)

5. J. Jalali, A. Khalili, R. Berkvens and J. Famaey, “Joint Offloading Policy and Re-

source Allocation in IRS-aided MEC for IoT Users with Short Packet Transmission”,

in 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong,

Hong Kong, Oct. 2023, pp. 1–7. (VTS Student Travel Grant) (Chapter 6)

6. J. Jalali, A. Khalili, A. Rezaei and J. Famaey, “Is Active IRS Useful for mmWave

Wireless Networks or Not?”, in 2023 International Conference on Computing, Net-

working and Communications (ICNC), Honolulu, HI, USA, Feb. 2023, pp. 377–382.

(Chapter 7)

7. J.Jalali, M. Bustamante, F. Lemic, H. Tabassum, J. Struye, J. Famaey, and X. Costa

Pérez, “Location Optimization and Resource Allocation of IRS in a Multi-User In-

door mmWave VR Network”, in 2024 IEEE Wireless Communications and Networking

Conference (WCNC), Dubai, United Arab Emirates, Apr. 2024, pp. 1–7. (ComSoc

Conference Travel Grant) (Chapter 7)

8. J. Jalali, A. Khalili, H. Tabassum, R. Berkvens, J. Famaey and W. Saad, “Energy-

Efficient THz NOMA for SWIPT-aided Miniature UAV Networks”, IEEE Communi-

cations Letters, vol. 28, no. 5, pp. 1107-1111, May 2024. (FWO Research Grant

V478223N) (Chapter 8)
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Figure 1.1: Dissertation outline.

1.3 Outline

Fig. 1.1 provides an overview of how the chapters relate to the contributions listed in the

previous section. Each chapter is based on the publications listed in Section 1.2.

The dissertation proceeds with a detailed examination of IRS-enhanced wireless communica-

tion technologies in Chapter 2, providing readers with essential concepts pivotal throughout

the study. Chapter 3 sets the groundwork by discussing the power efficiency metric in

multi-user SWIPT networks, serving as the foundational chapter for subsequent analysis. In

Chapter 4, we embark on an in-depth look at the application of IRS technology in enhancing

URLLC services, followed by an exploration of IRS integration within MTC services in Chap-

ter 5. Notably, Chapters 3, 4, and 5 focus on downlink communications, whereas Chapter

6 shifts the perspective to investigate an IRS-assisted MEC network in the uplink scenario.
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Chapter 7 delves into the exploration of higher frequency bands of mmWave. Chapter 8

introduces a pioneering study on a miniature UAV network operating within the even higher

frequency spectrum of THz. The dissertation culminates in Chapter 9, where we conclude

and summarize our primary findings.

This dissertation comprehensively examines the transformative role of IRS across various

technological domains. From boosting the efficiency of SWIPT networks and supporting

URLLC and MTC, to facilitating MEC, and enhancing VR, mmWave, THz applications,

IRS emerges as a key driver of innovation in wireless communication. This study illustrates

the wide-ranging applications of IRS technology and establishes a foundation for future

inquiries aimed at leveraging IRS to navigate the evolving challenges of contemporary wireless

networks. It envisions a trajectory towards crafting more resilient, effective, and immersive

communication environments.
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Intelligent Reflecting Surface-Aided
Wireless Communications: A Brief

Overview

THE future of mobile communications is set to undergo a significant transformation

with the advent of 6th generation (6G) and beyond wireless networks, introducing

a plethora of new applications and stringent technical demands. At the forefront of this

shift is the integration of Intelligent Reflecting Surfaces (IRSs)1, which revolutionizes the

traditional view of the propagation channel. Historically seen as an unpredictable medium

that adversely affects signal quality, IRS technology empowers network operators to precisely

control the interaction of radio waves with their environment. This is achieved by manip-

ulating the scattering, reflection, and refraction properties of radio waves, thus mitigating

the inherent challenges of wireless propagation. IRS is particularly notable for its capability

to modify the wavefront characteristics of signals, including phase, amplitude, frequency,

and polarization, without necessitating complex signal processing operations. This chapter

aims to provide a brief overview of IRS technology, tracing its development, distinguishing

it from previous technologies, identifying key research questions, and highlighting the need

for new communication-theoretical models in light of IRS.

This chapter does not aim to provide an exhaustive review of the latest advancements

and the state of the art in IRS technology. Instead, it focuses on areas relevant to this

dissertation. The content herein draws from a literature review conducted over the past

four years in preparation for my publications. The purpose is to introduce the reader to key

concepts that will be revisited throughout this dissertation.

1Several terminologies are used to describe Reflective Surfaces, including software-controlled metasur-

faces [59], Reconfigurable Intelligent Surfaces (RIS) [60], Intelligent Reflecting Surfaces (IRSs) [61], and

reconfigurable intelligent metasurfaces [62]. For the sake of consistency and clarity in this dissertation, the

term “IRS” will be used uniformly to refer to these technologies.

9
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2.1 Intelligent Reflecting Surfaces

IRSs have been introduced as a novel paradigm to reconfigure the wireless propagation

environment through software-controlled reflections. Comprising a planar array of numerous

low-cost passive reflectors, each IRS unit is capable of independently adjusting the amplitude

and/or phase of the incident signals. This capability enables precise three-Dimensional (3D)

beamforming, setting IRS apart from traditional wireless link adaptation methods that modify

signals at the transmitter or receiver. Instead, IRS proactively alters the wireless channel

itself with highly controlled and intelligent reflections, offering a new Degree of Freedom

(DoF) to boost communication performance in a smart, programmable wireless environment.

With the advantage of not requiring transmit Radio Frequency (RF) chains and supporting

short-range operation, IRS can be deployed densely to enhance network coverage cost-

effectively and with minimal energy use, sidestepping the complex interference management

typically required. Additionally, IRSs are versatile, designed to fit on various surfaces, thus

accommodating a wide range of application scenarios, although this innovative approach

necessitates further research in communication modeling and problem-solving [62].

2.2 Architecture of an IRS: From Concept to Implemen-

tation

IRSs are grounded in the technology of metasurfaces, which are essentially two-Dimensional

(2D) arrays composed of metamaterials. These metasurfaces are made up of numerous

meta-elements, each with distinct ElectroMagnetic (EM) characteristics determined by their

design parameters. As shown in Fig. 2.1, an IRS incorporates these elements placed at in-

tervals shorter than the wavelength of the signals they interact with. Upon encountering

an EM signal, each IRS element generates a current, subsequently re-emitting an EM wave

whose amplitude and/or phase may differ from that of the incoming signal. By strategically

configuring these elements, an IRS can precisely modulate the phase and amplitude of the

reflected EM waves to create a 3D beam. This coordination among IRS elements facili-

tates the manipulation of wireless signals, achieving passive beamforming towards specific

directions without relying on external power sources. Such passive modulation of signals en-

ables the IRS to intelligently direct reflections, significantly boosting the efficacy of wireless

communication networks [54].

Diving deeper, Fig. 2.1 also illustrates the structured composition of the architecture of an

IRS, which typically consists of three distinct layers alongside a sophisticated controller. The

surface layer consists of numerous metallic patches arrayed on a dielectric substrate, serving

the primary role of interacting with incoming signals. Positioned beneath this, a copper

plate ensures no signal energy leakage. The foundational layer encompasses the control

circuit board tasked with modulating each metallic element’s reflection characteristics —

amplitude and phase shift — under an attached smart controller. In practical setups, a

Field-Programmable Gate Array (FPGA) is often deployed as this controller, doubling as a

communication nexus with the broader network infrastructure (such as Base Stations (BSs),

Access Points (APs), and User Equipments (UEs)) through dedicated low-rate wireless

connections for information exchange.
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Figure 2.1: Architecture of an IRS.

A closer look at an individual IRS element’s design, as depicted in Fig. 2.1, reveals the in-

clusion of a Positive-Intrinsic-Negative (PIN) diode2. By varying the bias voltage through a

DC feeding line, the PIN diode toggles between active (“On”) and inactive (“Off”) states,

producing a phase shift of π radians. This mechanism allows for the individual calibration

of each element’s phase shift by adjusting their bias voltages via the smart controller. Fur-

thermore, the design incorporates variable resistor loads to modulate the reflected signal’s

amplitude. Changing resistor load values adjust the dissipation of the incident signal’s energy,

facilitating tenable reflection amplitudes between 0 and 1. Achieving independent control

over both amplitude and phase shift at each element necessitates the seamless integration

of these components, highlighting the complexity and precision required in IRS design.

The utilization of IRS in wireless networks brings several benefits, including [64, 65, 66]:

• Enhanced Signal Strength: IRSs have the capability to intelligently redirect and fine-
tune wireless signals, boosting signal strength in targeted areas. This is achieved by

precisely altering the phase shifts of its elements, directing focused signal beams to

2Alternative mechanisms, such as Field-Effect Transistors (FETs) or MicroElectroMechanical System

(MEMS) switches, are also viable options for implementing IRS technology [59]. For those interested in the

practical implementation of IRS, a specific design for the 5.8 GigaHertz (GHz) frequency band is provided

in [63]. This particular IRS features a total of 1100 metaatoms configured in a Uniform Planar Array (UPA)

with 20 rows and 55 metaatoms per row. The impedance of each metaatom is controlled by two varactor

diodes, facilitating the adjustment of the phase of reflected signals across a span of 240 degrees.
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specific regions, thus mitigating path loss and elevating signal clarity.

• Low Power Consumption: Composed of numerous reflective elements, often im-
plemented with diodes, IRSs operate without the need for active RF chains, leading

to significantly reduced power consumption compared to traditional active antenna

systems.

• Programmability: The elements within an IRS can be programmatically adjusted to
alter the direction and properties of incoming EM waves, channeling them towards in-

tended destinations. This adaptability allows for the achievement of various objectives

such as signal boosting, latency minimization, interference mitigation, and coverage

expansion.

• Simplified Design: IRSs are designed to be modular and lightweight, facilitating
straightforward installation on surfaces like interior walls or ceilings. Their adaptable

nature ensures easy incorporation into current wireless frameworks, enhancing system

flexibility and adaptability.

• Cost-Effectiveness: Implementing IRS technology can be a more economical solution
than the expansion of infrastructure or increasing the transmit power of base stations.

By integrating with existing network architectures, IRS deployment avoids the neces-

sity for substantial infrastructural enhancements, offering an efficient way to improve

network quality and reach with minimal additional cost.

2.3 IRS vs. Other Technologies: Key Advantages and Dif-

ferences

Through several key differences and advantages, IRSs distinguish themselves from other

technologies, such as active relays, backscatter communication, and massive MIMO (m-

MIMOs) with active surfaces [67]. Unlike active wireless relays, which amplify and retransmit

signals using active components like power amplifiers, IRS simply reflects the received signals

passively, without the need for active transmission modules. This not only makes the IRS

more energy-efficient but also allows it to operate in a full-duplex (FD) mode, unlike the

typically half-duplex active relays, thus offering greater spectrum efficiency. Although FD

relays are possible, they necessitate complex and expensive self-interference cancellation

solutions [68].

Contrary to traditional backscatter communication systems, such as Radio Frequency IDen-

tification (RFID) tags that modulate and reflect signals from a reader to communicate,

IRS does not transmit its own information [69, 70]. Instead, it enhances an existing com-

munication link by coherently combining direct and reflected paths at the receiver, thereby

strengthening the signal for improved decoding without the need for self-interference cancel-

lation techniques required by backscatter systems. Besides, the IRS differs from m-MIMOs

systems with active surfaces in its foundational architecture and functionality. IRS employs a

passive array architecture and operates by reflecting signals, as opposed to the active trans-

mission approach of m-MIMOs. This distinction in array architecture (passive vs. active)
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and operational mechanism (reflect vs. transmit) underlines the unique position of IRS in

enhancing wireless communications with efficiency and cost-effectiveness [71].

The integration of IRS into wireless networks introduces a novel combination of active

elements, such as BSs, APs, and user terminals, with (somehow) passive components,

namely the IRS itself. This hybrid approach marks a departure from conventional networks

that rely solely on active components. Consequently, this dissertation aims to explore the

intricacies of IRS-aided networks, covering aspects such as signal and system modeling, the

principles of passive and active beamforming, channel estimation, and deployment strategies.

It particularly focuses on the primary challenges and proposes potential solutions for the

development and application of IRS-aided networks, serving as a catalyst for further research

in this emerging field.

2.4 Holographic Massive MIMO Surfaces

IRSs are not necessarily the same as Holographic Massive MIMO Surfaces (HMIMOS). The

distinction between the two lies primarily in their functionality and design, which can be

better clarified. HMIMOS are versatile components that are critical for achieving adaptable

wireless environments. They can act as transmitters, receivers, or reflectors, making them

highly flexible in their applications.

The term “active HMIMOS” applies when these surfaces incorporate energy-demanding RF

circuits and signal processing units for transceiving purposes. Active HMIMOS represent

an advanced iteration of traditional m-MIMO systems, characterized by an increased den-

sity of software-managed antenna elements on a compact 2D surface. As the quantity of

these elements grows, leading to closer spacing between them, such configurations of HMI-

MOS are also known as Large Intelligent Surfaces (LIS). Active HMIMOS may feature a

dense assembly of small antenna elements linked with reconfigurable networks, forming a

unified antenna array that utilizes the hologram principle for signal dissemination and recep-

tion. Alternatively, they can employ discrete photonic antenna arrays with integrated active

components for handling optical or RF signal transformations [72, 73, 74].

Conversely, passive HMIMOS, identified as IRS, function similarly to passive metallic mir-

rors or “wave collectors,” programmable to change incident EM fields. Unlike their active

counterparts, passive HMIMOS consist of cost-effective elements that operate without ex-

ternal power, relying on energy harvesting for autonomy, aiming for energy neutrality. This

technology stands out for its efficiency in molding and directing radio waves without needing

power amplifiers or RF chains, and it operates without intricate signal processing. Capable

of full-duplex communication, passive HMIMOS mitigate self-interference and maintain low

noise levels with minimal control link requirements. Their low energy use and inexpensive

hardware make them ideal for integration into various settings, from architectural facades

to wearable technology, enhancing wireless networks’ flexibility and efficiency [75]. This is

the power of IRS as passive HMIMOS.
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2.5 Optimization of IRSs

Consider an IRS composed of Q unit cells, each acting as a diffusive scatterer capable of

changing the phase of an impinging EM wave. This behavior is mathematically represented

as Er,q =Et,qβqe
jφq 3 , where Et,q and Er,q denote the incident and reflected electric fields

of the q-th unit cell, respectively, and φq ⊂ Φ ∈ [0,2π) is the phase shift induced by the
q-th unit cell, chosen from a set Φ, while βq ≥ 1 is reflection amplitude of the q-th IRS
element [79, 80]. The task of configuring the IRS entails optimizing these phase shifts

φq (and amplitudes βq in case of an active IRS rather than passive IRS), leading to a

non-convex optimization problem due to the unit-modulus constraint |e jφq | = 1. Although
various strategies have been proposed in the literature to tackle this non-convex constraint,

they generally do not scale well for large IRS configurations as the number of optimization

variables becomes excessively large [81, 82, 60, 83, 84]. For example, an IRS of size 1 meter

by 1 meter at a carrier frequency of 5 GHz, assuming a unit-cell spacing of half a wavelength,

would encompass Q= 1100 unit cells. Consequently, direct optimization of φq for each cell

in such large IRS arrays may not be feasible for on-the-fly design considerations.

In an IRS-enhanced communication framework that includes several multi-antenna BSs/APs,

multiple IRS units, and a large user base equipped with either single or multiple antennas,

managing IRS configurations centrally becomes a formidable challenge. This setup would

necessitate the transmission of extensive control data to a central controller, leading to

substantial computational and energy costs. To address these issues, there is a critical need

to develop algorithms that can efficiently handle resource allocation, beamforming, IRS

settings, and user scheduling. Furthermore, the network optimization process is expected

to be further complicated by factors such as power distribution, spectrum utilization, and

the assignment of users to specific BSs/APs and IRS units. As the network integrates

more IRS units, the complexity of designing effective algorithms is expected to increase

correspondingly.

In this dissertation, we address these challenges by devising resource allocation policies char-

acterized by low computational complexity and optimal convergence behavior. Our approach

encompasses a variety of use cases, exploring a broad spectrum of communication network

metrics (such as power/spectral/energy efficiency, throughput, and user quality of service)

and optimization strategies specifically tailored for IRS-aided networks. By adopting this

methodology, we aim to enhance the efficiency and effectiveness of deploying IRS tech-

nology across diverse scenarios. Our focus on various optimization approaches enables us

to tailor solutions that meet the unique requirements of each use case and mitigate the

computational and energy constraints associated with centralized IRS management. This

comprehensive examination of IRS-aided networks is crucial for implementing distributed al-

gorithms that optimize network performance while effectively balancing computational load

and energy usage.

3More complex models (that depend on the angle of arrival/departure, unit cell radiation pattern, and

other relevant physical parameters) exist in the literature [29, 30, 31, 32, 34, 76, 77, 78].
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2.6 Applications of IRSs

The introduction of IRSs is transforming wireless networks, enabling a host of promising ap-

plications. Fig 2.2 presents a vision for a future IRS-aided wireless network. IRS technology

proves invaluable in extending coverage for millimeter-wave (mmWave) and Terahertz (THz)

communications, which typically suffer from signal obstructions. By strategically placing IRS

at cell edges, not only is the signal strength for users at these locations improved, but inter-

ference from adjacent cells is effectively reduced. This is particularly advantageous in set-

tings such as smart offices or homes, where IRS can significantly counteract power loss over

distances for systems like simultaneous wireless information and power transfer (SWIPT),

thanks to its capability for directed beamforming towards proximate devices [85, 86, 87].

Further, IRS can be seamlessly integrated into the indoor infrastructure, attached to ceilings,

walls, or even discreetly behind decorations, to foster enhanced network coverage and estab-

lish high-capacity connectivity zones. Such advancements are critical for enhanced Mobile

BroadBand (eMBB) and massive Machine Type Communications (mMTC) services within

diverse environments, including smart factories and commercial venues, offering improved

device activity detection and efficiency by exploiting IRS’ extra controllable paths in varying

propagation conditions [86, 88]. Outdoors, the IRS finds utility in various structures, from

building exteriors to public fixtures, supporting a range of applications, including URLLC for

remote operation and intelligent transportation systems. By mitigating Doppler and delay

spread effects, IRS contributes to the stabilization of wireless channels, thereby enhanc-

ing communication reliability essential for minimizing packet retransmissions and reducing

latency (which is the key for URLLC applications) [89, 90].

As a pioneering technology, IRS is set to revolutionize the “dumb” infrastructure of today

into an intelligent, interactive topography, promising substantial advantages across multiple

sectors in the evolving 6G ecosystem. Its potential has ignited industry interest in devel-

oping and commercializing IRS-like technologies to forge new value chains. Concurrently,

numerous pilot projects are underway, advancing research in this innovative field. Despite

the diverse nomenclature, ranging from intelligent walls and smart reflect-arrays to large

intelligent surfaces, all these innovations fundamentally rely on the principle of passive and

adjustable surfaces for manipulating signal reflection or refraction [91, 92, 93].

2.6.1 Practical Scenarios: From Blockage Mitigation to Advance Us-

age

Fig. 2.3 depicts various practical scenarios where IRS-aided wireless networks can signifi-

cantly enhance connectivity and security. Signal blockages and obstructions pose significant

challenges to signal coverage, often compromising wireless communication systems’ con-

nectivity. In the first scenario, an IRS overcomes the challenge of signal blockage between

a user and a BSs/APs, which is common in environments prone to obstruction, like indoor

spaces affecting mmWave communications. Through the strategic placement of IRS ele-

ments, it is possible to reroute incident signals around obstacles, effectively creating a virtual

Line-of-Sight (LoS) connection and extending coverage to areas otherwise shadowed by an

APs [94, 95]. The second scenario addresses enhancing physical layer security. When an
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Massive D2D Communicants Wireless Information and Power Transfer in Wireless Network

Figure 2.3: Typical IRS applications in wireless network.

eavesdropper is closer to the BSs than a legitimate user or in the same direction, tradi-

tional transmit beamforming struggles to prevent information leakage. Here, an IRS near

the eavesdropper can adjust its signal reflection to negate the signal reaching the eavesdrop-

per, thereby securing the communication [96, 97, 98]. In the third use case, an IRS aids a

cell-edge user experiencing both weak signal strength from its BSs and interference from a

neighboring BSs. By deploying an IRS at the cell edge and fine-tuning its beamforming, the

desired signal is amplified while interference is minimized, creating both a “signal hotspot”

and an “interference-free zone” [81, 99, 100, 101]. The fourth application demonstrates

the IRS’s role in facilitating massive D2D communications. Here, the IRS serves as a central

hub for signal reflection, enabling multiple low-power D2D links by mitigating interference

among them. Lastly, the potential of the IRS in SWIPT scenarios is explored, particularly for

Internet-of-Things (IoT) networks. Utilizing the large surface area of an IRS, it is possible

to significantly improve the efficiency of wireless power transfer to IoT devices by compen-

sating for power losses over distances with passive beamforming, showcasing the diverse
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Figure 2.4: Application scenario for an IRS to mitigate blockage in an indoor factory.

capabilities of IRS in modern wireless communication systems [102, 103, 104, 105].

2.6.2 Indoor Environments: A Factory Setting

In industrial settings, as shown in Fig 2.4, the complexity of the environment often re-

sults in signal blockage due to numerous obstructions such as machinery, tools, and the

constant movement of personnel, robots, and vehicles. The IRS offers a solution to this

problem by facilitating a reliable connection between an APs and mobile users within the

premises. By strategically positioning the IRS, it can dynamically redirect beams to navigate

around obstructions, ensuring a robust and continuous link with users and the machines,

even amidst changes or reconfigurations in the factory layout. The ability of the IRS to

redirect its reflecting beams to accommodate the movement of users and bypass physi-

cal barriers guarantees uninterrupted wireless communication. For enhanced coverage and

flexibility, mounting the IRS on a mobile platform allows for the adjustment of its location

to suit the factory’s current configuration and the users’ positions, optimizing the signal

quality and addressing blockage challenges effectively. Furthermore, the deployment of a

considerable number of IRS elements allows the system to adapt flexibly to the wireless
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environment, navigating around blockages. These elements collaboratively build a robust

reflective Non-Line-of-Sight (NLoS) link, thereby amplifying signal propagation and broad-

ening the coverage area [106, 107].

The implementation of an IRS in such environments circumvents the need for major infras-

tructural modifications or the extensive repositioning of network components [108]. With

its ability to be reconfigured, the IRS enhances connectivity, significantly improving both

operational and communication efficiency in smart manufacturing environments [109]. Its

capacity to maintain a dependable connection with moving users boosts productivity and

enhances the factory’s overall performance [110]. Further insights into the application of

IRS in industrial settings, particularly for systems accommodating Machine-Type Commu-

nication (MTC) 4 and URLLC services [111, 112], are detailed in Chapters 4 and 5 of this

dissertation.

2.7 IRS-aided System Design: Dissertation Objectives

Research on optimizing IRS configurations has proliferated due to their ability to reshape

wireless propagation channels [76, 113, 114, 115, 116, 117, 118, 119, 120, 121]. Various

studies demonstrate the technology’s versatility, such as those proposing robust resource

allocation algorithms for IRS-enhanced systems and exploring resource distribution in IRS-

supported OFDMA frameworks [122, 123]. While enhancements in multi-cell [81] and full-

duplex [124] systems have been explored, along with IRS’s integration into non-orthogonal

multiple access (NOMA) setups [125], the emphasis has largely been on eMBB traffic and

predominantly single-carrier systems [66, 88, 126]. The incorporation of IRS into both

URLLC and MTC services introduces a transformative shift, notably reducing latency and

improving system reliability. In this dissertation, our investigation extends IRS into such

services, further expanding the scope of the research.

The strategic manipulation of EM waves enables IRS to amplify power efficiency within

multi-user SWIPT systems [50]. This dual functionality underscores the flexibility of IRS

in promoting energy harvesting and reliable data transmission. IRS proves invaluable for

Virtual Reality (VR) networks that encounter significant path loss or obstructions, ensuring

uninterrupted, high-quality experiences. IRS also enhances Mobile Edge Computing (MEC)

by optimizing signal delivery for efficient edge data processing [101]. This improvement

is critical for applications demanding immediate feedback and strict data integrity, such

as autonomous vehicles and industrial automation, highlighting the IRS’s crucial role in

addressing next-generation communication requirements. Subsequent to our examination,

additional studies have delved into the use of miniature unmanned aerial vehicle (UAV)

networks. The exploration in this dissertation further spans the strategic application of IRS

across a wide frequency spectrum, from Frequency Range 1 (FR1) to Frequency Range 2

(FR2), and into the advanced territories of mmWave and THz frequencies, illustrating its

profound impact on the future of telecommunications.

4MTC refers to automated communication between devices or machines, characterized by minimal or

no human intervention, typically utilizing protocols and technologies designed for efficient and scalable data

exchange in IoT and industrial automation environments.
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To assess the efficacy of IRS-enhanced networks, this dissertation identifies a suite of KPIs,

including data rate, power and energy efficiency, Signal-to-Interference-plus-Noise (SINR),

transmit signal power budget, and received power strength. These KPIs are crucial for

evaluating and refining the network’s performance through the development of an effective

resource allocation strategy. Non-linear, non-convex, and MINLP problems arise when ad-

dressing the resource allocation optimization problem. These problems are NP-hard due to

the complex relationship between variables and the system’s constraints. Given the com-

plexity of these optimization problems, different strategies are used to simplify and approach

their solution. By relaxing the objective function and constraints that are non-convex to a

more tractable format, the problems became more manageable. This relaxation approach

often involved transforming the optimization problem into its convex equivalent or utilizing

approximation techniques to linearize or convexify non-convex terms.

Algorithms are developed that are capable of solving the main problem either globally or sub-

optimally but sufficiently close to the global optimum. These solutions employ optimization

solvers and computer simulations, exploiting advanced mathematical tools and techniques

such as the big-M method for linearizing product terms involving binary variables and Suc-

cessive Convex Approximation (SCA) to obtain convex approximations of non-convex terms.

The iterative nature of these solutions allowed for step-by-step refinement, gradually moving

towards an optimal configuration of a resource allocation design despite the initial problem’s

complexity.

Through exhaustive simulations, this dissertation unveils the diverse performance improve-

ments achievable through resource allocation in IRS-assisted networks, providing rich insights

into how IRS technology can improve wireless communication systems. These simulations

serve as a critical bridge, connecting theoretical predictions with empirical evidence and val-

idating the practical feasibility of the proposed IRS-enhanced network. By exploring various

IRS configurations — examining both passive and active types and varying the number of

reflective elements — and their implementation in different environments and settings, this

study not only confirms the theoretical models’ accuracy but also explains the conditions un-

der which IRS deployments yield maximal performance gains, manifesting the IRS versatility

in adapting new technologies.

Collectively, this dissertation studies the impact of IRS across a broad range of technologies.

By enhancing the performance of SWIPT networks, facilitating URLLC and MTC, enabling

VR, and revolutionizing VR, mmWave, and THz applications, IRS stands at the forefront of

wireless communication innovation. This work demonstrates the diverse applications of IRS

technology and lays the foundation for future research aimed at utilizing IRS to tackle the

dynamic challenges of modern wireless networks. It charts a path toward the development

of more robust, efficient, and engaging communication ecosystems.

In this dissertation, we contribute to the IRS-aided system design for different service type

users with three principal innovations:

• Extending IRS to URLLC, MTC and other Use-Cases: We explore the use of IRS
in reducing latency and enhancing reliability for URLLC and MTC services, broadening

the scope of IRS applications beyond traditional eMBB traffic. We further investigate

IRS functionality in VR, MEC, and UAV networks.
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• Developing Optimization Algorithms: We introduce algorithms for solving com-
plex optimization problems in IRS-assisted networks, utilizing advanced mathematical

techniques to approach global or near-global optimums efficiently.

• Performance Validation through Simulations: Through simulations, we demon-
strate the significant improvements IRS can bring to wireless networks, validating

theoretical predictions and showcasing the technology’s adaptability across various

applications.
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Power Efficient Multi-User SWIPT

Networks

BEFORE diving into Intelligent Reflecting Surface (IRS) technology, we need to develop

a baseline. This chapter lays the groundwork for a comprehensive understanding of

power efficiency in a downlink multi-antenna, multi-user single-cell network, particularly in the

context of Simultaneous Wireless Information and Power Transfer (SWIPT). The proposed

power efficiency problem aims to maximize the harvested energy and minimize transmission

power consumption simultaneously. The emphasis on maximizing the harvested energy while

minimizing transmission power consumption addresses a crucial aspect of wireless commu-

nication networks. The approach includes optimizing beamforming and antenna selection

procedures at the receivers, considering minimum data rate requirements, which introduces

a complex optimization landscape. The problem is identified as a non-linear programming

problem, highlighting the complex nature of achieving power efficiency in such networks.

As a result, a joint optimization of beamforming and antenna selection design is performed

based on the scheduling chosen for information decoding and energy harvesting. This method

involves breaking down the main problem into two manageable subproblems: antenna selec-

tion optimization based on maximum channel gain across all antennas and transmit beam-

forming optimization through a unique two-layer iterative process leveraging the sum-of-ratio

programming. This dual approach enables a low-complexity, locally optimal solution, signif-

icantly improving power and energy efficiency.

Furthermore, the chapter presents simulation results to validate the effectiveness of the pro-

posed scheme, demonstrating notable improvements in power and energy efficiency. These

results also uncover an intriguing balance between power and energy efficiency, suggesting

an inherent tradeoff that must be navigated in the design of SWIPT-enabled networks.

This first technical chapter aims to develop a baseline fundamental backbone, building the

foundation for the subsequent chapters. The concepts, methodologies, and solutions in-

troduced here are essential for understanding and advancing the state of power efficiency

in multi-antenna, multi-user single-cell networks. As such, this chapter serves as the cor-

nerstone upon which the rest of the discussions and explorations in this book will be built,

ensuring a coherent and progressive development of ideas and technologies in the realm of

IRS-aided wireless communications.

23
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3.1 Introduction

Recently, the technology of Simultaneous Wireless Information and Power Transfer (SWIPT)

has been recognized as a promising approach for simultaneously enhancing the Energy Effi-

ciency (EE) and extending the battery lifespan of wireless devices [127]. Research in this field

has primarily concentrated on either increasing the amount of energy harvested or improving

throughput levels [128, 129]. However, focusing exclusively on enhansing throughput may

lead to elevated power consumption within the network, while prioritizing the maximization

of harvested energy through SWIPT could degrade Quality of Service (QoS). In response

to this dilemma, EE has been proposed as a pivotal metric designed to handle the delicate

balance between minimizing power consumption and maximizing throughput.

This metric introduces a different understanding of network performance, emphasizing the

importance of achieving a harmonious equilibrium between the dual objectives of energy

conservation and information transmission efficiency. By evaluating both energy harvest and

throughput within a unified framework, EE offers a comprehensive metric that addresses the

complexities and inherent trade-offs involved in SWIPT technology. This approach not only

underscores the multi-layered challenges of optimizing network operations but also highlights

the potential for innovative solutions that can reconcile competing objectives in the pursuit

of sustainable and efficient wireless communication systems.

The quest for energy-efficient resource allocation design in SWIPT networks is a focal point

of numerous scholarly studies, as evidenced by the array of research tackling this issue [130,

131, 132, 133, 134, 135, 136]. These investigations have unfolded a variety of innovative

strategies designed to elevate the EE across diverse network architectures. Among these

strategies, beamforming techniques within complex multi-cell, multi-user environments have

been emphasized for their potential to significantly enhance network performance [130].

Furthermore, the optimization of EE in Multiple-Input Single-Output (MISO) Orthogonal

Frequency Division Multiple Access (OFDMA) frameworks through advanced beamforming

methodologies, such as zero-forcing, has been thoroughly examined [137].

The body of work extends beyond these approaches, with additional research focusing on

the enhancement of EE through beamforming strategies specifically designed for OFDMA

networks [131]. This is complemented by in-depth investigations into Non-Orthogonal Mul-

tiple Access (NOMA) based SWIPT networks. Such studies focus on achieving maximal EE

by finely tuning the balance between power allocation and Time-Switching (TS) control in

TS-based SWIPT architectures [132]. This collective research effort represents a concerted

move towards optimizing the dual functionality of SWIPT networks, ensuring not only the

efficient transmission of information but also the effective harvesting of energy.

Building upon the same research dedicated to enhancing EE in SWIPT networks, the study

presented in [133] explores a heterogeneous NOMA SWIPT network, introducing a novel

solution for EE maximization. This solution considers the matching theory concept cou-

pled with the application of Lagrangian duality, presenting a sophisticated mathematical

framework for addressing EE optimization problems. Furthermore, [134] advances the dis-

course by proposing an EE optimization strategy through a meticulous subcarrier allocation

design policy. This strategy is aimed at fostering green communication in wireless sensor

networks by harnessing the capabilities of SWIPT technology, marking a significant step



26 CHAPTER 3. POWER EFFICIENT MULTI-USER SWIPT NETWORKS

towards sustainable network operations.

Additionally, the research in [135] delves into a Multiple-Input Single-Output (MISO) SWIPT

network, distinguished by a non-linear energy harvesting model. Here, a comprehensive ap-

proach to EE maximization is undertaken, involving the joint optimization of Power-Splitting

(PS) ratios and beamforming design. This approach features the intricate balance required

to maximize EE without compromising the network’s operational capabilities. Meanwhile,

the work in [136] introduces an Energy Efficiency Indicator (EEI), specifically designed to

mediate the relationship between data rate and energy harvesting. This indicator serves as

a tool for calibrating network performance with an eye towards achieving an optimal balance

between these two critical dimensions.

Despite these considerable advancements, it is striking to note that previous studies have

largely overlooked the potential of Antenna Switching (AS) techniques at the receiver level to

balance the trade-off between Information Decoding (ID) and Energy Harvesting (EH) [130,

131, 132, 133, 134, 135, 136]. This oversight suggests an opportunity for further exploration

into how AS techniques could enhance the dynamic interplay between ID and EH, potentially

unlocking new pathways to superior energy efficiency. The ability of multiple antennas

to switch between decoding and harvesting modes, based on real-time assessments, could

dramatically elevate the efficiency and adaptability of SWIPT networks, heralding a new era

of smart, energy-efficient wireless communication.

Intuitively, the concept of utilizing multiple receive antennas presents a promising avenue for

enhancing both energy harvesting capabilities and the efficiency of information transfer in

SWIPT networks. This approach benefits from the potential for increased energy collection

and improved signal reception, thus facilitating a more robust and efficient communication

system. Furthermore, AS provides a trade-off between operational costs, system complex-

ity, and overall network performance. By selectively activating certain antennas based on

prevailing conditions, networks can achieve optimal functionality with minimized resource

expenditure.

The process of receiver antenna selection extends the AS scheme within the specialized

environment of co-located SWIPT networks [138]. This advanced methodology allows for

each antenna at the user’s device to be dynamically designated for either ID or EH according

to real-time Channel State Information (CSI). Such flexibility not only enhances the adapt-

ability of the network but also optimizes the dual objectives of SWIPT technology. We refer

to this methodology as “generalized AS” technique in SWIPT-based networks, signifying a

leap forward in the strategic deployment of network resources. Here, the AS function acts

as a decisive “switch,” orchestrating the operational mode of antennas to ensure they fulfill

their dual potential in EH and ID as necessitated by the network demands, as illustrated in

Fig 3.2.

The exploration of AS techniques in SWIPT systems represents a niche yet significant area

of study, with only a handful of research works delving into the intricacies of how antennas

can dynamically alternate between ID and EH functionalities [139, 140, 141, 142]. Among

these, the study conducted in [141] is notable for its innovative approach, proposing an

antenna-clustering methodology that leverages hybrid Deep Reinforcement Learning (DRL)

to optimize the average data rate for systems equipped with multiple antennas at both

the receiver and transmitter ends. Similarly, the work presented in [142] explores an AS
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strategy specifically designed for multi-antenna secondary receivers within cognitive-based

networks, employing a thresholding method to facilitate the switching process. Despite these

advancements, it is observed that the existing literature, including the studies [129, 139,

141], and [142], primarily overlooks the EE aspect of networks employing AS. In contrast,

[140] takes a step forward by assessing EE within a Point-to-Point (P2P) Multiple-Input and

Multiple-Output (MIMO) SWIPT system, underlining the potential for improving network

performance through efficient energy use.

Motivated by the practical scenarios, the critical gap identified in the literature is the absence

of any study focusing on the optimization of “power efficiency” in multi-user SWIPT net-

works through a combined approach of generalized AS and beamforming techniques. This

approach not only aims to enhance the power harvested and data rate but also seeks to min-

imize power consumption, thereby ensuring a sustainable balance that meets the network’s

quality conditions. Given the evolving needs of modern wireless networks, such as increased

data demand and the push for energy sustainability, the integration of generalized AS with

beamforming strategies presents a promising avenue for research. This novel direction could

pave the way for significantly more energy- and power-efficient SWIPT networks, tailored

to meet the challenges of contemporary and future wireless communication systems.

This chapter delineates a pioneering approach through the implementation of generalized AS

alongside a beamforming design tailored for multi-user SWIPT systems, aiming primarily to

elevate the network’s power efficiency. The essence of our contribution is encapsulated in the

strategic deployment of these technologies to refine the balance between energy harvesting

and power consumption, thereby optimizing the overall network functionality. The core

aspects of our contributions are detailed as follows:

• We first present the difference between generalized AS and other SWIPT architecture.
Our investigation then begins with a critical evaluation of the system’s power efficiency,

which we articulate as the ratio of the aggregate harvested energy to the total power

expenditure [143]. This foundational concept serves as the basis for our subsequent

optimizations and analyses in the generalized AS SWIPT network.

• Building upon this, our objective expands to encompass the holistic optimization of
the network’s effective power. By designing beamforming for both information and

energy signals within a MIMO framework that incorporates generalized AS, we un-

dertake a comprehensive approach. Essential to our methodology is the assurance of

maintaining each user’s minimum Quality of Service (QoS), in order to balance the

tradeoff between ID and EH. We maximize the effective power throughput subject to

minimum data rate and maximum power transfer constraints. Achieving these ambi-

tious goals necessitates a deliberate selection of receiver antennas and an optimization

of transmit beamforming, tailored distinctly to the network’s unique attributes. The

complexity and non-linear nature of this problem are acknowledged, setting the stage

for innovative solutions.

• In response to the challenging nature of the original optimization problem, we adopt
a strategic approach by decomposing it into two manageable subproblems, thereby

paving the way for a locally optimal solution. In particular, the first subproblem is

solved via searching for the best channel gain across all antennas. The objective func-

tion in the second subproblem follows the sum of objective ratio functions that will
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be transformed into an equivalent subtractive form. To navigate these challenges, we

leverage the Semi-Definite Programming (SDP) relaxation technique coupled with a

one-dimensional search methodology, facilitating an iterative progression toward ob-

taining an optimal solution.

• The practical validation of our theoretical constructs is achieved through rigorous
simulation exercises. These simulations not only affirm the robustness of the proposed

algorithm in enhancing power efficiency and energy efficiency across a spectrum of

antenna and sensor user configurations but also illuminate the inherent trade-offs

between these two critical efficiencies. The insights learned from these simulations are

instrumental in demonstrating the tangible impacts of our contributions.

In essence, this chapter not only provides the innovative application of generalized AS and

beamforming within the realm of SWIPT networks but also illustrates the profound im-

plications of these strategies on the operational efficiency of such networks. Through a

methodical dissection of the problem and the strategic employment of advanced mathe-

matical techniques, we offer a blueprint for achieving an optimal balance between energy

harvesting and information transmission, heralding a new era in the design and optimization

of SWIPT systems.

This chapter aims to develop a baseline fundamental backbone, building the foundation for

the subsequent chapters. The concepts, methodologies, and solutions introduced here are

essential for understanding and advancing the state of power efficiency in multi-antenna,

multi-user single-cell networks. As such, this chapter serves as the cornerstone upon which

the rest of the discussions and explorations in this dissertation will be built, ensuring a

coherent and progressive development of ideas and technologies in the realm of wireless

communications.

The rest of the chapter is organized as follows. This chapter unfolds with a comparative

analysis of generalized AS against traditional SWIPT architectures in Section 3.2. We then

detail the system model and problem formulation in Section 3.3. Section 3.4 introduces

a solution to the proposed scheme. This is followed by Section 3.5, where we validate

our theoretical models with extensive simulations, demonstrating the practical viability and

benefits of our proposed method. The chapter concludes in Section 3.6, where we summarize

our findings and reflect on their implications for the advancement of SWIPT systems.

Notations: We denote the matrices and column vectors by boldfaced lowercase and up-

percase letters, e.g., A and a, respectively. ∥a∥ indicates the Euclidean norm of vector a
and |a| describes the magnitude of a complex number a. The transpose and Hermitian of
a matrix are expressed as (·)T and (·)H, respectively. Moreover, Tr(A) and rank(A) define
the trace and the rank of matrix A, respectively. diag(A) specifies a vector whose elements

are taken from the main diagonal elements of the matrix A. A⪰ 0 indicates A is a positive
semidefinite matrix. CN×M is the space of an N×M with complex element entries. The set
containing the elements a and b is denoted as {a,b}. Matrix IM expresses an M×M iden-
tity matrix. CN (µ,Σ) gives the distribution of a Circularly Symmetric Complex Gaussian
(CSCG) random vector with the mean µ and covariance matrix Σ, where ∼ means “with
the distribution of.”
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3.2 Generalized AS versus other SWIPT Architectures

In our discussion, we delve into the concept of generalized AS within the context of SWIPT

networks, a burgeoning area of research that intersects with multiple Wireless Power Transfer

(WPT) technologies. The core idea behind SWIPT is its ability to utilize radio frequency

(RF) signals for dual purposes — both to convey information and to transfer energy to

energy-constrained wireless User Equipments (UEs). This innovative approach allows UEs

to simultaneously harvest energy and process information from RF signals emanating from

a Base Station (BS), a mobile AP (e.g., a drone), or an Access Point (AP).

SWIPT systems are designed to facilitate the concurrent transfer of energy and information

signals in the DL direction from one or multiple BSs or APs to one or several receivers. This

setup is optimized for simultaneous ID and EH, fundamentally altering the dynamics of wire-

less communication systems by enhancing their energy efficiency and operational capabilities.

Ideally, a receiver equipped for SWIPT would possess integrated circuitry capable of perform-

ing both ID and EH concurrently. This integration represents a departure from traditional

designs, where separate circuits were utilized for EH and ID, marking a significant evolution

in the design and functionality of receivers within SWIPT networks [144, 145, 146] 1.

While simultaneous EH and ID operations are embodied in the SWIPT technology, it is

crucial to understand that these processes do not necessarily occur on the same segment

of the received signal. Practically, attempting to harvest energy directly from the signal

carrying information would compromise the integrity of the data within the RF domain,

rendering the information content unusable. Moreover, relying on a singular antenna for

both EH and ID tasks might not provide a consistent energy supply, given the inherent

limitations in energy collection capabilities of a single antenna setup. To circumvent these

challenges and effectively enable SWIPT, distinct strategies are employed, such as dedicating

separate antennas for EH and ID operations or dividing the incoming RF signal into two

distinct paths — one for EH and another for ID — through the use of a splitter. This

differentiation is essential for the practical implementation of SWIPT systems, ensuring

both energy harvesting and information decoding can occur efficiently without interference

between the two processes.

The architectural design of EH and ID receivers within SWIPT systems can be broadly cate-

gorized into two types: separated and co-located architectures (cf. Fig. 3.1). In a separated

architecture, EH and ID functions are performed by two distinct devices, each equipped

with its own antenna and experiencing different channel conditions from the transmitter. As

shown in Fig. (3.1a), the EH receiver, designed for low-power operation, focuses solely on

energy collection, whereas the ID receiver processes the data. Given the efficiency of energy

harvesting diminishes with distance, EH receivers are typically positioned closer to the BS

or AP compared to ID receivers, necessitating spatial separation and often defined by an

inner and outer radius to demarcate EH and ID zones. Conversely, a co-located SWIPT

architecture integrates both EH and ID capabilities within a single device, receiving identical

channel conditions from the transmitter. This setup enables the device to simultaneously

perform EH and ID without the need for spatial separation, offering a more elegant approach

to SWIPT but requiring sophisticated internal mechanisms to manage the different func-

1The concept of generalized AS in this framework further enriches this evolving landscape, promising new

avenues for maximizing the efficiency and effectiveness of SWIPT systems.
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(d) Antenna-Switching (AS) approach to realize co-located SWIPT architecture.

Figure 3.1: Integrated receiver architecture designs for SWIPT.
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tionalities efficiently. Each architecture offers distinct advantages and challenges, shaping

the deployment and effectiveness of SWIPT systems in various operational environments.

Within the realm of co-located receiver architectures for SWIPT, three pragmatic approaches

— Time Switching-(TS), Power-Splitting (PS), and Antenna-Switching (AS) — stand out

for their innovative means of enabling simultaneous EH and ID operations. These methods

ensure that EH and ID receivers, despite sharing the same physical space, can efficiently

manage the tasks without compromising on performance.

In the TS approach, as illustrated in Fig. (3.1b), the architecture includes an EH module,

an ID module, and a switch. This setup allows the receiving antenna to alternate between

EH and ID modes according to a predefined, yet adjustable, TS sequence. This method

requires precise scheduling of information and energy reception, alongside accurate timing

mechanisms, to ensure the seamless transition between modes. Conversely, the PS approach,

depicted in Fig. (3.1c), employs a strategy where the incoming RF signal is divided into two

distinct streams at varying power levels dedicated to EH and ID tasks, respectively. This

division is governed by an optimizable PS ratio, enabling a balanced distribution of power

for both functions within the same time frame. The AS methodology, as in Fig. (3.1d),

introduces a paradigm where independent antennas are designated for EH and ID activities,

facilitated by a straightforward AS algorithm. This setup typically involves an antenna

array at the receiver, employing spatial multiplexing to segregate the antenna into subsets

dedicated to either EH or ID functions. This configuration allows for a dynamic allocation

of resources, with one subset of antennas focusing on energy harvesting while the remaining

antennas are tasked with decoding information.

The AS approach is notably recognized for its simplicity and practicality, making it a partic-

ularly appealing option for SWIPT architecture designs. It offers a straightforward solution

without the complex scheduling required by TS or the precise power allocation demands of

PS [147]. Moreover, its flexibility and lower complexity render it an optimal strategy for not

only co-located receiver architectures but also for enhancing separated receiver designs, as

suggested by Fig. (3.1a). This adaptability and ease of implementation highlight the AS

method as a superior choice for real-world applications of SWIPT systems. In addition, the

AS approach can be similarly adopted to optimize the separated receiver architecture as

shown in Fig. (3.1a) [148].

The AS approach, particularly in its advanced form of generalized AS, emerges as a notably

strategic and flexible methodology in co-located SWIPT networks. By extending the basic

premise of AS to allow for the dynamic selection of receiver antennas, based on real-time

CSI for either ID or ED, this methodology significantly broadens the operational versatility of

SWIPT systems. Such an advanced approach introduces a paradigm shift in how antennas

are utilized, seamlessly alternating between EH and ID to maximize network efficiency and

resource utilization. In the traditional AS framework, antennas are separated into distinct

groups, each dedicated to either EH or ID. Conversely, generalized AS supplies each antenna

with both EH and ID functionality. This allows antennas in the generalized setup to ‘switch’

between two specific roles, unlike in conventional AS, where a physical switch is used to

toggle between different antennas for EH and ID tasks. Our introduction of the generalized

AS concept represents a first in the field, offering a novel and sophisticated solution that

optimally aligns with the objectives of SWIPT technology. This innovative leap enhances the

adaptability and efficiency of SWIPT networks, ensuring that each antenna within a user’s
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Figure 3.2: Generalized AS approach to realize SWIPT architecture in a single-cell multi-user MIMO

network.

device is employed to its fullest potential in accordance with the instantaneous demands of

the network environment.

3.3 System Model and Problem Formulation

In our study, we focus on a DL Orthogonal Frequency Division Multiplexing (OFDM) network

architecture, where an AP provides coverage to multiple sensor User Equipments (UEs)

within its range. The AP is equipped with NT antennas, while each sensor user is equipped

with M antennas, allowing for enhanced communication capabilities and network efficiency.

We define the set of k sensor users under the AP’s coverage as K= {1,2, ...,K}, representing
a diverse array of devices with varying communication needs.

A key assumption in our model is the availability of perfect CSI at the central resource

allocator2. This assumption enables the design of an optimized resource allocation policy

that can dynamically adjust to various network conditions. The perfect CSI ensures that

the resource allocation mechanism can make informed decisions, maximizing the network’s

overall performance by efficiently utilizing the available spectral resources. This approach

emphasizes the importance of accurate information in the strategic planning and execution

of network resource distribution, aiming to enhance the communication experience of all

sensor users within the DL OFDM network.

In our system model, where each user is equipped with multiple antennas, the framework

allows for the strategic selection of the optimal antenna for specific tasks — either ID or

energy EH, in accordance with the predefined resource allocation policy. This configuration

enables a user to engage in both ID and EH activities simultaneously, though each activity

is allocated to different antennas to avoid interference and maximize efficiency. Specifically,

the finest antenna, chosen from the antenna set M, is dedicated to ID, while the other
available antennas are utilized for EH. This methodical selection ensures that each antenna

2It is assumed that the AP has perfect CSI through a feedback channel. In particular, the AP sends some

orthogonal preambles in the downlink to the sensor users and obtains the CSI by listening to the sounding

reference signals transmitted by the sensor users [149].
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Table 3.1: Summary of Our Main Notations in Power-efficiency Optimization of a Multi-user SWIPT

Network.

Symbol Definition

hm,k ∈ CNt×1
The DL channel gain vector for the in-

formation transfer from the AP to the

mth antenna of user k .

Gk ∈ CNt×M
The DL channel matrix for the wireless

power transfer from the AP to the user

k .

bm,k ∈ {0,1}
Binary indicator that selects the mth an-

tenna from the AP to the kth user for

data transmission.

wk ∈ CNt×1
The transmit information beamforming

of the AP for the kth user.

we ∈ CNt×1
The transmit energy signal of the AP

broadcasted to all sensor users.

is used to its fullest potential, aligning with the system’s operational objectives. To aid in

the comprehension of our system model and the underlying principles of antenna selection

for ID and EH, we have delineated key variables and their definitions in Table 3.1. For

readability, we summarized some of the essential variables used to describe the system

model in Table 3.1. We further assume that the AP transmits both the information and

energy signals simultaneously. Thus, the discrete-time signal transmitted by the AP can be

mathematically represented as follows:

x= ∑
k∈K

wksk +we, (3.1)

where sk ∈ C is a unit-energy information carrying symbol intended for the k-th user. This
formulation, (3.1), encapsulates the essence of SWIPT by integrating the transmission of

information-bearing signals, identified by the weighting vectors wk for each user k , with an

energy signal, denoted by we. It is important to highlight that the energy component of

the transmission, while devoid of information, plays a crucial role in the energy harvesting

process at the user end. This energy signal is not arbitrary but is instead crafted at the

AP using a deterministic pseudo-random sequence. The characteristics of this sequence

are well-defined, possessing a zero mean and a specific covariance matrix We , which is

mathematically expressed as we ∼ CN (0,We). The deterministic nature of this sequence,

generated with a predefined seed, ensures that it is known to all users, facilitating efficient

energy harvesting without compromising the integrity of the transmitted information. This

approach underscores the intricate balance between information dissemination and energy

transmission inherent in SWIPT systems.

For simplicity of the analysis, we adopt the assumption of a narrow-band block-fading prop-

agation channel [146, 150]. This approach simplifies the channel’s representation and is

particularly suitable for scenarios where the channel’s properties do not change significantly

over the block of transmission. The signals received for ID and EH in such a channel
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environment can be given as follows:

y IDk = ∑
j∈K
hHm,k(bm,kwjsj +we)+n

ID
k , ∀k ∈ K, (3.2)

yEHk = (IM −diag(bk))∑
j∈K
GHk (wjsj +we)+n

EH
k , ∀k ∈ K, (3.3)

where the noise components nIDk and n
EH
k are considered to be Additive White Gaussian Noise

(AWGN) with properties reflecting circularly symmetric Gaussian distributions. Specifically,

the noise term for the ID process is distributed as nIDk ∼ CN (0,σID
2

k ), indicating a zero-

mean complex Gaussian distribution with variance σID
2

k . Similarly, the noise affecting the EH

process follows nEHk ∼ CN (0,σEH
2

k IM), where IM is the identity matrix of size M, reflecting

the dimensionality of the EH noise vector.

Within the framework of our model, we employ the generalized AS technique, which can

distinguish between signals intended for information transfer and those allocated for power

transfer. Through the application of generalized AS, we strategically partition the antennas

at the receiver into two distinct groups. One set is dedicated exclusively to EH, absorbing

the power transmitted by the AP to replenish the device’s battery or to power other opera-

tions. Concurrently, the remaining antennas are tasked with wireless information processing,

capturing and decoding the data transmitted from the AP. This dual-path strategy ensures

that the system maximizes the utility of every antenna, optimizing both energy intake and

information throughput [151]. In this optimized configuration, the achievable data rate for

user k through a selected received antenna m is described by the following relationship:

Rm,k(bm,k ,wk) = log2

(
1+

bm,k |hHm,kwk |2

σID
2

k + Im,k

)
, ∀m ∈M,∀k ∈ K, (3.4)

where the AWGN is considered at the kth user with zero mean and variance σID
2

k . The term

Im,k in (3.4) indicates the multi-user interference and is given by:

Im,k = ∑
k ′ ̸=k,k ′∈K

bm,k |hHm,kwk ′ |2, ∀m ∈M,∀k ∈ K. (3.5)

We should note that the EH beams may cause interference in the data rate function in

Equation (3.4). It is crucial to acknowledge that while EH beams are primarily aimed at

powering devices, they may inadvertently interfere with the data rate calculations as specified

in Equation (3.4). Nevertheless, the anticipated challenge posed by this interference is

mitigated by the fact that the energy signals, being deterministic and known to the sensor

users, allow for a proactive approach to interference management. Users are equipped to

eliminate these energy signals as a form of interference, even prior to the decoding of the

information-bearing signals, through the application of Successive Interference Cancellation

(SIC) techniques [152]. This process indicates the adaptability and resilience of our system

design, ensuring that data transmission efficiency is maintained despite the concurrent energy

transfer.

For facilitating the presentation, we define bk = [b1,k , ...,bM,k ]
T ∈Z1×M as the vector repre-

senting the antenna selection within the optimization problem framework. Consequently, the

achievable data rate of user k considering the antenna selection and the effects of potential
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interference from EH beams, is expressed as:

Rk(bk ,wk) = ∑
m∈M

Rm,k(bm,k ,wk), ∀k ∈ K. (3.6)

Further enhancing our analytical framework, we introduce a novel performance metric ded-

icated to evaluating the efficiency of wireless power transfer. This new metric serves as a

tool for assessing the effectiveness of our proposed system in optimizing the simultaneous

delivery of information and power, thereby summarizing the core objectives of SWIPT tech-

nology in enhancing network performance and user experience. The new performance metric,

Peff(bk ,wk ,We), for the wireless power transfer efficiency which is given by [136, 143]:

Peff(bk ,wk ,We) =
∑k∈KP

EH
NLk
(bk ,wk ,We)

PT(wk ,We)
. (3.7)

The denominator of (3.7), PT(wk ,We), is the total power dissipated in the system in

[Joule/Second] given by:

PT(wk ,We) =
∑k∈K ||wk ||2+Tr(We)

β
+NTPant+Pc , (3.8)

where Pant and Pc are the circuit power in each transmit antenna and fixed consumed power

for baseband signal processing, respectively [153]. We note the first term in (3.8) is the

so-called RF’s transmit power consumption that is divided by 0 < β ≤ 1, the constant AP
power amplifier efficiency. The numerator in (3.7), PEHNLk (bk ,wk ,We) is the total harvested

energy in the network topology. The harvesting is realized using the active EH antennas for

each user. The total harvested energy is then given by [152, 143]:

PEHNLk (bk ,wk ,We) =
[Θk −Ωk∆k ]
1−∆k

, ∀k ∈ K, (3.9)

∆k =
1

1+exp(αkζk)
, ∀k ∈ K, (3.10)

Θk =
Ωk

1+exp
(
−αk(PEHLk (bk ,wk ,We)−ζk)

) , ∀k ∈ K. (3.11)

The constant ∆k is introduced to guarantee a zero-input/zero-output response for EH [152].

In the traditional logistic function (3.11), the linear factor is given by

PEHLk (bk ,wk ,We) = ϵkTr
(

∑
j∈K
G̃Hk (wjw

H
j +We)G̃k

)
, ∀k ∈ K, (3.12)

where

G̃k =
(
I−diag(bk)

)
Gk , ∀k ∈ K. (3.13)

In the total linear received RF power formula (3.12), 0< ϵk < 1 is introduced as the power

conversion efficiency for the mth active EH antenna of the kth receiver. This parameter

quantifies the efficiency with which the EH antenna converts the received RF power into

usable electrical energy. The parameter Ωk is defined as the maximum power that can be

harvested by user k when the EH circuit becomes saturated. This saturation threshold pre-

vents the EH circuit from being overloaded by excessive RF power, which could potentially
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damage the circuit or reduce its efficiency. Furthermore, αk and ζk are constant param-

eters that characterize the non-linear behavior of the EH process. These parameters can

be precisely determined through the use of a curve-fitting tool, allowing for a more accu-

rate modeling of the EH efficiency across different power levels. We should note that the

contribution of the noise power to the PEHNLk (bk ,wk ,We) formula can be neglected, as it is

significantly lower than the main signal power, thereby having a minimal impact on the total

energy harvested.

With these parameters and considerations in place, we proceed to formulate the main op-

timization problem, which focuses on beamforming design coupled with antenna selection

within a generalized AS-based SWIPT framework, targeting a single-cell multi-user network

configuration. The objective is to enhance the overall network performance by optimizing

the allocation of antennas for EH and ID, in conjunction with the beamforming vectors. This

optimization problem aims to balance the maximizing data transmission efficiency while en-

suring optimal energy harvesting by the network’s users. The formulation of this problem

captures the intricacies of the generalized AS technique and its impact on the SWIPT sys-

tem’s performance, which is essential for advancing our understanding and capabilities in

managing the complex interplay between information and power transfer in modern wireless

networks. The optimization problem can be written as follows:

P1 : max
bk ,wk ,We

Peff(bk ,wk ,We) (3.14a)

s.t. : ∑
k∈K

||wk ||2+Tr(We)≤ pmax, (3.14b)

Rk(bk ,wk)≥ Rmin, ∀k ∈ K, (3.14c)

∑
m∈M

bm,k = 1, ∀k ∈ K, (3.14d)

bm,k ∈ {0,1}, ∀k ∈ K,∀m ∈M. (3.14e)

In the optimization framework of our study, we formulate the optimization problem P1
which is central to the deployment of a generalized AS-based SWIPT network in a single-

cell multi-user setting. This optimization problem is defined by several key constraints that

ensure the operational feasibility and efficiency of the system. The constraint (3.14b) limits

the total transmit power of the AP that should not exceed its maximum threshold (pmax).

This limitation is vital for maintaining energy efficiency and adhering to regulatory power

emission standards. Constraint (3.14c) guarantees a minimum data rate requirement, Rmin,

for each user k . This guarantee ensures that all users receive a baseline QoS, critical for

user satisfaction and system reliability. Constraint (3.14d) determines that each user utilizes

only one antenna for ID, a rule that underpins the operational logic of the generalized AS

technique by designating clear roles for each antenna at the user end. Finally, (3.14e)

specifies the antenna selection variable takes only binary values. This binary nature reflects

the decision-making process in antenna selection — whether an antenna is allocated for EH

or ID.

Given these constraints, the optimization problem P1 emerges as a Mixed-Integer Non-Linear
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Programming (MINLP) challenge. The MINLP nature of the problem stems from the binary

decision variables involved in antenna selection and the non-linear relationships encapsulated

within the system’s power and data rate equations. This complexity renders the problem

generally intractable, necessitating innovative solution designs that can efficiently navigate

the problem space [154]. Our objective is to develop a solution approach that not only

adheres to the stipulated constraints but also optimizes the system’s overall performance in

terms of power efficiency.

3.4 A Two-layer Optimal Solution Design

Addressing the complex challenge presented by our optimization problem P1, we approach

the solution through a strategic decomposition into two distinct but interrelated subprob-

lems: antenna selection and beamforming. This decomposition is crucial for simplifying the

problem’s structure and focusing on specific aspects of the system’s optimization individually,

thus allowing for a more granular and effective solution strategy.

The antenna selection subproblem is tackled by prioritizing the identification of the antenna

that offers the maximum channel gain. This step involves evaluating each antenna’s per-

formance to determine the most effective configuration for ID. The criterion for selection

is straightforward; maximize the channel gain to ensure the highest QoS in terms of data

rate for each user. Once the optimal antenna for ID is identified, the remaining antennas

are allocated for EH tasks. Following the resolution of the antenna selection subproblem,

attention shifts to the beamforming subproblem. This phase of the solution design is crucial

for shaping the transmission strategy in a way that respects the predefined objective function

and aligns with the system’s goals of efficiency and reliability. The second subproblem is

optimally solved via a two-layer iterative structure based on the sum-of-ratios programming.

The complexity of each subproblem necessitates a modular approach, especially given the

limitations of traditional solution methodologies like the Dinkelbach method or the Charnes-

Cooper transformation in handling sum-of-ratios objective functions [155, 156]. To cir-

cumvent these challenges, we employ a two-layer iterative structure specifically devised for

sum-of-ratio programming (in the second subproblem). This two-phased approach, encom-

passing both antenna selection and beamforming optimization, underscores our compre-

hensive strategy for tackling the SWIPT system’s optimization problem. By methodically

addressing each component, we ensure a cohesive solution that not only meets the individual

requirements of each user but also enhances the system’s overall performance and efficiency.

In what follows, we explain each step in detail.

3.4.1 Antenna Selection

Our approach initially focuses on the antenna selection process, assuming a scenario with

predetermined transmit beamforming configurations. The main optimization problem, P1,

clearly indicates that each user is to allocate precisely one antenna for ID purposes, with

the remaining antennas dedicated to EH within this framework. This allocation strategy
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is critical for optimizing the system’s dual functionality—enhancing both data transmission

quality and energy collection efficiency.

The main dilemma of the optimization problem P1 lies in adhering to the stringent data

rate QoS requirements imposed for each user. This necessitates a strategic selection of

antennas, prioritizing those with the maximal channel gain for ID tasks. Such a selection

criterion is pivotal, as the quality and reliability of information transmission directly hinge on

the strength and clarity of the received signal. Hence, to ensure that every user’s data rate

demands are satisfactorily fulfilled, we employ the following principle: the antenna offering

the supreme channel gain amongst all available antennas for a user is selected for ID. This

principle can be encapsulated in the formula:

bm,k =

1, argmaxm∈M
hm,k ,

0, otherwise,
, ∀m ∈M,∀k ∈ K. (3.15)

In essence, we assess the channel quality between the AP and all user’s antennas via (3.15).

This evaluation is crucial for identifying which antenna among the available options provides

the highest channel quality, thereby determining the most suitable antenna for ID purposes.

Following this determination, the remaining antennas are allocated for EH, optimizing the

system’s dual-function capabilities3.

By allocating the antenna with the best channel gain conditions exclusively for ID, rather

than for EH, we consciously prioritize the transmission of information signals. This strategic

decision underscores our commitment to ensuring the feasibility and practicality of our design

policy. Such prioritization is key in SWIPT-enabled networks, where the efficient decoding

of information signals is paramount to the network’s functionality and user satisfaction.

It is important to highlight that the complexity associated with the antenna selection algo-

rithm is not as daunting as it might seem. Despite the potential for a large solution space,

the actual number of antennas present on a typical mobile receiver is relatively modest. Con-

sequently, the process of selecting the optimal antenna for ID from a limited array does not

introduce exponential complexity. This manageable scale ensures that the antenna selection

procedure remains practical and implementable within the constraints of current technology

and device capabilities, thus reinforcing the viability of our solution in real-world applications.

Through this careful and strategic antenna allocation, we aim to enhance both the efficiency

and effectiveness of SWIPT systems, ensuring that they can meet the demands of modern

wireless communication networks.

3.4.2 Beamforming Design

Following the successful allocation of antennas for ID and EH purposes, our next step

in our two-phased approach involves meticulously crafting the beamforming strategy for

both information and energy signals. This step is crucial for enhancing the system’s power

efficiency, which is our defined novel metric for assessing the performance and sustainability

of the SWIPT-aided network.

3Here, we assume that the users are sensor nodes. These nodes do not need to transmit with a high

data rate and are more interested in EH.
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To facilitate this process, we introduce beamforming matrices defined byWk =wkw
H
k , where

each matrixWk ∈HNT×NT represents the beamforming strategy for the user k . Additionally,
we define the channel matrix Hk = hm,kh

H
m,k , to encapsulate the channel characteristics

between the AP and the m-th antenna of user k , which is critical for the beamforming

design. For simplicity, we ignore the constant terms (Pant and Pc) in the total power

consumption model in (3.8). This simplification aids in focusing the optimization on the

variables that we can influence directly through our design choices.

Employing Semi-Definite Programming (SDP), a powerful tool in optimization theory, we

can reformulate the original problem P1 into a more tractable format. SDP allows us to

handle the quadratic nature of the beamforming matrices and the linear constraints of the

system within a convex optimization framework. This approach simplifies the computational

process and ensures that we can find a global optimum for the beamforming design problem,

subject to the constraints and objectives defined. Thus, using SDP, the original optimization

problem in P1 can be reformulated as follows:

P2 : max
Wk ,We

∑
k∈K

PEHNLk (Wk ,We)

∑
k∈K
Tr(Wk)+Tr(We)

(3.16a)

s.t. : ∑
k∈K
Tr(Wk)+Tr(We)≤ pmax,∀k ∈ K, (3.16b)

Rk(Wk)≥ Rmin, ∀k ∈ K, (3.16c)

rank(Wk)≤ 1, ∀k ∈ K, (3.16d)

We ⪰ 0. (3.16e)

we adopt the SDP relaxation. This method involves a strategic simplification of the problem

by omitting the rank-one constraint (3.16d), which traditionally ensures that the solution

translates directly into a physically implementable beamforming vector. The removal of

this constraint allows us to transform the beamforming design problem into a semi-definite

programming problem, which is easier to solve using available optimization tools. Next, we

handle the constraint (3.16c). In doing so, we restate this constraint as follows:

Tr(HkWk)

γreq
≥ ∑
k ′ ̸=k
Tr(HkWk ′)+σ

2
k , ∀k ∈ K, (3.17)

where

γreq = 2
Rmin −1. (3.18)

A significant challenge in our optimization problem is the inherent non-convexity of the

non-linear objective function, which complicates the process of finding a global optimum.

However, by categorizing this function within the sum-of-ratio class of objective functions,

we create an opportunity to go about this complexity more effectively. To accomplish this,

we introduce a new slack variable, denoted as ϱ, effectively transforming the optimization

problem. This introduction of ϱ allows us to reformulate the non-linear, non-convex objective
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function into a format that is more amenable to optimization techniques commonly used for

sum-of-ratios problems. To this end, we formulate the optimization problem as follows:

P3 : max
Wk ,We

∑k∈KP
EH
NLk
(Wk ,We)

ϱ
, (3.19a)

s.t. : ∑
k∈K
Tr(Wk)+Tr(We)≤ pmax, ∀k ∈ K, (3.19b)

∑
k∈K
Tr(Wk)+Tr(We) = ϱ, (3.19c)

Tr(HkWk)

γreq
≥ ∑
k ′ ̸=k
Tr(HkWk ′)+σ

2
k , ∀k ∈ K, (3.19d)

We ⪰ 0. (3.19e)

In order to solve this optimization problem, we consider an iterative algorithm composed

of two essential layers to refine the solution progressively. The initial layer is dedicated to

determining the optimal configurations for the beamforming matrices,Wk andWe , given a

preset value of the slack variable, ϱ. The subsequent layer then undertakes the critical task

of updating ϱ based on newly obtained beamforming matrices from the preceding stage.

This dynamic adjustment ensures that the system continuously evolves towards achieving

an optimal balance between transmission efficiency and energy utilization.

The challenge posed by the sum-of-ratio objective functions in the first layer of the opti-

mization problem in (3.19) necessitates an innovative approach beyond traditional methods

like Dinkelbach’s algorithm, which proves inadequate for this context. This transforma-

tion simplifies the mathematical treatment of the problem and preserves the integrity of

the optimal solution, facilitating a more straightforward path to achieving our optimization

objectives Through this layered algorithm, we systematically address the complexity of the

optimization problem, ensuring a thorough and effective solution strategy that enhances the

system’s overall performance. Therefore, we find an equivalent subtractive form yielding the

same optimal solution based on the following lemma from [154].

Lemma 1 [154]: For (3.19), there exist two vectorsψ∗= [ψ∗, ...,ψ∗K ]
T and β∗= [β∗1, ...,β

∗
K ]
T

in which W ∗
k and W

∗
e are the optimal solutions to the following optimization problem

max
{W ∗

k ,W
∗
e }∈S

1

ϱ ∑
k∈K

ψ∗k

[
Ωk

(
1−∆kΓk

)
−β∗k

(
Γk(1−∆k)

)]
, (3.20a)

where S is the set belonging to the feasible solution of P3. In (3.20), the Γk term is:

Γk = 1+exp
(
−αk

(
(PEHL ((Wk ,We)−ζk

))
, ∀k ∈ K. (3.21)

Note that {W ∗
k ,W

∗
e } should satisfy the following equations

Ωk

(
1−∆kΓk

)
−β∗k

(
Γk(1−∆k)

)
= 0, ∀k ∈ K, (3.22)

ψ∗k

(
Γk(1−∆k)

)
−1 = 0, ∀k ∈ K. (3.23)
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Algorithm 1 Power Efficient Resource Allocation Algorithm for Beamforming in Multi-User

SWIPT Networks

1: Initialize

iteration index of resource allocation policy i = 1,

limitation over two layer iteration of Imax
define feasible set vector ϱ, and constant set {α,ζ,Ω, ϵk ,τ,κ}.

2: repeat

3: Set {W i
k ,W

i
e}= {W s∗

k ,W
s∗
e }.

4: Solve the inner-layer of (3.20) to update {W i+1
k ,W i+1

e }.
5: Solve the outer-layer of (3.20) to update {βi+1,Ψ i+1} regarding (3.28) and (3.29).
6: until i = Imax
7: Update ϱ for the obtained {W i+1

k ,W i+1
e } via one dimensional search method.

8: return {ϱ,W i+1
k ,W i+1

e }

Subproblem (3.20) can be solved with two-layer iterative structure including an inner and an

outer layer. In the following, we describe these layers’ functionality.

3.4.2.1 Inner Layer Solution

Delving deeper into the solution mechanism, within the inner layer of the algorithm, we

define the following optimization problem denoted as P4. Given the specific assumptions

regarding the parameters ψ and β based on Lemma 1, P4 emerges as a convex problem. This

convexity implies that the problem can be solved efficiently through standard optimization

techniques, offering a pathway to achieving the desired optimization with relative ease and

efficacy. Thus, the inner layer optimizing problem P4 reads as:

P4 : max
Wk ,We ,λk

1

ϱ ∑
k∈K

ψk

[
Ωk −βk(1+exp

(
−αk(λk −ζk)

)]
, (3.24a)

s.t. : ∑
k∈K
Tr(Wk)+Tr(We)≤ pmax, ∀k ∈ K, (3.24b)

∑
k∈K
Tr(Wk)+Tr(We) = ϱ, (3.24c)

Tr(HkWk)

γreq
≥ ∑
k ′ ̸=k
Tr(HkWk ′)+σ

2
k , ∀k ∈ K, (3.24d)

λk ≤ ϵkTr
(

∑
j∈K
G̃Hk (wjw

H
j +We)G̃k

)
, ∀k ∈ K, (3.24e)

We ⪰ 0, (3.24f)

where λk is the auxiliary optimization variable.
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3.4.2.2 Outer-Layer Solution

In the outer layer of our iterative optimization process, we employ a damped Newton method

to obtain the values of ψ and β, which are pivotal for determining the optimal solution. To

facilitate this process, we introduce specific functions for each user k , encompassing both

the β and ψ parameters, denoted as φk(βk) and φK+k(ψk), respectively. These functions

are defined as follows, capturing the relationship between the parameters and the system’s

operational dynamics:

φk(βk) =Ωk

(
1−∆kΓk

)
−β∗k

(
Γk(1−∆k)

)
, ∀k ∈ K, (3.25)

φK+k(ψk) =ψk

(
Γk(1−∆k)

)
−1, ∀k ∈ K, (3.26)

where k ∈ {1,2, ...,K}. It has been shown in [152] that the optimal solution {β∗, ψ∗} can
be found if and only if:

φ(β, ψ) = [φ1, ...,φ2K ]
T = 0. (3.27)

This condition forms the basis for the iterative updates of ψk and βk during each iteration

of the outer layer. As a result the update rule at i-th iteration are given by:

βi+1 = βi +τ iηi1:K , (3.28)

ψi+1 =ψi +τ iηiK+1:2K , (3.29)

where

η = [ϕ′(β, ψ)]−1ϕ(β, ψ), (3.30)

in which ϕ′(β, ψ) is the Jacobian matrix of ϕ(β, ψ).

Furthermore, τ i is the largest value of εl that should satisfy the following criterion

∥ϕ(ψi +εlηlK+1:2K ,βi +εlηi1:K)∥ ≤ (1−κεl)∥ϕ(β,ψ)∥, (3.31)

where l ∈ {1,2, ...}, εl ∈ (0,1), and κ∈ (0,1), moderating the adjustment’s extent to ensure
gradual and controlled convergence.

Since the optimization problem (3.20) is convex it lends itself to an efficient solution method-

ology. This approach is systematically outlined in the pseudo-code provided in Algorithm 1,

which serves as a structured guide through the optimization process. A noteworthy as-

pect of this process is the implementation of a one-dimensional search over the variable ϱ,

necessitating the evaluation of problem P4 across a spectrum of ϱ values
4.

The optimization problem in question falls within the domain of convex SDP, a category

well-accommodated by established numerical algorithms for convex optimization tasks, such

as the interior point method. These algorithms are known for their robustness and efficiency,

offering a reliable means to navigate and solve convex SDP challenges. An optimistic de-

velopment in our beamforming design procedure is the existence of a rank-one solution,

a feature that significantly rationalizes the optimization process. As affirmed by existing

4The upper bound for ϱ is pmax. This means the search area of the problem is inherently restricted by

the system’s maximum transmit power, pmax, which is the feasible domain for ϱ.
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Table 3.2: Overview of Simulation Parameters for a Multi-Antenna, Multi-User SWIPT Network.

Parameter Value

Number of sensor users (K) 8

Maximum cell coverage (dmax) 20 meters

Number of AP antennas (NT ) 4

Number of user antennas (M) 3

AP antenna power consumption (Pant) 30 dBm

Static circuit power consumption (Pc) 40 dBm

Central carrier frequency 3 GHz

Number of subcarriers (N) 16

Bandwidth of each subcarrier 180 kiloHertz (kHz)

Background noise (σ2) -120 dBm

Rician factor (ρ) 3 deciBel (dB)

Path loss exponent (α) 2.8

Standard deviation of log-normal shadowing 8 dB

Power conversion efficiency (ϵ) 0.3

Power amplifier efficiency (β) 0.2

Target transmission rate (γreq) 10 dB

research [152], the presence of a rank-one solution validates the feasibility of achieving an

optimal beamforming configuration, thereby enhancing the efficacy of the proposed SDP

relaxation approach. This facet of the solution simplifies the practical application of beam-

forming strategies and accentuates the efficiency of utilizing SDP relaxation techniques

to optimize system configurations, ultimately contributing to the goal of improving power

efficiency in SWIPT-aided system.

3.5 Simulation Results

This section presents the system performance through simulation results, focusing on the

power efficiency of antenna switching and beamforming design in a multi-antenna, multi-

user SWIPT system (cf., Table 3.2). In evaluating the achievable power efficiency of the

proposed scheme, eight sensor users, K = 8, are uniformly distributed within a single cell,

where the maximum coverage of the cell is dmax = 20 meters. The AP and the sensor users

are equipped with four (NT =4) and three (M =3) antennas, respectively, facilitating robust

communication and energy harvesting capabilities. Key parameters include the AP antenna

power consumption (Pant = 30 dBm) and static circuit power consumption (Pc = 40 dBm).

The numerical simulations are conducted under the assumption of a flat fading channel with a

central carrier frequency set at 3 GHz, reflecting a realistic communication environment. The

system utilizes N = 16 subcarriers, each with a bandwidth of 180 kHz, to efficiently manage

the available spectral resources. The receivers’ background noise across all antennas is

uniformly modeled as |σIDk |2 = σ2k = σ2 =−120 dBm, indicative of the operational challenges
in low-signal environments. Given the proximity of users to the transmitter, a Line-of-Sight

(LoS) communication channel is presumed, and a small-scale fading channel is modeled as
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Figure 3.3: Power efficiency versus maximum allowed transmit power in the downlink of SWIPT-

aided multi-user single-cell network.

Rician fading with Rician factor ρ= 3 dB. This small-scale Rician flat fading channel gains

incorporates both a distance-dependent path loss component and a log-normal shadowing

component with a standard deviation of 8 dB, where the path loss exponent is equal to

α= 2.8 [151]. The simulations account for the power conversion efficiency, ϵk = ϵ= 0.3, of

all active EH antennas, alongside the power amplifier efficiency, β = 0.2, of the AP, which

are critical parameters influencing the system’s energy efficiency and power efficiency metrics

and sustainability. The target transmission rate for ensuring satisfactory QoS for each user

is set at γreq = 10 dB, a benchmark for evaluating the efficacy of the proposed scheme.

To ensure the reliability and robustness of our simulation results, we employ Monte Carlo

simulations, generating numerous random realizations of the channel gains. This approach

allows us to compute the average EE across various scenarios, offering a comprehensive

assessment of the proposed scheme’s performance under diverse conditions [151]. Through

these simulations, we aim to demonstrate the viability and advantages of the proposed

power-efficient AS and beamforming design in enhancing the operational efficiency of multi-

antenna, multi-user SWIPT systems.

Figure 3.3 illustrates the impact of enhancing the maximum allowable power budget on

the network’s power efficiency, revealing a non-linear relationship. Particularly notable is

the pronounced effect observed at higher pmax values, where the power efficiency dynamics

exhibit distinct characteristics across different power budget ranges. In the lower spectrum,

between 5 dBm and 20 dBm of pmax, there is a negligible alteration in power efficiency,
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indicating a phase of relative stability. The scenario shifts as the power budget spans from

20 dBm to 35 dBm, during which the power efficiency experiences a modest increase for

systems with a fewer number of antennas, and a more pronounced surge for configurations

with a larger antenna array. This distinction underscores the role of antenna count in

influencing efficiency gains. A further escalation of pmax beyond 35 dBm up to 45 dBm ushers

in a saturation phase for power efficiency, signifying a plateau where additional increases in

the power budget cease to yield significant efficiency improvements. This plateau effect is

attributed to the dominance of fixed circuit power consumption in the lower transmit power

regions, which initially allows for a gradual uplift in efficiency rates. As the AP’s transmit

power budget expands, surpassing a certain threshold, the relative contribution of RF’s

transmit power consumption begins to overshadow that of the fixed circuit power, rendering

the system increasingly sensitive to increments in the power budget.

Moreover, this figure, Fig. 3.3, also elucidates the beneficial impact of increasing the number

of transmit antennas (NT ) on augmenting effective power efficiency. This enhancement is

logically anticipated, considering that power efficiency exhibits a quasi-linear dependency on

the transmission parameters, including both information and energy beamforming vectors.

For a comparative analysis, we compare our proposed optimization algorithm against a

baseline scheme focused on EH maximization (Max EH), wherein the objective is to maximize

the numerator of the power efficiency metric (cf., (3.7)) through a similar optimization

approach as in Algorithm 1. The comparative results distinctly demonstrate the superiority

of our proposed methodology, which, unlike the baseline, also integrates the minimization of

total power consumption into the efficiency maximization process. Additionally, it is observed

that while exclusively targeting EH maximization contributes to a rise in power efficiency for

lower to moderate pmax values, an inverse trend is noted at higher power budget levels. At

this juncture, achieving maximum EH leads to an increase in the total transmitted power,

which, in turn, elevates the denominator of the power efficiency equation, culminating in

a marked efficiency downturn. This phenomenon highlights the critical balance between

transmitted power and energy harvesting in optimizing power efficiency, underscoring the

nuanced interplay of system parameters in achieving optimal network performance.

In the domain of wireless communication systems, particularly within the context of SWIPT

systems, there is a fundamental tradeoff between power efficiency and EE. This behavior

arises because the objectives of maximizing power efficiency and EE inherently conflict,

especially when considering the balance between data rate optimization and the minimization

of power consumption. While power efficiency focuses on optimizing the utility of power in

transmitting data, EE aims to achieve the highest data rate relative to the total power

expended by the network. The crux of this tradeoff lies in the fact that strategies aimed at

enhancing power efficiency often do so at the expense of overall energy consumption, and

vice versa. Maximizing power efficiency typically involves optimizing the transmission power

to enhance the signal’s clarity and reach, which can lead to increased power consumption.

On the other hand, maximizing EE necessitates minimizing power consumption while still

achieving satisfactory data transmission rates, which may not always align with the strategies

that prioritize power efficiency. To explore and substantiate this tradeoff further, we embark

on a detailed analysis by defining EE mathematically as the ratio of the achievable data

rate (3.6) to the total network’s power consumption (3.8) as follows:

Eeff(bk ,wk ,We) =
∑k∈KRk(bk ,wk)

PT(wk ,We)
. (3.32)
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Figure 3.4: System performance tradeoff between power efficiency and EE for pmax = 40 dBm in

the downlink of SWIPT-aided multi-user single-cell network.

This ratio encloses the essence of EE by quantifying the data rate that can be achieved per

unit of power consumed by the network, offering a clear metric for evaluating the efficiency of

resource allocation policies in the system. Through this definition and subsequent analysis,

we aim to discuss the trade-off between optimizing power efficiency and maximizing EE,

highlighting the considerations that support resource allocation decisions in SWIPT systems.

As shown in Fig. 3.4, a tradeoff between power and energy efficiencies is depicted, following

the maximization of EE as defined in (3.32). This graphical representation demonstrates

that power efficiency (EE) exhibits a monotonically decreasing trend as EE (power efficiency)

increases, highlighting the inherent balance that must be struck between these two efficien-

cies. A notable observation from the figure is the positive impact of augmenting the number

of receiver antennas on power efficiency. This improvement is attributable to the enhanced

capability of the network to harvest energy, thereby strengthening its power efficiency. More-

over, the dynamics introduced by varying the number of sensor users within the network are

evident. An increase in sensor users does not merely expand the performance tradeoff gap

between power and energy efficiencies; it also significantly boosts power efficiency for a given

EE level. This enhancement stems from the increased collective energy-harvesting capacity

brought about by a larger pool of sensor users, effectively enabling more efficient utilization

of the power emitted by the AP5. For comparison, we also plot the tradeoff region for the

case the energy signal (WE) is set to zero, and maximum ratio transmission is adopted to

5This is because more sensor users mean more harvesting antennas, i.e., more of the emitted power from

the AP can be harvested when more receivers (more EH antennas) partake in the energy harvesting.
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Figure 3.5: EE versus maximum allowed transmit power in the downlink of SWIPT-aided multi-user

single-cell network.

optimize the information beamforming as a benchmark algorithm. This benchmark algorithm

serves as a reference point, highlighting the benefits of the proposed approach in harnessing

energy signals for improved network performance.

Shifting the focus to the last figure, Fig. 3.5, an exploration into the effects of escalating the

power budget on EE reveals a monotonically increasing trend up to a saturation point around

pmax ≈ 30 dBm. Beyond this threshold, EE plateaus, indicating that further amplification
of pmaxdoes not translate into proportional EE gains. This saturation is primarily due to the

escalating interference power, which adversely affects the quality of the received ID signal,

thereby capping the achievable data rate. Additionally, while an increase in the number of

transmit antennas (NT ) markedly enhances power efficiency, its influence on EE is relatively

subdued. The logarithmic relationship between the data rate function and NT implies that

the EE gains attainable through additional transmit antennas are marginal compared to the
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linear escalation of circuit power costs associated with higher NT . Consequently, a significant

expansion in NT may not yield commensurate benefits for ID and is less effective for EH

enhancement. Furthermore, Fig. 3.5 underscores the superiority of the proposed algorithm

over the baseline Maximum EH (Max EH) scheme. This comparison reveals the strategic

advantage of minimizing total power consumption alongside EE maximization, revealing the

proposed algorithm’s efficacy in achieving optimal system performance.

3.6 Conclusion

To obtain a feasible solution, an optimization problem with a transformed objective function

was designed based on an iterative algorithm which yields a locally optimal solution. In

particular, the antenna selection problem was solved based on maximum channel gain across

all antennas. The second subproblem was solved based on a two-layer method. Simulation

results revealed the superiority of the generalized AS scheme by demonstrating a good

balance of improvement in terms of power and EE.

In this chapter, we introduced an innovative optimization framework tailored for a MIMO-

OFDM network that employs generalized AS-based receivers, integrating the principles of

SWIPT. This new framework takes into account a realistic, non-linear power model for EH,

setting its sights on enhancing a new metric in wireless communications: power efficiency.

The optimization problem we presented is characterized by the simultaneous consideration

of antenna selection and beamforming strategies, a task rendered complex due to its non-

convex, non-linear nature, and the inclusion of binary variables. These attributes collectively

contribute to the problem’s inherent difficulty.

To navigate through the complexities of this optimization problem non-convexity and arrive

at a practically viable solution, we crafted an approach that modifies the original objective

function. This approach hinges on an iterative algorithm meticulously designed to converge

towards a locally optimal solution. The resolution of the antenna selection subproblem,

prioritizing maximum channel gain across available antennas, marked the initial phase of our

solution strategy. Subsequently, a two-layer method was applied to address the beamforming

subproblem, further refining the solution.

Our simulations underscore the efficacy of the generalized AS scheme, shedding light on its

capability to achieve a commendable synergy between power efficiency and EE. The results

unequivocally illustrate the advantages of this scheme, demonstrating notable improvements

in both power and EE metrics. Through this comprehensive investigation, the proposed

optimization framework not only addresses the technical challenges associated with SWIPT-

enabled MIMO-OFDM networks but also paves the way for significant advancements in the

domain of wireless communication, particularly in optimizing the dual objectives of efficient

power usage and effective energy harvesting.

In this chapter, we laid the groundwork for future discussions by establishing a fundamental

framework that underpins the rest of this work. The principles, approaches, and solutions

presented form a crucial basis for exploring advanced topics, notably Intelligent Reflecting

Surfaces (IRS), which will be the focal point of the forthcoming chapters. Our exploration of
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IRS in the next chapter aims to delve deeper into its applications and implications, building

upon the foundational knowledge and insights gathered here.
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Energy Efficient Resource Allocation in

IRS Networks

THIS chapter formally introduces the concept of Intelligent Reflecting Surfaces (IRS)

and examines their advanced technical capabilities within the context of a multi-user

Multiple-Input Single-Output (MISO) system. Central to this investigation is a system

specifically designed to enhance Ultra-reliable Low-Latency Communications (URLLCs). It

incorporates a multi-antenna Access Point (AP) that effectively transmits information sym-

bols to a group of URLLC users, carefully integrating short packet transmission techniques

to address the critical need for reduced latency in wireless communications. A key goal of

this study is to minimize the total system’s transmission power by simultaneously optimiz-

ing both active and passive beamformers at the AP and the IRS, respectively. An efficient

algorithm based on Alternating Optimization (AO) principles is designed to tackle the main

optimization problem through a step-by-step iterative approach.

The development of the algorithm begins with the application of the Difference of Con-

vex (DC) functions combined with Successive Convex Approximation (SCA) techniques to

find a near-optimal solution for the AP’s active beamformer. This step is followed by the

adoption of a penalty-based strategy, complemented by SCA, to effectively manage the

unit-modulus constraints at the IRS. This two-pronged approach to optimization not only

highlights the delicate interplay between active and passive beamforming but also proposes

a specific objective aimed at improving the convergence rate of our algorithm. To validate

the effectiveness and efficiency of the proposed solution, the chapter includes a series of

simulation studies. These simulations benchmark the performance of our algorithm against

several baseline models, providing a solid empirical foundation for its superiority in optimizing

URLLC-enabled IRS systems. This thorough analysis sheds light on the potential of IRS to

transform the landscape of wireless communications, paving the way for future research in

this emerging domain.

51
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4.1 Introduction

The exploration of Intelligent Reflecting Surfaces (IRS) has emerged as a groundbreaking

area of research, aiming to significantly enhance the spectral and energy efficiencies of future

communication networks through its straightforward deployment strategies [157]. The IRS,

characterized as a planar meta-surface equipped with a large number of passive reflecting

elements1, possesses the unique ability to manipulate the radio propagation environment.

This is achieved by dynamically adjusting the amplitudes and phases of incoming signals,

thereby facilitating a more controlled and efficient communication pathway. Notably, the

IRS operates in a Full-Duplex (FD) mode, achieving this without the need for active Radio

Frequency (RF) chains for signal transmission and reception, nor for mechanisms to cancel

self-interference. Traditional FD systems require complex and costly hardware to manage

self-interference, but the IRS leverages passive elements to reflect and modulate incident

electromagnetic waves, enabling simultaneous transmission and reception without generat-

ing self-interference. This intelligent manipulation of the phase and amplitude of incoming

signals reduces complexity, power consumption, and system costs, making IRS a highly

cost-effective solution for Beyond fifth-Generation (B5G) communication systems. By sup-

porting efficient FD communication, IRS enhances data rates, addressing the demands of

B5G and future wireless networks. This capability positions IRS technology as a pivotal

component in the evolution of next-generation communication infrastructures, promoting

versatile, scalable, and energy efficient wireless networks [158].

The synergy between active beamforming techniques at the Base Station (BS) and passive

beamforming at the IRS opens new avenues for optimizing the Spectral Efficiency (SE)

and enhancing the network’s overall data throughput, as demonstrated in previous stud-

ies [159]. Moreover, the integration of IRS with technologies like wireless power transfer

and simultaneous information and power transfer (SWIPT) stands out as a pivotal strategy

for fostering green communication. Such collaborations have been shown to significantly

improve the network’s Energy Efficiency (EE) by judiciously optimizing both the phase shifts

at the IRS and the active beamforming strategies at the transmitter [136]. Research into

IRS-aided Multi-Input Single-Output (MISO) systems has further highlighted the potential

of IRS technology in maximizing SE through the use of sophisticated algorithms, such as the

branch-and-bound method to achieve globally optimal solutions for phase shifts and active

beamforming at the IRS and AP, respectively [160]. Moreover, the targeted optimization of

the weighted sum-rate maximization problem underscores the benefits of designing coordi-

nated active and passive beamforming strategies at both the BS and IRS [83], showcasing

the IRS’s critical role in shaping the future of wireless communication networks.

On the other hand, Ultra-Reliable Low-Latency Communication (URLLC) represents a cor-

nerstone of B5G wireless systems, aimed at addressing the needs for rapid data transmission

and minimal delay in critical applications such as healthcare, autonomous driving, and the

tactical Internet [161, 162]. The strict requirements of URLLC, including short packet

transmission and ultra-low latency, necessitate a reevaluation of traditional communication

theories, notably the conventional Shannon capacity formula, which falls short under the

URLLC regime due to its incompatibility with the short packet paradigm [163]. Innovative

1IRS can also have active elements. This feature, known as active IRS in the literature, will be the subject

of Chapter 7.
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approaches to resource allocation within URLLC systems have been explored, with [164]

achieving a global optimum in bandwidth, power allocation, and antenna configuration to

significantly reduce the total power consumption across DownLink (DL) and UpLink (UL)

channels. Besides, the authors in [165] designed the active BS beamforming vectors to max-

imize the sum data rate performance of a Multiple-Input Single-Output (MISO) orthogonal

frequency division multiple access (OFDMA)-URLLC system.

Further advancing the performance of URLLC systems, the integration of IRS offers a

promising avenue to tackle the challenges of latency. Studies such as [166] and [167] have

highlighted the potential of IRS in enhancing the data rate and reducing latency through

joint optimization strategies involving active beamforming at the BS and adaptive phase

shifts at the IRS. Specifically, [166] focused on optimizing the weighted sum data rate

in an IRS-assisted OFDMA-URLLC system, while [167] targeted latency minimization in

an IRS-supported mobile edge computing framework by coordinating edge computing re-

sources, computation offloading, and beamforming techniques. The exploration of IRS in

URLLC contexts extends to evaluating the average Decoding Error Probability (DEP) and

achievable data rates, as conducted in [168], indicating a substantial improvement in system

performance. Furthermore, the concept of user grouping has been leveraged to optimize la-

tency across IRS-enhanced networks catering to URLLC demands, as demonstrated in [90],

thereby underscoring the transformative impact of IRS technology in fulfilling the rigorous

requirements of URLLC systems.

While significant progress has been made in integrating IRS within the domain of URLLC

systems, the existing literature [166, 167, 168, 90] still does not fully capture the profound

impact of IRS technology, especially in terms of DEP and the management of average traf-

fic loads. The IRS’s capability to significantly enhance the network’s Quality of Service

(QoS) invites further exploration into its deployment in high-stakes scenarios, which require

not just enhanced data rates but also an elevated Signal-to-Interference-Plus-Noise Ratio

(SINR). This underlines the necessity for our research, which aims to develop a novel re-

source allocation algorithm tailored for a DL MISO URLLC framework that leverages IRS

technology. Our approach involves employing a multi-antenna AP that communicates with

multiple single-antenna URLLC receivers, facilitated by a dynamically reconfigurable IRS.

This setup is poised to bridge the identified research gaps by focusing on minimizing the

overall transmission power, thus paving the way for a deeper understanding of the sys-

temic design intricacies. Our study contributes valuable insights into the optimization of

URLLC-enabled IRS systems and underscores the transformative potential of the IRS in en-

hancing URLLC services within increasingly complex and demanding operational contexts.

Through this investigation, we aspire to unlock new possibilities for IRS technology, thereby

contributing to the evolution of next-generation wireless communication systems.

In this chapter, we delineate our primary contributions toward enhancing the efficiency and

reliability of URLLC systems through the strategic deployment of the IRS. The highlights

of our work are summarized as follows:

• Central to our study is the objective to ‘reduce the system’s overall transmission
power.’ This is achieved by designing a comprehensive joint optimization problem

of both the active and passive beamforming strategies employed at AP and IRS, re-

spectively. Furthermore, we aim to optimize the DEP while ensuring adherence to the
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minimum data rate requirements of each URLLC user. A novel aspect of our approach

involves modeling the URLLC user traffic, especially those with finite blocklength data

rates, through a chance constraint formulation. This methodology facilitates the net-

work’s ability to properly allocate resources, thereby efficiently managing the collective

traffic load.

• To tackle the complexities of the optimization problem formulated, we exploit an
Alternating Optimization (AO) resource allocation algorithm. This algorithm allows for

an iterative solution process wherein we first establish a lower bound for the SINR for

the active beamformers at the AP. Subsequently, we employ the Difference of Convex

(DC) functions and Successive Convex Approximation (SCA) technique to derive a

near-optimal solution. A penalty-based methodology is then utilized in conjunction

with the SCA technique for the passive beamformers at the IRS, effectively addressing

the unit-modulus constraints. Additionally, we introduce a specific objective aimed

at devising more effective phase shifts, thus ensuring improved convergence of the

optimization process.

• Through simulation studies, our findings underline the substantial benefits of incor-
porating an IRS alongside a multi-antenna AP within URLLC systems. Notably, the

implementation of IRS technology contributes to notable gains in system performance,

particularly in achieving lower latency and higher reliability. Moreover, our results indi-

cate the energy efficiency of utilizing IRS technology in comparison to the alternative

of equipping the AP with multiple antennas. This supports the potential of using the

IRS to facilitate more sustainable and efficient URLLC communication infrastructures.

These contributions collectively demonstrate the innovative strides our work makes in har-

nessing IRS technology to elevate the operational efficacy of URLLC systems, setting a new

benchmark for future research in the field.

The rest of the chapter is structured as follows. Section 4.2 begins with a system model anal-

ysis of energy-efficient resource allocation in an IRS-assisted URLLC network. We proceed

to formulate the problem in Section 4.3. In Section 4.4, we present a solution for the pro-

posed scheme. Section 4.5 validates our theoretical models through extensive simulations,

showcasing the practical feasibility and advantages of our proposed method. Finally, Sec-

tion 4.6 concludes the chapter, summarizing our findings and considering their implications

for the advancement of IRS systems.

Notations: Matrices and vectors are denoted by boldface capital letters A and lower case

letters a, respectively. For a square matrix A, AT , AH, rank(A), Tr(A), and ∥A∥∗ are trans-
pose, Hermitian conjugate transpose, rank of a matrix, trace, norm of a matrix, respectively.

A⪰ 0 shows a positive semidefinite matrix. IN denotes the N-by-N identity matrix. diag(·)
is the diagonalization operation. diag(A) indicates a vector whose elements are extracted

from the main diagonal elements of matrix A. The absolute value of a complex scalar,

and the Euclidean norm of a complex vector are expressed by | · | and ∥ · ∥, respectively.
∼ CN (µ, C) denotes the distribution of a Circularly Symmetric Complex Gaussian (CSCG)
random vector with mean µ and covariance matrix C. The largest eigenvalue of matrix X is

denoted by λmax(X). Q
−1(·) stands for the inverse of the Gaussian Q-function. Pr(X > a)

denotes the probability that the random variable X assumes a particular value strictly greater



56 CHAPTER 4. ENERGY EFFICIENT IRS-AIDED RESOURCE ALLOCATION

than a. Finally, CM×N represents an M× N dimensional complex matrix and ∇x expresses
the gradient vector with respect to x.

4.2 System Model of an IRS-assisted URLLC Network

In this study, we consider the architecture of a DL MISO communication system, incorpo-

rating an IRS comprised of N elements, an AP equipped with M antennas, and K users each

possessing a single antenna. The set of users is denoted by K = {1, ...,K}, as illustrated in
Fig. 4.1. For each user k within this system, a designated number of Lk information bits

are allocated. These bits are subsequently encoded by the AP into a codeword consisting

of md symbols, represented as zk [l ], where l spans the set L= {1,2, ...,md}. Following the
encoding process at the AP, the formulated transmit signal intended for transmission can

be mathematically represented by the equation:

s[l ] = ∑
k∈K
wkzk [l ], l ∈ L, (4.1)

wherein wk ∈ CM×1 is the dedicated beamforming vector allocated for user k . This beam-
forming strategy is pivotal, as it directly influences the signal’s directionality and strength

towards each user, thereby optimizing the communication efficacy within the system. In the

context of this DL MISO system, it is assumed that the channel links exhibit time-invariance

and also belong to the category of slow fading channel models [169]. This assumption is

critical for the stability and predictability of the communication channel, ensuring consistent

performance over the communication duration. The system explicitly models the baseband

equivalent channel responses to include the transmission pathways effectively: from the AP

to the IRS, denoted by H ∈ CN×M , from the IRS to user k , represented by hIUk ∈ CN×1,
and directly from the AP to user k , indicated by hAUk ∈ CM×1. These channel models are
foundational to understanding and optimizing the interaction between the transmitted sig-

nals, the reflective IRS, and the receiving users, enabling a comprehensive analysis of the

system’s overall performance and efficiency. Moreover, it is assumed that the Channel State

Information (CSI) and the delay requirements of all users are perfectly known at the AP (see

[136, 158, 159, 165])2.

Following the establishment of the transmit signal at the AP, it is important to under-

stand the mechanics of signal reflection and reception within this system. Let’s define the

reflection-coefficients matrix at the IRS as:

Θ= diag
(
β1e

jα1 ,β2e
jα2 , ...,βNe

jαN
)
, (4.2)

where βn ∈ [0,1] represents the reflection amplitude, and αn ∈ (0,2π],∀n ∈ N ∈ {1, ...,N},
indicates the phase shift of the n-th reflection coefficient at the IRS3 The overall equivalent

channel link, considering both the direct path and the reflected path via the IRS, for user k

is expressed as:

hHk ≜ (h
IU
k )

HΘH+(hAUk )
H, ∀k ∈ K. (4.3)

2The results in this chapter serve as theoretical performance upper bounds for the URLLC-enable IRS

systems with imperfect CSI in practice [170, 171].
3For reflection efficiency maximization, the amplitudes of all IRS elements are assumed to be one [158]

i.e., βn = 1, ∀n ∈N .
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Access PointUser 1

H

User 2
User 3

User K

Figure 4.1: Energy-Efficient Resource Allocation for a multi-user DL MISO URLLC-enabled IRS

system.

Defining the equivalent channel link brings us to the formulation of the received signal at

each user k :

yk [l ] = h
H
k s[l ]+nk [l ]

∆
= ∑
k∈K
hHk wkzk [l ]+nk [l ], ∀k ∈ K,∀k ∈ L, (4.4)

where nk [l ]∼ CN (0, σ2k) symbolizes the Additive White Gaussian Noise (AWGN) at user k ,
characterized by a mean of zero and variance σ2k . Consequently, the SINR experienced by

user k can be expressed as:

γk =

∣∣hHk wk ∣∣2
∑

i ̸=k,i∈K

∣∣hHk wi ∣∣2+σ2k , ∀k ∈ K. (4.5)

It should be noted that in URLLC systems, the data blocks must be finite and have a short

length to guarantee low-latency and high-reliability wireless communication. This require-

ment stems from the essential goal of URLLC to minimize latency while maximizing the

reliability of transmissions, a balance critical for applications where even minimal delays or

errors could lead to significant consequences. Reflecting this necessity, a precise approxi-

mation of the achievable data rate for each user within such systems is paramount. The

formula for this approximation, as detailed in [163], serves as a cornerstone for evaluating

the efficiency and effectiveness of URLLC systems. This approximation takes into account

the finite blocklength regime, where traditional approaches to calculating channel capac-

ity, assuming infinite blocklengths, fall short of providing accurate or useful predictions for

URLLC scenarios. By incorporating these considerations, URLLC systems are better posi-

tioned to meet the requirements of high reliability and low latency, ensuring that wireless

communication remains both robust and agile in environments where performance and speed

are non-negotiable. The precise approximation for the achievable data rate of each user is
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given by:

Rk(ϵk ,wk ,Θ) = Fk(wk ,Θ)−Gk(ϵk ,wk ,Θ), ∀k ∈ K, (4.6)

where

Fk(wk ,Θ) = log2(1+γk), ∀k ∈ K, (4.7)

Gk(ϵk ,wk ,Θ) =Q
−1(ϵk)

√
1

md
Vk , ∀k ∈ K. (4.8)

Furthermore, within the context of URLLC systems, ϵk characterizes the decoding error

probability for user k , providing a quantifiable measure of the likelihood that a transmitted

message is incorrectly decoded. The term md specifies the blocklength, indicating the

number of symbols contained in each transmitted block of data. This parameter is crucial

in balancing the trade-off between latency and reliability, as shorter blocklengths contribute

to reduced transmission times at the cost of potentially increased error rates. Additionally,

Vk represents the channel dispersion for user k , a metric that reflects the variability in the

channel’s capacity to convey information reliably. It is mathematically defined as:

Vk = a
2
(
1− (1+γk)−2

)
, ∀k ∈ K, (4.9)

where a = log2(e). The Equation (4.8) captures the channel dispersion and the effect of

the finite blocklength on the achievable data rate, with γk denoting the SINR for user k .

In the analysis of URLLC traffic, the load associated with user k is generally modeled as

a random variable, expressed as Lk = νkΩk . Here, νk is the size of individual data pack-

ets, whereas Ωk denotes the rate at which these packets arrive. This model reflects the

stochastic nature of network traffic, accommodating fluctuations in data demand and arrival

patterns. To ensure that the QoS requirements for each user are met, it is essential that the

probability of the traffic load surpassing the user’s allocated total data rate remains below

a predefined threshold, ζ. This threshold represents the maximum tolerable probability of

failure in supporting the traffic load, a critical consideration in the design and optimization

of URLLC systems to uphold stringent performance standards [172]. By adhering to these

parameters and models, URLLC systems can achieve the delicate balance between low la-

tency, high reliability, and efficient use of network resources, ensuring robust and responsive

communication for critical applications. A probabilistic constraint could be established that

reflects the critical balance between the system’s ability to support user traffic and the

intrinsic randomness of that traffic, ensuring that the QoS for each user is upheld within

acceptable limits of reliability. Such a constraint is formally written as:

Pr

(
Lk >Rk(ϵk ,wk ,Θ)

)
≤ ζ, 0< ζ < 1, ∀k ∈ K. (4.10)

This inequality essentially stipulates that the probability of the traffic load Lk exceeding the

achievable data rate Rk(ϵk ,wk ,Θ) for each user k should not surpass a predefined threshold

ζ, which lies between 0 and 1. This threshold shows the system’s maximum acceptable risk

level of failing to meet the data rate requirements due to variability in traffic load. In

particular, in our system model, each user k ’s packet size νk is assumed to be constant,

while the packet arrival rate Ωk is modeled to follow a Poisson distribution
4 with a mean

4The variability introduced by the Poisson distribution captures the stochastic nature of traffic arrival,

which is a critical aspect of accurately modeling and managing network resources in URLLC systems.
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rate parameter Λk . The Cumulative Distribution Function (CDF) of the packet arrival rate

for user k , denoted by FΩk (·), translates the probabilistic constraint into a tangible condition
for system design and optimization. Through algebraic manipulation, the aforementioned

probabilistic constraint can be reformulated into a more direct relationship between the

system parameters and the QoS requirements, as follows:

Rk(ϵk ,wk ,Θ)≥ νkF−1Ωk (1−ζ), ∀k ∈ K, (4.11)

where F−1Ωk represents the inverse CDF (quantile function) of Ωk . This expression sets a
minimum required data rate based on the packet size and the statistical behavior of packet

arrivals, adjusted by the tolerable failure probability ζ.

This formulation allows network designers to specify and enforce QoS guarantees directly,

considering both the inherent uncertainty of wireless channels and the stochastic nature of

network traffic, thereby ensuring that URLLC systems can deliver the requisite performance

levels for critical applications.

4.3 Resource Allocation Problem Formulation

In this segment of our investigation, the primary objective is to reduce the overall transmis-

sion power within the system under consideration. This goal is to be achieved through the

simultaneous optimization of several key variables: the active beamforming vectors employed

by the AP, the phase shifts at the IRS, and the DEP associated with each communication

link. The optimization problem, thus, seeks to find an efficient balance between minimizing

power consumption and fulfilling the system’s operational constraints, ensuring that both

performance and efficiency targets are met. The formal mathematical representation of this

optimization challenge can be given as follows:

P1 : min
wk ,Θ,ϵk

∑
k∈K
∥wk∥2 (4.12a)

s.t. : Rk(ϵk ,wk ,Θ)≥ νkF−1Ωk (1−ζ), ∀k ∈ K, (4.12b)

|Θnn|= 1, ∀n ∈N , (4.12c)

ϵk ≤ ϵk,max, ∀k ∈ K. (4.12d)

The constraint labeled as (4.12b) specifies the minimum data rate that must be sustained

for user k , a critical requirement that ensures each user receives sufficient bandwidth to

meet their QoS needs. Meanwhile, the constraint described in (4.12c) mandates that the

elements along the main diagonal of the diagonal phase shift matrix — corresponding to

the IRS’s phase shifters — must all possess unit modulus. This requirement is the key

for maintaining the integrity of the signal reflection process, ensuring that the IRS can

effectively manipulate the incident signals to enhance communication links. Additionally,

the constraint presented in (4.12d) is designed to uphold the reliability standards for each

URLLC user within the network. Here, ϵmax represents the upper bound on the allowable
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error rate for data transmission, highlighting the importance of maintaining high reliability

in URLLC contexts. This constraint is crucial for applications demanding ultra-reliable

communications, where even minimal losses or errors can have significant implications.

By addressing the optimization problem P1, this chapter elucidates strategies for reducing

power consumption in IRS-aided URLLC wireless networks while simultaneously enhancing

their capacity to support high-performance, reliable communications. Through the man-

agement of beamforming techniques, phase shift adjustments, and error probabilities, the

study aims to contribute valuable insights into the design and operation of energy-efficient,

high-capacity IRS-aided URLLC systems.

4.4 Proposed Solution

The optimization problem P1 presents a significant challenge due to its non-convex nature,

primarily arising from the complex interdependencies among the optimization variables. Such

non-convexity typically renders direct, efficient solutions elusive, as there lacks a straightfor-

ward method to navigate the complex landscape of potential solutions. To tackle this issue,

we propose employing an AO strategy, known for its lower computational complexity, as a

pragmatic approach to approximating a sub-optimal solution.

The AO method we suggest decomposes the main problem, P1, into more manageable

sub-problems, each focusing on a subset of the optimization variables. This decomposition

allows for iterative refinement of the variables in a manner that gradually converges towards

an improved solution. Specifically, the process begins by addressing the first sub-problem,

which involves the design of the active beamforming vectors at the AP. Here, we leverage the

SCA technique alongside the DC approach. The SCA technique handles a non-convex opti-

mization by iteratively solving convex approximations of the original problem, thereby easing

the computational burden. Simultaneously, the DC approach facilitates the breakdown of

non-convex components into convex and concave parts, further simplifying the optimization

process.

Following the resolution of the beamforming design, the focus shifts to the second sub-

problem, which targets the optimization of the phase shifts at the IRS. This phase of

optimization utilizes a penalty approach in conjunction with the SCA technique. The penalty

method introduces auxiliary constraints to transform the original problem into a penalized

version, where constraints are incorporated into the objective function as penalty terms.

This transformation often simplifies constraint handling, making the optimization problem

more tractable. The application of the SCA technique within this context ensures that each

iteration moves closer to fulfilling the original constraints while progressively optimizing the

phase shifts.

Additionally, to circumvent potential issues related to the feasibility of solutions — common

in complex optimization scenarios — a new objective function is proposed. This objective

aims to guide the optimization process more effectively, ensuring that the search for sub-

optimal solutions remains within the bounds of practical and achievable solution space.

Through this structured two-layered approach, our method promises to yield efficient and

effective solutions to the challenging non-convex problem P1, facilitating advancements in
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the design and optimization of communication systems where active beamforming and IRS

phase shifts are crucial elements.

4.4.1 First-stage: Optimizing wk and ϵk with Fixed Θ

At this stage of our optimization process, we direct our focus towards the active beamformers

at the AP and the DEP for each user, while treating the phase shifts implemented by the IRS,

denoted as Θ, as fixed parameters. This assumption simplifies the optimization problem by

temporarily isolating a subset of variables, thereby allowing for a more targeted approach in

optimizing the active beamformers, wk , and DEP, ϵk .

To facilitate this optimization, we employ the technique of Semi-Definite Programming

(SDP), a powerful mathematical framework well-suited for handling optimization problems

involving linear matrix inequalities. By adopting SDP, we introduce matrices Wk = wkw
H
k

and Hk = hkh
H
k for all users k ∈ K. This transformation converts the original beamform-

ing vectors and channel coefficients into their respective matrix forms. Under the SDP

framework, the original problem P1 undergoes a reformulation, denoted here as
5:

P2 : min
Wk ,ϵk

∑
k∈K
Tr(Wk) (4.13a)

s.t.: Fk(Wk)−Gk(Wk , ϵk)≥ νkF−1Ωk (1−ζ), ∀k ∈ K, (4.13b)

rank(Wk)≤ 1, ∀k ∈ K, (4.13c)

Wk ⪰ 0, ∀k ∈ K, (4.13d)

ϵk ≤ ϵk,max, ∀k ∈ K, (4.13e)

where γk in Fk(Wk) and Gk(Wk) can be expressed as:

γk =
Tr(hkwk)

∑
i∈K,i ̸=k

Tr(hkwi)+σ
2
k

,∀k ∈ K. (4.14)

This stage of the optimization process is crucial for iteratively refining the system’s perfor-

mance, setting the stage for subsequent optimization of the IRS phase shifts. By effectively

decoupling the problem into manageable subproblems and employing sophisticated mathe-

matical techniques like SDP, we inch closer to achieving our goal of minimizing the total

transmit power while adhering to the system’s operational constraints and quality of service

requirements.

Addressing the challenge posed by the non-concavity of constraint (4.13b) in the optimiza-

tion problem P2 requires a strategic approach to ensure the tractability of the optimization

5This reformulated version harnesses the power of SDP to navigate the complexities of optimizing beam-

formers and decoding error probabilities within the constraints of fixed IRS phase shifts. By representing

the beamforming vectors and channel links as semidefinite matrices, the problem becomes more tractable,

allowing for the (potential of) utilization of SDP solvers to find optimal or near-optimal solutions.
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process. To tackle this issue, we introduce a novel approach that involves the deployment

of auxiliary variables µk , ∀k ∈ K. These auxiliary variables are designed to establish a lower
bound for the SINR, facilitating a more manageable form of the SINR expression that can

be optimized effectively. With this approach, the SINR constraint specified in (4.14) can be

reformulated as follows:

0≤ µk ≤ γk =
fk(Wk)

gk(Wk)
,∀k ∈ K. (4.15)

This reformulation allows us to decompose the SINR into components that are more con-

ducive to optimization. Specifically, the numerator and denominator of the reformulated

SINR expression, as indicated in (4.15), can be detailed as:

fk(Wk) = Tr(hkwk), ∀k ∈ K, (4.16)

gk(Wk) = ∑
i∈K,i ̸=k

Tr(hkwi)+σ
2
k ,∀k ∈ K, (4.17)

respectively. Based on this decomposition, both the signal power and the interference plus

noise power components are articulated in terms that allow for the application of optimization

techniques. Leveraging the lower bound provided by the auxiliary variables µk , the first stage

of the optimization problem can then be reformulated. This rephrased optimization problem,

retaining the essence of minimizing the total transmit power while satisfying the system’s

constraints, can be restated as:

P3 : min
Wk ,µk ,ϵk

∑
k∈K
Tr(Wk) (4.18a)

s.t.: µk ≥ 0, ∀k ∈ K, (4.18b)

µk ≤
fk(Wk)

gk(Wk)
, ∀k ∈ K, (4.18c)

Rk(ϵk ,µk)≥ νkF−1Ωk (1−ζ), ∀k ∈ K, (4.18d)

rank(Wk)≤ 1, ∀k ∈ K, (4.18e)

Wk ⪰ 0, ∀k ∈ K, (4.18f)

ϵk ≤ ϵk,max, ∀k ∈ K, (4.18g)

where

Rk(ϵk ,µk) = Fk(µk)−Gk(ϵk ,µk), ∀k ∈ K, (4.19)

In constraint (4.18d), and the terms Fk(µk) and Gk(ϵk ,µk) are given by:

Fk(µk) = log(1+µk), ∀k ∈ K, (4.20)

Gk(ϵk ,µk) =Q
−1(ϵk)

√
a2

md

(
1− (1+µk)−2

)
,∀k ∈ K. (4.21)

To address the non-convex nature of P3, the optimization problem is initially transformed

into a canonical form that aligns with the requirements for DC programming techniques.
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This transformation is crucial as it prepares the ground for subsequent approximation and

manipulation techniques aimed at dealing with non-convex terms. Once the problem is cast

into the canonical form required for DC programming, the next phase involves employing

the first-order Taylor expansion. This mathematical tool allows us to approximate the non-

convex components of the problem with convex ones, thus rendering the problem more

tractable. Specifically, this approximation strategy is applied to constraint (4.18c), which

can be represented as follows:

µkgk(Wk)≤ fk(Wk)

⇒µkA(Wk)≤ fk(Wk)−µkσ2k ,∀k ∈ K, (4.22)

where

A(Wk) = ∑
i∈K,i ̸=k

Tr(hkwi), ∀k ∈ K. (4.23)

This transformation is key to progressing the optimization process, as it breaks down com-

plex, non-linear relationships into forms that are more amenable to analytical and numerical

optimization techniques.

Nevertheless, a notable challenge arises with constraint (4.22), which inherently embodies

non-convexity due to the multiplication of two optimization variables: the beamforming

matrix W i and the auxiliary variable µk , applicable for all i ,k ∈ K. This type of constraint
typically complicates the optimization process, as direct optimization methods struggle to

handle such non-linear interdependencies effectively. To mitigate this challenge, a decoupling

strategy is proposed. By adopting a specific form for the problematic constraint, as detailed

in the literature [165, 2], the issue can be tackled. The proposed form, indicated as:

µkA(Wk) = Pk(µk ,Wk)−Qk(µk ,Wk),∀k ∈ K, (4.24)

where

Pk(µk ,Wk) =
1

2
(µk +A(Wk))

2 , ∀k ∈ K, (4.25)

Qk(µk ,Wk) =
1

2
(µk)

2+(A(Wk))
2 ,∀k ∈ K, (4.26)

allows for the separation of the intertwined variables, thereby simplifying the constraint into

components that can be more readily optimized. This decoupling is key to overcoming the

inherent non-convexity, enabling the identification of sub-optimal solutions within a complex

problem space.

Through these strategic steps — casting the problem into a suitable DC-compatible form,

applying convex approximations to non-convex terms, and decoupling intertwined variables

— the once daunting task of optimizing P3 becomes more approachable. This approach

enables the pursuit of sub-optimal solutions to complex optimization problems within the

domain of communications system design. By denoting Υk = {ϵk ,µk ,Wk} as a set of
optimization variables, P3 can be recast as follows:
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P4 : min
Υk

∑
k∈K
Tr(Wk) (4.27a)

s.t. : Fk(µk)−Gk(µk)≥ νkF−1Ωk (1−ζ), ∀k ∈ K, (4.27b)

Pk(Υk)−Qk(Υk)≤ fk(Wk)−µkσ2k , ∀k ∈ K, (4.27c)

µk ≥ 0, ∀k ∈ K, (4.27d)

ϵk ≤ ϵk,max, ∀k ∈ K, (4.27e)

rank(Wk)≤ 1, ∀k ∈ K, (4.27f)

Wk ⪰ 0, ∀k ∈ K. (4.27g)

Addressing the optimization problem outlined in P4 presents yet another obstacle: the

incorporation of the Q−1(·) function. This function, representing the inverse of the Gaussian
Q-function, is notoriously difficult to handle directly within optimization frameworks due

to its non-linear and non-convex nature. To effectively deal with this issue and advance

towards a solution, we introduce a Lemma that facilitates an approximate representation of

the Q−1(·) function, thereby simplifying the optimization process.

Lemma 1 For 0< ϵk < 1, an approximation of Q
−1(ϵk) is given by:

Q−1(ϵk)≈
√
π

2
(B−Cϵk) ,∀k ∈ K, (4.28)

where B and C are defined as:

B =

(
1+

π

12
+
7π2

480
+
127π3

40320
+ ...

)
, (4.29)

C =

(
1+

π

2
+
7π2

48
+
127π3

2880
+ ...

)
. (4.30)

(4.31)

By adopting the Lemma 1, the transformation of the data rate constraint function as spec-

ified in (4.27b) becomes feasible, allowing us to recast it in a more tractable form. By

adopting the lemma’s approximation for the Q−1(·) function, we arrive at a new represen-
tation of the constraint as follows:

Fk(µk)−
√

π

2 md

(
1−

1

(1+γk)2

)
(B−Cϵk)≥ Rmin,∀k ∈ K. (4.32)

This reformulation significantly simplifies the original problem by providing an explicit relation

that incorporates the effects of decoding error probability, ϵk , and the SINR, γk , into the

data rate constraint. However, the constraint as expressed in (4.32) remains non-convex,

largely due to the presence of the channel dispersion term, which complicates the direct

application of convex optimization techniques. To circumvent this issue, we introduce an

assumption applicable to the high SINR regime, where the channel dispersion, Vk , can be
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closely approximated by:

Vk =

(
1−

1

(1+γk)2

)
≈ 1, ∀k ∈ K. (4.33)

This approximation assumes that as SINR, γk , increases, the impact of the channel’s variance

on the system’s performance diminishes, allowing us to treat Vk as approximately constant.

Under this assumption, the complex non-convex equation (4.32) can be simplified further,

resulting in:

Fk(µk)−

=G̃k (ϵk ,µk )︷ ︸︸ ︷√
π

2 mk
(B−Cϵk)≥ Rmin,∀k ∈ K. (4.34)

This revised formulation, (4.34), represents a significant step towards enabling the applica-

tion of convex optimization strategies by describing the constraint in terms that are inher-

ently more helpful to such approaches. Here, G̃k(ϵk ,µk) is a modified term that contains

the interplay between the decoding error probability and the auxiliary variables, µk . Through

this strategic approximation and reformulation, the pathway to addressing the optimization

challenge in P4 becomes clearer, facilitating the advancement toward finding viable, efficient

solutions within the defined constraints.

It should be noted that the constraint (4.27c) also belongs to the class of DC problems.

Thus, the SCA technique can be directly applied to approximate the non-convex problem in

each iteration. Based on this similar recognition, the first-order Taylor expansion becomes

the key in crafting a globally lower-bound approximation for the function Qk(Υk) for each
user k ∈ K. At a given iteration t, the lower-bound approximations of these functions are
given by:

Qk(Υk)≥ Q̃k(Υk)≜Qk(Υtk)+∂TµkQk
(
Υtk
)
(µk −µtk)

+Tr

(
∇HWk

Qk
(
Υtk
)(
Wk −W t

k

))
,∀k ∈ K, (4.35)

facilitating a piecewise convex approximation of the original, more complex, problem. Follow-

ing this strategic maneuver and by dropping the inherently non-convex rank-one constraint,

P4 with any given local point at iteration t can be approximated as:

P5 : min
Υk

∑
k∈K
Tr(Wk) (4.36a)

s.t. : Fk(µk)− G̃k(ϵk ,µk)≥ Rmin, ∀k ∈ K, (4.36b)

Pk(Υk)−Q̃k(Υk)≤ fk(Wk)−µkσ2k ,∀k ∈ K, (4.36c)

Wk ⪰ 0, ∀k ∈ K, (4.36d)

µk ≥ 0, ∀k ∈ K, (4.36e)

ϵk ≤ ϵk,max, ∀k ∈ K. (4.36f)
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Algorithm 2 Iterative SCA Algorithm for Energy-efficient Resource Allocation Policy in

IRS-aided URLLC Networks

Input: Set iteration number t = 0, maximum number of iterations Tmax, and initialize the

decoding error ϵk = ϵ
0
k , the auxiliary variable µk = µ

0
k , and the active beamformers as

Wk =W
(0)
k .

1: repeat

2: Calculate G̃k(µk) and Q̃k(Υk) as stated in (4.34) and
(4.35), respectively.

3: Solve P5 to obtain {ϵtk ,µtk ,W t
k }.

4: Set t = t+1.

5: until t = Tmax
6: Return Υ∗k = {ϵtk ,µtk ,W t

k }= {ϵ∗k ,µ∗k ,W ∗
k }.

The optimization problem P5 is now a convex optimization problem that can be efficiently

solved by standard convex optimization solvers such as CVX. P5, now framed as a convex

optimization challenge, paves the way for iterative, efficient resolution through SCA. The

iterative SCA algorithm for P5 is given in Algorithm 2.

4.4.2 Second-stage: Optimizing Θ with Fixed wk and ϵk

In the second stage of our optimization process, we focus on optimizing the phase shifts

at the IRS, denoted as Θ, while keeping the active beamforming vectors wk and the DEPs

ϵk fixed. This step presents a unique set of challenges, primarily due to the constraints

associated with the phase shifts.

The main difficulty in this context is constraint (4.12c), which imposes a unit-modulus

requirement on the phase shifts. This unit-modulus constraint is inherently non-convex,

making the direct optimization of the phase shifts intractable with standard convex opti-

mization tools. To overcome this issue, we introduce a new variable representation for the

phase shifts. We define the vector θ = (e jα1 , ...,e jαN )H ∈CN×1, containing the phase shifts
of the IRS elements, and augment it with a dummy variable τ ∈ C, such that |τ | = 1, to
form the extended vector θ̃ = [θT τ ]T ∈ C(N+1)×1.

To further facilitate the solution, we introduce the matrix V = θ̃θ̃H ∈ C(N+1)×(N+1). This
representation ensures that V is semi-definite and satisfies the condition rank(V)≤ 1. Lever-
aging this formulation allows us to circumvent the direct handling of the unit-modulus con-

straint by focusing on the properties of V . Thus, we obtain:∣∣∣∣((hIUk )HΘH+(hAUk )H)wk ∣∣∣∣2 ≜ Tr(V XkWkX
H
k )

= Tr(WkYk),∀k ∈ K, (4.37)
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where

Xk =

[ (
diag

(
(hIUk )

H
)
H
)T

(hAUk )
∗
]T
,∀k ∈ K, (4.38)

Yk = X
H
k V Xk , ∀k ∈ K. (4.39)

Given that the objective function in P1 does not depend on V , the problem effectively

becomes a question of feasibility. To resolve this and effectively derive the phase shift

matrix Θ, we explore an alternative optimization strategy that bypasses the direct feasibility

challenge. This approach involves studying the subsequent optimization problem:

P6 : maximize
V ,αk

K

∑
k=1

αk (4.40a)

s.t.: Tr(WkYk)− ∑
i∈K,i ̸=k

Tr(µ∗kWiYk)≥ µ∗kσ2k +αk ,∀k ∈ K, (4.40b)

diag(V ) = 1N+1, (4.40c)

V ⪰ 0, (4.40d)

rank(V )≤ 1. (4.40e)

With the objective of enhancing the SINR margin beyond the minimum requirements outlined

in P1, the optimization process seeks to precisely determine the configuration ofΘ, the phase

shift matrix at the IRS. This step enables the maximum utilization of the communication

system’s performance by fine-tuning the phase shifts to align and strengthen the signal at

the intended receivers, thereby increasing the SINR margin. An essential aspect of this

optimization is adhering to constraint (4.40c), which enforces the unit-modulus nature of

the IRS’s reflective elements. This constraint maintains the physical feasibility of the phase

shifts, ensuring that each element of Θ reflects signals without amplifying or attenuating

their power.

In practice, solving P6, which incorporates the unit-modulus constraint, often results in a

solution matrix with a rank greater than one. This poses a challenge since the ideal solution

would have a rank of one to correspond with the physical implementation of a single phase

shift per IRS element. Therefore, it is not justifiable to neglect and drop the constraint

(4.40c) as we did so in P4. Exploiting the DC programming method we explored earlier

could be beneficial in tackling this issue. By applying the DC method, the unit-modulus

constraint can be recast into an equivalent form that is mathematically tractable and more

suitable for optimization processes. Thus, the equivalent form of constraint (4.40c) can be

represented as6:

∥V ∥∗−∥V ∥2 ≤ 0. (4.41)

6By strategically addressing the rank and unit-modulus constraints, the optimization process can converge

towards a solution that not only satisfies the mathematical model but also aligns with the physical capabilities

and limitations of the IRS technology. This approach underscores the intricate balance between theoretical

optimization strategies and practical implementation considerations, ultimately enabling the realization of

IRS-assisted communication systems that leverage optimized phase shifts to achieve enhanced performance

metrics.
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Note that:

∥V ∥∗ =∑
i

σi ≥ ∥V ∥2 =maxi{σi}. (4.42)

This holds for any given V ∈HN×N , where σi is the i-th singular value of V . The equality
holds if and only if V achieves rank one i.e., rank(V ) = 1 [173, 174]. Now, we take the

first-order Taylor approximation of ∥V ∥2 as:

∥V ∥2 ≥ ∥V (t)∥2+Tr
(
λmax

(
V (t)

)
λHmax

(
V (t)

)(
V −V t

))
. (4.43)

By resorting to (4.43), a convex approximation can be obtained for (4.41) which is given

by:

∥V ∥∗−∥V (t)∥2−Tr
(
λmax

(
V (t)

)
λHmax

(
V (t)

)(
V −V t

))
≤ 0. (4.44)

Finally, with the convex constraint (4.44) at hand, the optimization problem in the (t+1)-

iteration can be written as follows:

P7 : maximize
V ,αk

K

∑
k=1

αk (4.45a)

s.t. : Tr(WkYk)− ∑
i∈K,i ̸=k

Tr(µ∗kWiYk)≥ µ∗kσ2k +αk , ∀k ∈ K, (4.45b)

diag(V ) = 1N+1, (4.45c)

V ⪰ 0, (4.45d)∥∥∥V ∥∥∥
∗
−
∥∥∥V (t)∥∥∥

2
−Tr

(
λmax

(
V (t)

)
λHmax

(
V (t)

)(
V −V t

))
≤ 0. (4.45e)

Following the reformulation and addressing of the unit-modulus and rank constraints via the

DC method, the optimization problem, now referred to as P7, achieves a convex structure.

This transformation is significant because it transitions the problem into a domain where

established convex optimization techniques, such as CVX, can be applied effectively [175].

The convexity of P7 ensures that the optimization can be carried out with guarantees of

reaching a global maximum within the defined solution space. The culmination of our efforts

is encapsulated in the final iterative-based AO algorithm, which is detailed in Algorithm 3.

This algorithm iteratively applies the AO method, alternating between optimizing different

sets of variables while keeping others fixed, gradually converging to a solution that optimizes

the system’s total transmit power, phase shifts at the IRS, and the DEP for each user. By

systematically addressing the various aspects of the optimization problem in stages, the AO

algorithm navigates the complexities of the design space, leveraging the strengths of convex

optimization to ensure efficient and effective solution convergence.

The iterative nature of the algorithm allows for continuous refinement of the solution, with

each iteration bringing the system configuration closer to the optimal setting. This process

demonstrates the power of combining theoretical optimization frameworks with practical
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Algorithm 3 Iterative AO algorithm for Energy-efficient Resource Allocation Policy in IRS-

aided URLLC Networks

Input: Set i = 0, Imax, and initialize the phase shifts as Θ=Θ0.

1: Repeat

2: Solve problem P5 for given Θ
i , and obtain the

optimal solutions {ϵik ,µik ,W i
k}.

3: Solve problem P7 for given {ϵik ,µik ,W i
k}.

4: i = i +1.

5: until i = Imax
6: Return {ϵ∗k ,µ∗k ,w∗k ,Θ∗}= {ϵik ,µik ,wik ,Θi}.

solution techniques like CVX and highlights the potential of IRS-assisted communication

systems to achieve enhanced performance through careful system design and optimization.

Proposition 1 P7 is non-increasing as the objective function value increases over each iter-

ation in Algorithm 3. In particular, after each iteration, the iterative Algorithm 3 improves

the objective function value of P7 and converges to a locally optimal solution

Proof 1 Please see [12]. ■

For a detailed exposition of the proof, including mathematical demonstrations and the algo-

rithmic steps that ensure convergence to a locally optimal solution, refer to the supplemen-

tary materials and discussions provided in the associated literature [151].

This proposition and its supporting proof underscore the efficacy of the optimized framework

employed to tackle the complexities of the problem space, iteratively steering the system to-

wards enhanced performance metrics. The proof further solidifies the theoretical foundation

of the algorithm’s design, ensuring its applicability and reliability in practical optimization

scenarios within IRS-assisted communication systems.

4.5 Numerical Results

This section demonstrates the efficiency and effectiveness of our newly developed algorithm,

Algorithm 3, for MISO URLLC-supported IRS systems, particularly under scenarios utilizing

finite blocklength codes. We establish our simulation environment within a defined square

space, measuring (100,100) meters. Here, the AP is strategically positioned at the coor-

dinates (0,0) meters, with the IRS located at (50,0) meters. We numerically simulate a

dynamic environment where all users are randomly distributed across this rectangular space,

adding a layer of realism to our evaluation. The signal path loss is modeled using the equa-

tion 35.3+37.6log10(dk) dB, where dk represents the distance in meters from the AP to

user k , providing a 3gpp-compliant assessment of signal attenuation over distance [55]. For

the purposes of our simulations, we have set the convergence tolerance at 10−2 and assumed
a thermal noise density of −174 dBm/Hertz (Hz), which aligns with standard wireless com-
munication scenarios. Furthermore, we impose a strict requirement on the maximum DEP
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Table 4.1: Simulation Parameters for Multi-user MISO URLLC-enabled IRS System.

Parameter Value

Area dimensions (100,100) meters

AP location (0,0) meters

IRS location (50,0) meters

User distribution Random within area

Path loss model 35.3+37.6log10(dk) dB

Convergence tolerance 10−2

Thermal noise density −174 dBm/Hz
Max DEP (ϵk,max) 10−7

Average traffic load 0.1 Mbps

Central carrier frequency 3.5 GHz

Bandwidth 350 kHz

Number of URLLC users (K) 4

Number of IRS elements (N) 50

Block code length 200 symbols

Static power consumption (Ps) 100 milli Watt (mW)

Dynamic power per IRS element (Pd) 0.33 mW

Circuit power at AP (Pc) 1 Watt (W)

Dynamic power of AP per antenna (PDyn) 100 mW

for any user k , which is defined as ϵk,max = 10
−7, ensuring ultra-reliability in the URLLC

context. Additionally, we model the network to accommodate an average traffic load of 0.1

Megabits per second (Mbps) per URLLC user, with a total system bandwidth of 350 kHz

and a set number of URLLC users (K = 4) and IRS elements (N = 50).

To ensure the reliability and robustness of our simulation results, we employ Monte Carlo

simulations, generating numerous random realizations of the channel gains. This approach

allows us to compute the average EE across various scenarios, offering a comprehensive

assessment of the proposed scheme’s performance under diverse conditions. Through these

simulations, we aim to demonstrate the viability and advantages of the proposed algorithm

in enhancing the operational efficiency of IRS-aided URLLC networks.

Figure 4.2 illustrates the relationship between the DEP, denoted as ϵk,max, and the average

transmit power required for block codes of length 200 symbols, symbolized by md =250. An

intriguing observation from this figure is the inverse relationship between the decoding error

and the required transmit power; as the decoding error increases, the necessity for transmit

power diminishes. This trend underscores a fundamental principle in network reliability:

enhancing a network’s reliability necessitates higher transmit power due to the decreasing

nature of Q−1(ϵk) with respect to ϵk , leading to a reduction in Gk(ϵk ,wk ,Θ). Consequently,
achieving the minimum data rate requirements becomes feasible with lower transmit power,

ultimately reducing the AP’s overall transmit power. Furthermore, the figure investigates

the effect of increasing the number of reflecting elements at the IRS, which leads to a

reduction in transmit power at the AP. In other words, the AP transmit power scales down

with an increasing number of reflecting elements. A comparative analysis with two baseline

schemes is also presented within this context. The first baseline scheme assumes a scenario

with fixed beamforming at the IRS, whereas the second scenario operates without an IRS.
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Figure 4.2: Impact of decoding error, ϵk , on the average transmit power for a downlink of multi-user

IRS-aided URLLC network.

The comparison highlights the superior performance of our proposed algorithm, attributing

its enhanced efficiency to the strategic deployment of IRS and the joint optimization of

beamforming matrices at both the AP and IRS, thereby outperforming the first baseline

scenario and significantly surpassing the second scenario that lacks IRS integration. This

analysis demonstrates the efficacy of incorporating IRS into network design and emphasizes

the key role of adaptive resource allocation in optimizing network performance.

The concept of IRS has been recognized as a revolutionary approach towards achieving

environmentally friendly wireless communication systems. To quantitatively assess this, we

introduce the metric of energy efficiency (EE), defined as the total system data rate divided

by the overall network power consumption, measured in bits per joule. This relationship can

be mathematically expressed as follows:

Eef f (ϵk ,wk ,Θ) =

∑
k∈K

Rk(ϵk ,wk ,Θ)

∑
k∈K
∥wk∥2+Ps+NTPd +Pc+MPDyn

, (4.46)

where Ps = 100 mW indicates the static power consumption as required to maintain the

basic circuit operations of the IRSs, Pd = 0.33 mW is the dynamic power dissipation per

reflecting component, Pc = 1 W is the circuit power at the AP, and PDyn = 100 mW is the

dynamic power consumption of the AP per antenna.
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Figure 4.3: Average EE vs. the number of transmit antennas and reflecting elements for a downlink

of multi-user IRS-aided URLLC network.

It is observed that the EE increases with increasing the number of reflecting elements. On

the other hand, the EE of the system decreases as the number of antennas increases. This

is because with increasing the number of antennas at the AP, the power consumption at the

AP increases due to increasing the number of RF chains, which degrades the performance

of the system in terms of EE. One can conclude that the IRS are more efficient for green

wireless communication as it do not consume more transmit power as they are passive device.

Besides, increasing the number of reflecting elements provides more degrees of freedom for

the network to increase the network’s data rate while reducing the system’s transmit power.

Fig. 4.3 illustrates the relationship between the IRS’s reflective elements and the AP’s

transmit antennas versus EE. Notably, the figure demonstrates an increase in EE with the

augmentation of reflective elements on the IRS. This increment can be attributed to the

reflective elements’ role in enhancing the signal’s directionality and strength without neces-

sitating additional power. Conversely, an increase in the number of transmit antennas at the

AP correlates with a decrease in EE. This decline is primarily due to the heightened power

requirements associated with the additional RF chains needed for more antennas, adversely

affecting the system’s overall EE.

The insights gained from this analysis underline the IRS’s capability to provide green wireless

communication efforts. Being inherently passive, IRS units do not contribute to increased
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transmit power, thereby presenting a sustainable alternative to conventional methods that

rely on augmenting the number of active antennas at the AP. Furthermore, by expanding

the number of reflecting elements, the IRS provides additional degrees of freedom. This

expansion facilitates a more efficient network operation by enabling higher data rates and

reduced transmit power, showcasing the IRS’s substantial impact on enhancing wireless

network efficiency and sustainability.

4.6 Conclusion

This chapter delved into the intricacies of resource allocation strategies for a DownLink

(DL) multi-user Multiple-Input Single-Output (MISO) system, augmented by Ultra-Reliable

low-Latency Communication (URLLC) capabilities through the integration of an Intelligent

Reflecting Surface (IRS). The focus was on designing a resource allocation framework that

optimizes both active and passive beamforming. This approach aimed to significantly reduce

the total transmission power, all while considering the unique traffic loads of each URLLC

user and adhering to strict Quality of Service (QoS) requirements based on the implemen-

tation of short packet transmission. The challenge presented by the non-convex nature of

the problem was addressed by employing the Alternating Optimization (AO) method. This

method strategically decomposed the main problem into manageable sub-problems, specifi-

cally focusing on the optimization of active and passive beamforming matrices one at a time.

These sub-problems were then tackled using the Successive Convex Approximation (SCA)

approach and a penalty-based method, respectively.

The effectiveness of the proposed scheme was rigorously evaluated through simulations,

which highlighted the IRS’s critical role in fulfilling the URLLC system’s QoS demands

and achieving substantial reductions in transmission power, demonstrating a marked im-

provement over traditional methodologies. Moreover, the simulations support the IRS’s

contribution to enhancing EE, indicating its potential to revolutionize power-efficient green

communications. These findings illustrate the transformative impact of IRS technology in

enhancing the performance and sustainability of future wireless communication systems, of-

fering promising pathways for further research and development in the field of URLLC-aided

wireless communications.
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Energy Efficiency and Admission

Control in IRS Networks

IN the previous chapter, Energy Efficiency (EE) in an Intelligent Reflecting Surface (IRS)-aided network was studied as the sole design objective of the network to be optimized.

This chapter explores the dynamics of a multi-user Multiple-Input Single-Output (MISO)

system enhanced by Machine Type Communication (MTC) technology and enabled with an

IRS as a ‘joint’ optimization of EE and another network metric. Here, a multi-antenna Access

Point (AP) is tasked with transmitting information symbols to numerous Internet of Things

(IoT) users, all within the constraints of short packet transmission. The core objective

revolves around simultaneously elevating the system’s total EE and optimizing the number

of IoT users that could be served fairly by jointly optimizing active and passive beamformers.

This is achieved through a novel algorithm that employs alternating optimization (AO) to

iteratively solve the main optimization problem.

To facilitate this optimization, the approach adopts properties of the Difference of Con-

vex (DC) functions and the methodological precision of Successive Convex Approximation

(SCA), building a concave-convex problem. The active beamformers at the AP, along with

the strategic admittance of users into the system, are optimized through fractional program-

ming techniques, specifically exploiting a quadratic form to reach a sub-optimal solution. For

passive beamforming optimization, critical for manipulating Non-Line-of-Sight (NLoS) sig-

nals via the IRS, a novel combination of a penalty-based strategy and the SCA technique is

employed. This duo effectively addresses the complexities introduced by the unit-modulus

constraints integral to the IRS’s operational framework.

Through extensive simulations, a trade-off emerges between EE and the system’s capacity

for user admissibility, highlighting the balancing required to optimize both active and passive

beamformers. Moreover, the simulations underscore the significant impact of IRS deploy-

ment on the system’s EE and its enhanced capability to incorporate a greater number of

users. This exploration not only affirms the proposed algorithm’s efficacy in solving the opti-

mization problem at hand but also illuminates the transformative potential of IRS technology

in improving the capabilities of MISO MTC-enabled frameworks in the IoT communication

sphere.

The latter stages of this chapter venture into the evolving landscape of MTC, particularly

75
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as they transition into the era of sixth-Generation (6G) networks. This transition marks a

significant shift towards accommodating mission-critical applications that necessitate Ultra-

Reliable and Low-Latency Communications (URLLCs). These applications, ranging from

wireless industrial automation to healthcare, require not only unwavering reliability but also

rigorous adherence to delay-Quality of Service (d-QoS) standards. This shift introduces

fresh challenges in the radio access design for MTC networks, underscoring the need for

novel solutions. Emphasizing the adoption of short packet transmission strategies with finite

block-lengths emerges as crucial for meeting the strict low latency requirements central to

URLLCs.

In response to these challenges, this chapter also delves into an energy-efficient resource

allocation design algorithm for an IRS-assisted downlink URLLC network, building upon the

foundational MTC framework established earlier. While employing similar techniques of de-

composing the main non-convex problem into more manageable sub-problems and leveraging

an AO approach enhanced with SCA, we introduce an innovative iterative rank relaxation

method. This method allows for the formulation of a concave-convex objective function for

each sub-problem. This approach aids in the precise optimization of system parameters and

surpasses existing benchmarks through an iterative solution that methodically approaches

rank-one solutions for both the active beamforming and IRS phase-shift sub-problems.

This chapter is based on:

J. Jalali, A. Khalili, A. Rezaei, R. Berkvens, M. Weyn and J. Famaey, “IRS-Based

Energy Efficiency and Admission Control Maximization for IoT Users With Short Packet

Lengths”, IEEE Transactions on Vehicular Technology, vol. 72, no. 9, pp. 12 379–12 384,

Sept. 2023. https://doi.org/10.1109/TVT.2023.3266424

J. Jalali, F. Lemic, H. Tabassum, R. Berkvens, and J. Famaey, “Toward Energy

Efficient Multiuser IRS-Assisted URLLC Systems: A Novel Rank Relaxation Method”, in

GLOBECOM 2023 - 2023 IEEE Global Communications Conference - 6G Communication

Workshop, Kuala Lumpur, Malaysia, Dec. 2023, pp. 1–7.

https://doi.org/10.1109/TVT.2023.3266424
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5.1 Introduction

Intelligent Reflective Surfaces (IRSs) have rapidly evolved to become a pivotal element in

the evolution of modern wireless communication networks, attracting widespread attention

from the research community for their remarkable ability to simplify deployment processes

while substantially improving the quality of wireless signal propagation [157, 61, 65]. In a

practical scenario, the IRS utilizes metamaterial reflection elements to redirect incoming

signals toward desired directions, thereby enhancing performance in terms of coverage and

achievable data-rate. As such, it is considered a crucial technique for deploying millimeter

(mmWave) and sub-mmWave wave bands in future mobile networks [10]. IRSs reflect signals

passively through beamforming without any need for signal decoding or amplification [64].

This characteristic sets IRSs apart from traditional relays, such as Decode-and-Forward

(DF) or Amplify-and-Forward (AF) relays, which actively process and re-transmit received

signals [176].

Distinguished by one of its many capabilities to operate in a full-duplex mode, IRS technology

has proven instrumental in boosting both Spectral Efficiency (SE) and Energy Efficiency

(EE), promising a significant leap forward for the development of Beyond-fifth-generation

(B5G) wireless networks. The efficacy of IRS in elevating network performance through these

dimensions has been thoroughly investigated, with a significant body of research dedicated

to refining both active and passive beamforming techniques. Such endeavors aim to optimize

SE and the weighted sum-rate, necessitating meticulous calibration of active beamforming at

the Base Station (BS) and passive beamforming at the IRS to fully leverage the technology’s

benefits [160, 83].

Moreover, the synergy between Simultaneous Wireless Information and Power Transfer

(SWIPT) and IRS technologies has catalyzed breakthroughs in energy efficiency. Notably,

the research highlighted in [136] studies into the joint optimization of IRS phase shifts,

BS active beamformers, and power-splitting ratios for users, illustrating the potential for

an enhanced energy-efficient operation within IRS-enhanced SWIPT systems. Such studies

not only illuminate the IRS’s vital contribution to advancing wireless communications to-

wards more ecologically sustainable practices but also reveal the intricate tradeoff required

between amplifying signal quality and optimizing energy consumption. This comprehensive

exploration of IRS technology underscores its transformative impact on the wireless com-

munications landscape, positioning it as a key enabler for the future of connectivity.

Machine Type Communication (MTC) emerges as a cornerstone for the forthcoming surge

in wireless communication advancements, with its applications broadly divided into massive

MTC (mMTC) and ultra-reliable MTC (uMTC) domains. It is set to play a major role

in the proliferation of next-generation technologies, including the Internet of Things (IoT),

Internet of Vehicles (IoV), and Internet of Everything (IoE). These developments are antic-

ipated to revolutionize the way connectivity is experienced across an extensive network of

devices and platforms, pushing the boundaries of traditional wireless communication frame-

works. The mMTC segment, in particular, is designed to support the expansion of future

networks, enabling them to support a massive number of devices. This expansion is crit-

ical for ensuring efficient connectivity for countless devices that communicate via shorter

packets [177]. However, this shift towards shorter packet transmissions presents a notable

challenge to the conventional Shannon capacity formula, which struggles to accurately de-
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pict the performance of these services [163]. This discrepancy has spurred the development

of novel resource allocation strategies aimed at accommodating networks with devices that

are delay-tolerant or those that meet the strict ultra-reliable low-latency (URLLC) criteria.

The exploration of resource allocation within MTC networks has led to significant research

efforts. For example, a study achieved global optimal resource allocation for a URLLC

system, focusing on optimizing bandwidth, power allocation, and antenna configuration to

minimize the combined average power consumption for DownLink (DL) and UpLink (UL)

communications [164]. Further investigations have sought to enhance network performance

through various means, such as maximizing the sum throughput in a Multiple-Input Single-

Output (MISO) Orthogonal Frequency Division Multiple Access (OFDMA) system via active

beamforming vectors at the BS [165]. Other notable efforts include the precoder design at

a BS for maximizing EE in multi-user Multiple-Input Multiple-Output (MIMO) networks

employing finite blocklength codes [178], and the optimal design for energy-efficient MIMO-

aided UL URLLC grant-free access systems [179]. Additionally, research has considered

a hybrid approach of puncturing and superposition policies to simultaneously maximize the

minimum average throughput for enhanced mobile broadband (eMBB) users and the number

of supported URLLC users [180].

The integration of IRS into delay-insensitive systems stands as yet another groundbreaking

approach to reducing computational latency, marking a significant stride towards heightened

efficiency and enhanced performance in wireless networks. In particular, within OFDMA sys-

tems designed for URLLC servises, the employment of IRS technology has been instrumen-

tal in substantially improving the weighted sum throughput. This improvement is achieved

through a concerted effort in jointly optimizing active beamforming vectors along with phase

shifts at both the BS and the IRS itself [166]. The utility of IRS extends into the realm of

mobile edge computing systems as well, where its application has been explored with the

objective of minimizing latency. This is accomplished by fine-tuning edge computing re-

sources, computation offloading strategies, and beamforming matrices, demonstrating the

IRS’s capability to significantly impact system performance by reducing latency [167]. A

further exploration of IRS technology within MTC, particularly in settings such as factory

automation, has provided valuable insights. This research has shed light on the improve-

ments in average data rates and the reduction in decoding error probabilities, especially

when considering the transmission of short packets — a critical consideration in industrial

applications where reliability and quick data transmission are paramount [111].

The strategic enablement of MTC services necessitates a concentrated effort to improve

reliability while simultaneously expanding the capacity for a larger number of MTC/IoT

users within networks. In this pursuit, the deployment of IRS has been identified as a

promising avenue, offering a novel approach to enhance network capacity to accommodate

more users significantly. Despite the potential benefits, there exists a noticeable research void

concerning the application of IRS technology in systems enabled for MTC, particularly those

systems characterized by the transmission of short packets. The specific goal of optimizing

EE alongside increasing the count of fairly admitted IoT users within such frameworks

remains an underexplored facet in the scholarly domain [165, 166, 178, 179, 180, 167,

111, 2]. This oversight signals a ripe opportunity for academic inquiry, pointing to the need

for comprehensive studies that not only aim to integrate IRS platforms into MTC systems

but also seek to balance EE improvements with the expansion of system capacity for IoT
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users. Moreover, the challenge of upholding Quality of Service (QoS) standards within an

IRS-supported IoT architecture, especially when dealing with the constraints of short packet

communications, poses an intriguing research question. The inherent limitations associated

with short packet transmissions — such as reduced data rates and potentially increased error

probabilities — complicate the attainment of optimal QoS levels. Thus, investigating how

IRS technology can be leveraged to mitigate these challenges, ensuring that QoS standards

are not just maintained but enhanced, represents a critical area for future research endeavors.

This chapter is dedicated to tackling these issues, presenting a comprehensive study on re-

source allocation algorithm design for a DL MISO MTC-enabled IRS system. Our model

encompasses a multi-antenna AP that serves multiple single-antenna IoT users, leveraging a

smart reconfigurable reflector to facilitate communication. The innovation of our approach

is dual-faceted. Firstly, we strive to achieve an optimal balance in maximizing the total EE

of the system. Secondly, we integrate an effective admission control mechanism. This dual

pursuit is both an academic exercise and a practical endeavor to explore the potential of IRS

technology in MTC services. Through this comprehensive investigation, we aspire to illumi-

nate the path forward in system design, highlighting how IRS technology can substantially

enhance both the capacity and reliability of MTC services. By studying resource allocation

in the context of IRS-assisted MTC systems, we seek to bridge the existing research gap,

highlighting the potential of the IRS in enhancing network performance. Our exploration

aims at the practical implications of integrating IRS technology, offering an understanding

of how it can be harnessed to meet the rigorous demands of IoT applications, especially

those requiring short packet lengths. This chapter has two parts. Consequently, the main

contributions of this part of the chapter can be summarized as follows:

• We maximize the system’s total EE together with admission control by jointly opti-
mizing active and passive beamformers at the AP and IRS, respectively, subject to

the minimum required data rate for each admitted IoT user with a short packet and

unit-modulus constraints at the IRS.

• This problem is formulated as a Multi-Objective Optimization Problem (MOOP) which
is a non-convex Mixed Integer Non-Linear Programming (MINLP) problem, and it is

Non-deterministic Polynomial-time (NP) hard. To tackle this issue, we first convert

it into a Single-Objective Optimization Problem via a weighting coefficient. Then, we

exploit an Alternating Optimization (AO) resource allocation algorithm to solve the

formulated optimization problem iteratively, which improves the objective function in

each step. For the active beamformers at the BS, we first define a lower bound of the

Signal-to-Interference-plus-Noise Ratio (SINR) and then apply the Difference of Con-

vex (DC) functions and successive convex approximation (SCA) technique is adopted

to make a concave-convex function and then the fractional problem is solved based

on the quadratic transform which obtains a sub-optimal solution. Second, a penalty-

based approach is adopted along with the SCA technique to handle the unit-modulus

constraints at the IRS. In addition, an explicit objective is proposed to design a more

efficient phase shift and provide a better convergence. In addition, an explicit objective

is proposed to design a more efficient phase shift and provide a better convergence.

• The simulation results reveal that deploying an IRS can increase the system’s EE and
admission control of the IoT users with a short packet length. Results also reveal an
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interesting tradeoff region between EE and user admissibility.

In summary, to stress the novelty of the first part of this chapter, we restate that we

investigate a MISO MTC-enabled IRS system in this chapter. A multi-antenna AP transmits

information symbols to a set of IoT users by taking into account short packet transmission.

We serve a target group of IoT users, not any general user equipment (UE). We study a new

Multi-Objective Optimization Problem that has never been analyzed in the literature to the

best of the authors’ knowledge. In particular, the total EE, together with the number of IoT

users that could be served, is maximized by jointly optimizing active and passive beamformers

at the AP and the IRS, respectively. An efficient algorithm based on AO is proposed to

solve the main optimization problem iteratively. By the end of this chapter, we anticipate

offering valuable insights and guidelines that underscore the efficacy of IRS technology in

revolutionizing MTC systems. Our exploration is grounded in the belief that the strategic

application of the IRS can meet the exacting demands of modern IoT applications.

As this chapter progresses, we delve into the evolution of MTC systems as they prove

beneficial to sixth-Generation (6G) network paradigms. This transition is characterized

by a heightened focus on supporting mission-critical applications that demand URLLCs,

spanning diverse sectors such as wireless industrial automation and healthcare. The unique

requirements of these applications — notably, their demand for exceptional reliability and

strict adherence to delay-Quality of Service (d-QoS) standards — present new and complex

challenges in radio access network design for MTC systems. These developments signal a

critical need for innovative approaches that can help the demands of URLLC.

This chapter is structured as follows: In Section 5.2, we introduce the system model of

an MTC-enabled IRS-assisted network finite blocklength transmission. Next, we explain

the practical overhead design and channel estimation issues in Section 5.3 In Section 5.4,

we propose our multi-objective maximization problem of total EE and admission control.

The proposed problem will be solved in the subsequent Section 5.5. The computational

complexity and the solution convergence of the MTC-enabled IRS-assisted network are

discussed in Section 5.6, with results and a brief summary outlined in Section 5.7 and

Section 5.8, respectively. In Section 5.9, we introduce the system model and outline the

proposed EE optimization problem of a URLLC network. The resource allocation algorithm

to solve the EE problem is detailed in Section 5.10 to enable URLLC service in an IRS-

aided network. In Section 5.11, we assess the performance of our novel rank-one relaxation

algorithm. Finally, Section 5.12 draws conclusions.

Notations: Matrices and vectors are denoted by boldface capital letters A and lower case

letters a, respectively. For a square matrix A, AT , AH, rank(A), Tr(A), and ∥A∥∗ are trans-
pose, Hermitian conjugate transpose, rank of a matrix, trace, norm of a matrix, respectively.

IN denotes the N-by-N identity matrix. diag(·) is the diagonalization operation. diag(A)
indicates a vector whose elements are extracted from the main diagonal elements of matrix

A. ℜ{·} is used to denote the real part of a complex number. The absolute value of a
complex scalar, and the Euclidean norm of a complex vector are expressed by | · | and ∥ · ∥,
respectively. CN (µ, C) denotes the distribution of a circularly symmetric complex Gaussian
(CSCG) random vector with mean µ and covariance matrix C. The largest eigenvalue of

matrix X is denoted by λmax(X). Q
−1(·) stands for the inverse of the Gaussian Q-function.

Moreover, CM×N represents an M ×N dimensional complex matrix and ∇xexpresses the
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Figure 5.1: Energy efficiency and admission control of IoT users in an MTC-enabled IRS-assisted

network with finite blocklength transmission.

gradient vector with respect to x. Finally, we express N×N positive semidefinite matrices
as A ∈ SN+ and read A⪰ 0.

5.2 System Model of an MTC-enabled IRS-assisted net-

work

In our system model, we consider a scenario comprising IoT users operating within an en-

vironment enhanced by an IRS system capable of supporting finite blocklength communi-

cations. This setup is depicted in Fig. 5.1 and includes an IRS equipped with N reflective

elements, an AP that has M antennas, and K IoT users each having a single antenna. The

ensemble of IRS elements is represented by the set N = {1, ...,N}, the array of AP anten-
nas byM= {1, ...,M}, and the set of users by K = {1, ...,K}. For each user k within this
network, a specific number of information bits, denoted as Bk , is allocated. These bits are

then encoded by the AP into a codeword comprised of md symbols. The symbol sequence

designated for user k is symbolized as zk [l ], with l indexing the symbols within the sequence

L = 1,2, ...,md . The formulation of the transmit signal emanating from the AP, intended
for sequential broadcast across the communication channel, can mathematically be written

as:

s[l ] = ∑
k∈K

ukwkzk [l ], ∀l ∈ L, (5.1)

where wk ∈ CM×1 represents the beamforming vector for user k . This vector steers the
transmitted signal toward the intended recipient, thereby optimizing the signal’s integrity

and ensuring efficient utilization of the available spectral resources. In our system model,

the channel links between the AP, the IRS, and the IoT users are assumed to exhibit time-

invariant characteristics, indicative of a slow fading environment. This assumption allows us

to simplify our model by eliminating the time index l , thereby adopting a quasi-static flat-

fading channel. In this context, the wireless channels are considered to remain consistent
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throughout the duration of each transmission block, ensuring that the channel properties do

not fluctuate within the scope of a single codeword transmission. The presence of a user in

the system is indicated by setting uk = 1 for the k-th IoT user, signifying that this user is

actively being served. Conversely, a value of uk = 0 implies the absence or dropping of the

k-th user from the system’s consideration in the current transmission block.

In our exploration, we account for a scenario wherein both the Channel State Information

(CSI) and the specific delay requirements are precisely known at the AP. This knowledge

base provides a strategic advantage, allowing for an in-depth understanding of the system’s

performance capabilities under the assumption of perfect CSI. It also paves the way for

extrapolating insights into the theoretical upper-performance bounds for systems that op-

erate under conditions of imperfect CSI. This consideration is vital as it acknowledges the

real-world challenges and limitations encountered in wireless communication systems, where

perfect CSI is often unattainable due to dynamic environmental conditions and inherent sys-

tem noises. The significance of having accurate CSI and understanding delay constraints at

the AP cannot be overstated. It enables the formulation of more efficient resource alloca-

tion strategies, beamforming vector optimizations, and reflective surface configurations, all

tailored to meet the stringent requirements of IoT applications. Moreover, this approach fa-

cilitates a comprehensive evaluation of how deviations from the ideal CSI assumptions impact

system performance, thereby offering a holistic view of potential performance thresholds.(see

[83, 136, 160, 165, 2])

The system defines the baseband equivalent channel responses to demonstrate the complex

interactions between the AP, the IRS, and each user. Specifically, H∈CN×M represents the
channel response from the AP to the IRS. The channel from the IRS to user k is denoted as

hiu,k ∈CN×1, and the direct channel from the AP to user k is represented by hbu,k ∈CM×1.
These definitions allow for a comprehensive description of the signal propagation paths within

the system. Furthermore, the IRS’s reflection-coefficients matrix is denoted as:

Θ= diag(β1e
jα1 ,β2e

jα2 , ...,βNe
jαN ). (5.2)

This matrix modulates the reflected signal’s properties, with βn ∈ [0,1] corresponding to
the reflection amplitude and αn ∈ (0,2π], ∀n ∈ N , indicating the phase shift imposed by
the IRS1. This mechanism of reflection-coefficient modulation is central to the IRS’s ability

to enhance the communication system’s performance by optimally redirecting the incident

signals toward the intended IoT users, thereby maximizing the system’s overall efficiency

and reliability in a slow-fading environment.

To model the impact of both the direct and the IRS-assisted paths on signal transmission,

we define the equivalent channel link for each user k as follows:

hHk ≜ h
H
iu,kΘh+h

H
bu,k , ∀k ∈ K. (5.3)

This equation, (5.3), encapsulates the aggregate channel effect by combining the direct

AP-to-user link and the AP-to-IRS-to-user reflected path, thereby creating a comprehensive

representation of the communication channel. Given this equivalent channel, the signal

1We consider continuous phase shifts, as discrete shifts cause misalignment of IRS-reflected and non-

IRS-reflected signals, which degrades performance [157].
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received by each user k can be expressed as:

yk = h
H
k s+nk

∆
= ∑
k∈K

ukh
H
k wkzk +nk ,∀k ∈ K, (5.4)

where the noise at the receiver is modeled as an Additive White Gaussian Noise (AWGN)

variable, nk , with zero mean and variance σ
2
k and follows a circularly symmetric Gaussian

distribution, denoted by nk ∼ CN (0, σ2k). This model takes into account the random nature
of the communication channel’s noise and its impact on the received signal. The MIMO

experienced by user k is thus formulated as:

γk =
uk
∣∣hHk wk ∣∣2

∑
i ̸=k,i∈K

ui
∣∣hHk wi ∣∣2+σ2k ,∀k ∈ K. (5.5)

This equation, (5.5), highlights the balance between the desired signal power and the aggre-

gate interference and noise, which is crucial for ensuring reliable communication. Addressing

the need for low-latency and high-reliability in wireless communication for MTC-type IoT ter-

minals, the concept of finite and short blocklength transmission is introduced. This approach

is vital for applications requiring timely and dependable data exchange. The achievable data

rate for each user, accounting for the finite blocklength regime, is precisely approximated as

follows [163]:

Rk(uk ,wk ,Θ) = F (uk ,wk ,Θ)−G(uk ,wk ,Θ), ∀k ∈ K, (5.6)

where

Fk(uk ,wk ,Θ) = log2(1+γk), ∀k ∈ K, (5.7)

Gk(uk ,wk ,Θ) =Q
−1(ϵk)

√
1

md
Vk , ∀k ∈ K. (5.8)

Furthermore, the decoding error probability for each user is denoted by ϵk , while the term

md specifies the length of the block used in the transmission, serving as a key parameter in

the context of finite blocklength communications. The concept of channel dispersion, Vk ,

further enriches our analysis by quantifying the variability of the channel’s capacity and is

mathematically expressed as:

Vk = a
2
(
1− (1+γk)−2

)
,∀k ∈ K, (5.9)

with a = log2(e) acting as a scaling factor to translate natural logarithms to the base-2

logarithms, aligning with the bits measurement used in information theory. To ensure the

QoS for each user, relevant to the aspects of reliability, latency, and the requisite number

of received bits, we introduce a critical parameter: a minimum threshold data rate, Rkth.

This threshold guarantees that the communication service meets the specified performance

criteria for each user, formalized as:

Rk(uk ,wk ,Θ)≥ Rkth, ∀k ∈ K. (5.10)

This condition ensures that the system’s design and operational protocols are aligned to

satisfy the users’ essential communication needs. Advancing our discussion to the domain

of EE, we define it as the quotient of the total system data rate by the overall network power
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consumption, measured in [bits/Joule]. This metric offers a holistic view of the system’s

performance, balancing throughput against the energy expenditure:

Eef f (uk ,wk ,Θ) =

∑
k∈K

Rk(uk ,wk ,Θ)

∑
k∈K

uk ∥wk∥2+Ps+NPd +PAPc
, (5.11)

where Ps represents the static power consumption, necessary for sustaining the basic circuit

operations of the IRS, and Pd accounts for the dynamic power dissipation per reflecting

component, indicative of the energy required for adjusting the IRS elements. The term PAPc
denotes the circuit power at the AP, encompassing the energy consumption intrinsic to the

AP’s operation.

This comprehensive framework is designed to study the complex balance between achieving

high data rates and maintaining energy efficiency within the system, underlining the im-

portance of sophisticated resource allocation and system design to meet the demands of

modern wireless communication networks. In the subsequent analysis, our primary objective

is to formulate an optimization problem that aims to maximize the EE of the system with

an admission control mechanism. This formulation is carefully designed to accommodate

the minimum data rate requirements of IoT users, particularly in scenarios characterized by

short packet lengths. The core challenge lies in devising a strategy that not only enhances

the EE of the network but also ensures that the QoS criteria, specifically in terms of data

rate thresholds for each user, are met under the constraints of finite blocklength communi-

cations. Before delving deeper the the optimization problem, let’s discuss the practicality of

such a design.

5.3 Practical Overhead and CSI Estimation

The domain of IRS channel estimation is split into two predominant methodologies, con-

tingent upon the IRS’s inherent configuration capabilities—specifically, whether the IRS is

equipped with sensing devices, such as receive RF chains. This distinction gives rise to two

classifications: semi-passive IRS and fully passive IRS. The delineation between these config-

urations significantly influences the approach and feasibility of channel estimation strategies,

as detailed in an array of studies [35, 181, 182, 183, 184, 157].

Semi-Passive IRS Channel Estimation

The semi-passive IRS model incorporates sensors that can directly acquire pilot signals from

information users or the AP, facilitating the direct estimation of their corresponding channels

to the IRS. Since IRS reflecting components and sensors are supposed to be in each other’s

proximity, the links between the information users or the AP and IRS elements can roughly be

reconstructed from the estimated CSIs with sensors. The estimation process is carried out

using the strong spatial correlation between IRS elements and sensors, employing advanced

signal processing methods such as machine learning, data interpolation, and compressed

sensing. This approach culminates in the application of the channel reciprocity theorem to



5.3. PRACTICAL OVERHEAD AND CSI ESTIMATION 85

determine the CSI of the reverse channels, thereby providing a more direct and potentially

accurate channel estimation method.

Fully Passive IRS Channel Estimation

In contrast, the fully passive IRS lacks any form of sensing capabilities, rendering direct

channel estimation methods inapplicable. This means estimating the channels between

AP and IRS separately from the links between IRS elements and the information users

is not viable for a fully passive IRS. This configuration demands innovative strategies to

estimate the cascaded channels involving the AP, the IRS, and the information users. One

practical method involves sending training signals from the AP or information users and

varying the IRS elements’ reflection patterns over time to deduce the composite channel

characteristics. However, this method faces a significant hurdle due to the large number

of reflecting elements in typical IRS deployments, which could result in prohibitively high

pilot/training signal overhead.

To mitigate this challenge, the concept of IRS element grouping emerges as a pragmatic so-

lution. By grouping adjacent IRS elements into subsurfaces, the channel estimation process

is simplified to determining the effective cascaded channel for each subsurface rather than

each individual element. This strategy effectively reduces the channel estimation overhead,

making it a viable approach for fully passive IRS configurations. These differing methodolo-

gies underscore the adaptability required in channel estimation techniques to align with the

specific IRS configurations. While semi-passive IRS allows for a more straightforward estima-

tion process through its onboard sensors, fully passive IRS necessitates creative solutions to

overcome the limitations imposed by its lack of direct sensing capabilities. Both approaches,

however, are instrumental in advancing the potential of IRS technology to enhance wireless

communication networks, albeit through distinct pathways significantly. Generally, no RF

chain is needed at the IRS for cascaded channel estimation since channel estimation is done

at the AP. Otherwise, the IRS needs to be equipped with RF chains to estimate channels

directly.

In the context of IRS-aided communication systems, especially those operating under finite

blocklength regimes, the protocol for channel estimation and signal transmission is designed

to ensure system efficiency and accuracy. This process, as delineated in studies such as [64,

185, 54], highlights the operational dynamics between the AP, the IRS, and the user devices,

emphasizing the critical role of CSI in optimizing the system’s performance. Here’s an

overview of the transmission protocol for an IRS-equipped system with receive RF chains:

Transmission Protocol Overview

1. Uplink Pilot Transmission: Initially, in a manner akin to Time Division Duplexing

(TDD) protocols seen in massive MIMO systems, all receivers (i.e., user devices) send

orthogonal pilot signals simultaneously to the AP in the uplink phase. This step is

pivotal for acquiring the necessary CSI without interference.

2. Channel Estimation: Upon receiving these signals, the AP estimates the channels
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between itself and the users (BS-user channels), while the IRS, equipped with receive

RF chains, independently estimates the channels between itself and the users (IRS-user

channels).

3. Information and Channel Feedback: Subsequently, the AP begins transmitting infor-

mation symbols to the users. Concurrently, it communicates the estimated BS-user

channels to the IRS using either optical links (suitable in indoor settings) or dedi-

cated wireless links (for broader contexts, like outdoor environments or when an IRS

controller is involved). This dual communication enables the IRS to perform joint

optimization of the active beamforming vectors at the AP and the phase shifts on the

IRS.

4. Optimization and Adjustment: The IRS controller, upon receiving the channel infor-

mation and requirements, transmits the optimized active beamforming vectors back

to the AP and adjusts the IRS’s phase shifts accordingly to maximize system perfor-

mance.

5. Cooperative Transmission: Finally, with the optimized parameters in place, the AP

and the IRS cooperatively transmit information symbols to the receivers, ensuring

enhanced signal quality and system efficiency through the joint beamforming effort.

Signaling Overhead and Channel Estimation Challenges

The signaling overhead in this IRS-aided system primarily consists of the complex num-

bers representing channel information that needs to be exchanged between the AP and the

IRS for effective optimization. Accurately obtaining the CSI at both the AP and the IRS is

paramount to harnessing the full potential of the IRS-aided system. However, practical chal-

lenges in achieving precise CSI necessitate reliance on channel reciprocity in TDD systems,

allowing for downlink channel estimation based on uplink channel information by varying IRS

reflection patterns. For multi-user systems, channel estimation overhead can be mitigated

by utilizing the IRS to reflect simultaneously transmitted pilot signals from all users through

the same IRS-AP channel, thus streamlining the process [183, 186]. Despite these advance-

ments, the chapter adopts a simplified approach for clarity, assuming sequential user channel

estimation in the uplink 2. The beamforming designs proposed within this chapter remain

adaptable to various channel estimation techniques, conditional on the availability of first and

second-order statistics of the channel estimation errors. This adaptability underscores the

robustness of the proposed methods in accommodating different operational environments

and channel estimation accuracies.

In the following paragraphs, we calculate the overhead for a simple scenario of not having

receiver noise at the AP. We avoid adding this part to our manuscript as it may hide away

the main contribution of our study due to limited space.

2In this chapter, we assume that the downlink-uplink channel reciprocity holds; thus, the downlink channel

can be learned by estimating its counterpart in the uplink by varying the IRS reflection patterns [187, 188].
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5.3.1 Channel Estimation for an IRS-Assisted IoT Users with Finite

Block Length

In line with the foundational assumptions established for our principal system model and

depicted in Fig. 5.2 (modified version of Fig. 5.1), our examination of channel estimation

revolves around a configuration where a set K single-antenna IoT users, with a finite block

length communication capability, engage in simultaneous uplink interactions with an AP that

has M antennas. This interaction is significantly enhanced by the strategic deployment of

an N-element IRS, specifically introduced to amplify the communication efficacy across the

user spectrum. Within the scope of this model, a critical assumption is made regarding the

channel conditions, which are presumed to remain invariant over each fading block, typified

by a length of T symbols.

The dynamics of the communication channels within this setup are encapsulated through

several key definitions. The channel connecting each user k to the AP is precisely defined by

hk,bu ∈CM×1, offering a clear depiction of the direct communication link. Concurrently, the
interaction between each user k and the IRS is characterized by hk,iu = [h

IU
k,1, ...,h

IU
k,N ]

T ∈
CN×1, while the IRS-to-AP channel is delineated as R= [r1, ...,rN ] ∈CM×N . These channel
representations are foundational to understanding the communication network’s structure

and the IRS’s role within it.

The presence of the IRS introduces a unique dimension to the AP’s received uplink signal

at any given time instant i , within the range 1 ≤ i ≤ T , manifesting as a composite of
both the direct signals emanating from the users and those reflected via the IRS. This dual

nature of signal reception underscores the impact of the IRS in mediating and enhancing

the communication flow between the users and the AP. A crucial component of the IRS’s

operational mechanism is embodied in the reflection coefficients, θn,i , which define the state

of each IRS element at any given time instant i within the observed coherence block. These

coefficients are binary, with a value of |θn,i | = 1 indicating an active (on) state of the nth
IRS element, thereby enabling it to modify the phase of the incident signal, and |θn,i | = 0
denoting an inactive (off) state. This binary framework for the IRS elements’ operation is

central to our understanding of how the IRS modulates the incident signals, enhancing the

system’s overall communication performance.

Expanding upon our system model for IRS-assisted uplink communications, we incorporate

the conventional two-stage transmission protocol applicable within each coherence block,

extending over T symbols. This protocol characterizes the coherence block into two distinct

phases: a channel estimation phase that spans τ < T symbols, followed by a data trans-

mission phase occupying the remaining T −τ symbols. This structured approach ensures a
systematic allocation of resources towards both accurate channel estimation and efficient

data transmission. During the channel estimation phase, an arrangement is set forth where

each user k , across the spectrum of K users, is allocated a unique pilot sequence composed

of τ symbols:

ak = [ak,1, ...,ak,τ ]
T , k = 1, ...,K. (5.12)

Here, the pilot symbols, the norm of ak,i , is either zero or one, ∀k, i , ensuring a straightfor-
ward modulation scheme for each pilot symbol transmitted by the users, ∀k, i . One needs
to properly design user pilot symbols an,i and IRS reflection coefficients θn,i ’s so that the
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Figure 5.2: Channel estimation for an IRS-Assisted IoT users with finite block length.

AP can estimate the CSI. Therefore, we can propose a novel three-stage channel estimation

protocol for IRS-assisted multi-user communications based on [183, 189, 190].

Initial Stage: Direct Channel Estimation

The protocol initiates with the first stage, where τ1 symbols, denoted by:

ȧk = [ak ,1, ...,ak,τ1 ]
T , k = 1, ...,K, (5.13)

are transmitted as pilot symbols. During this preliminary phase, the IRS assumes a passive

stance, with all its elements deactivated (θn,i =0 for each element n, throughout the intervals

i = 1, ...,τ1). This strategic deactivation ensures the AP’s received signal is devoid of IRS-

mediated reflections, thereby isolating and accurately estimating the direct channels, hk,bu,

from each user to the AP based on the received signals.

Second Stage: Reflective Channel Estimation of User ‘1’

Progressing to the second stage, a new set of τ2 symbols, denoted by:

äk = [ak,τ1+1, ...,ak,τ1+τ2 ]
T , , k = 1, ...,K, (5.14)

is employed as the pilot sequence for each user k . Unlike the initial stage, here, all IRS

elements are activated (θn,i = 1 for all n, across i = τ1+1, ...,τ1+τ2), setting the stage for

the reflective channel estimation. User ’1’ is singled out to transmit non-zero pilot symbols,

while the pilot sequences for users ’2’ through ’K’ are nullified (äk = 0 for k = 2, ...,K).

This focused approach allows the AP, armed with the previously estimated h1,bu, to adeptly

ascertain the IRS-reflected channels associated with user ‘1’, symbolized as g1 = h
IU
1,nr1,∀n.
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Final Stage: Comprehensive Reflective Channel Estimation

The concluding stage introduces τ3 symbols, denoted by:

äk = [ak,τ1+τ2+1, ...,ak,τ1+τ2+τ3 ]
T , , k = 1, ...,K, (5.15)

as the pilot sequence for each user k . In a departure from the previous stage, this phase

is dedicated to users ‘2’ through ’K’, who transmit non-zero pilot sequences to the AP,

facilitating the estimation of the remaining IRS-reflected channels, that is
...
a k = 0. It appears

that (K−1)MN unknowns exist that need to be estimated in gk,n’s, k ≥ 2. Nonetheless,
the number of unknowns can be highly receded, drawing on the relationship between the

user-IRS-AP reflected channels of user ‘1’ and the other users.

Finally, for the simple scenario without receiver noise at the AP, the minimum theoretical

overhead sequence length to perfectly estimate all the channel coefficients can be easily

calculated to be [183]:

K+N+max(K−1,⌈(K−1)N/M⌉). (5.16)

Specifically, it can be proved that K and N time slots are sufficient to estimate the direct

channels of all the users and IRS reflected channels of the user ‘1’ in stage one and stage

two, respectively, while max(K−1,⌈(K−1)N/M⌉) time slots are adequate for perfect chan-
nel estimation in the last stage. Surprisingly, the minimum overhead size reduces with M

generally. Such a result strongly contrasts with the traditional multi-user channel estimation

results without IRS, where the minimum overhead size is independent of the number of

receiving antennas at the AP [189, 190].

5.3.2 Discrete IRS Phase Shifts

The implementation of IRS in enhancing wireless communication networks introduces a

complex interaction between cost-efficiency and performance optimization. A critical aspect

of this interplay revolves around the realization that, due to hardware limitations, the phase

shifts facilitated by the reflecting elements of an IRS cannot feasibly exhibit continuous

variability [191]. Instead, these phase shifts must be quantized into discrete levels, a necessity

that aligns more closely with practical deployment scenarios and cost considerations, as

highlighted by numerous studies [192, 185, 193, 188, 194].

The transition from an idealized model with continuous phase shifts to a more realistic

framework incorporating discrete phase shifts brings forth certain performance implications.

Specifically, the quantization of phase shifts into a finite number of discrete states can lead

to a misalignment between the signals reflected by the IRS and those that bypass it, directly

reaching the receivers. This misalignment, in turn, manifests as a degradation in the overall

system performance.

The extent of this performance degradation, particularly in scenarios where the IRS comprises

a large number of elements (theoretically extending towards infinity, N→∞), is quantifiably
linked to the resolution of the phase shifters. The power loss associated with employing
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IRS elements equipped with b-bit discrete phase shifters can be mathematically expressed

as [188]:

1
/(2b

π
sin(

π

2b
)
)2

(5.17)

Notably, the utilization of one-bit phase shifters results in a power loss of approximately 3.9

dB in comparison to a scenario with near-ideal continuous phase shifts.

This scenario unveils an exciting cost-performance tradeoff, wherein the resolution of the

phase shifters (2b) and the quantity of reflecting elements (N) emerge as critical variables.

Specifically, network designers are presented with the option to either increase the number of

reflecting elements while compromising on phase shifter resolution or, conversely, to reduce

the number of elements while opting for higher resolution shifters. This flexibility allows

for strategic system design choices that aim to balance the received power at the IoT user

against the economic and practical realities of IRS deployment.

In essence, the parameters N and b serve as instrumental levers in the design and optimiza-

tion of IRS-assisted communication systems. By wisely selecting these parameters, system

designers can solve the tradeoffs between manufacturing costs, the complexity of the IRS,

and the desired level of communication performance. This nuanced approach to system

design implies the importance of considering practical hardware constraints in the pursuit of

enhancing wireless networks through IRS technology.

In our exploration of IRS-assisted wireless communication systems, we have bypassed the

incorporation of discrete phase shifts within the scope of our current study. This decision is

underpinned by a key consideration that directly influences the focus and outcomes of our

exploration in this chapter.

The inclusion of discrete phase shifts, despite their practical relevance and cost-efficiency in

real-world deployments, is deemed to offer minimal additional insight into the core objectives

of our study. Drawing upon comprehensive analyses provided in existing literature [192,

185, 193, 188, 194], it becomes evident that the adoption of discrete phase shifts would

invariably lead to a decrease in both the EE of the system and the number of users that

can be effectively admitted into the network. Moreover, these adverse effects are not

just speculative; they are quantifiable, with the extent of EE reduction and user admission

capacity being directly correlated to the granularity of the phase shift resolution and the

scale of the IRS deployment. Given this predictable outcome, we realize that the detailed

examination of discrete phase shifts would not significantly enrich the primary thrust of our

analysis of this chapter, which aims to determine the potential enhancements achievable

through IRS technology under idealized conditions.

5.4 Multi-Objective Problem Formulation of EE and Ad-

mission Control

In this section, we investigate the formulation of a Multi-Objective Optimization Problem

(MOOP) that seeks to concurrently maximize the total EE of the system and the number of

fairly admitted IoT users. This ambitious goal necessitates a simultaneous optimization of
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the active beamforming strategies at the AP and the phase shifts at the IRS. The formulation

of this maximization optimization problem integrates a variety of constraints and objectives

aimed at refining the system’s performance in terms of EE and user admission control,

embodying a comprehensive approach to system optimization. Accordingly, this problem as

a MOOP can be mathematically formulated as follows:

P1 : max
u,wk ,Θ

Eef f (uk ,wk ,Θ) (5.18a)

max
u,wk ,Θ

∑
k∈K

uk

s.t. : Rk(uk ,wk ,Θ)≥ ukRkth, ∀k ∈ K, (5.18b)

|Θnn|= 1, ∀n ∈N , (5.18c)

∑
k∈K

uk∥wk∥2 ≤ pmax, (5.18d)

uk ∈ {0,1}, ∀k ∈ K. (5.18e)

where constraint (5.18b) ensures the reliability of each admitted MTC-type finite-blocklength

user, a key requirement for maintaining the integrity of communication within the system.

Constraint (5.18c) guarantees that the phase shift matrix, comprising N unit-modulus ele-

ments, adheres to the physical limitations and operational capabilities of the IRS, that is,

N unit-modulus elements in the diagonal phase shift matrix. Moreover, constraint (5.18d)

describes the transmission power budget limitation in which pmax is the maximum allowable

transmission power. This constraint is crucial for ensuring that the system’s operations

remain within feasible and sustainable power consumption levels. Constraint (5.18e) indi-

cates that uk is a binary variable, where u= [u1, ...,uK ] constitutes the optimization decision

vector, representing the admission status of all users within the system.

The optimization problem P1
3 is a non-convex MINLP due to the non-convexity of the ob-

jective function and the constraints, as well as incorporating binary variables in the objective

and constraints. In general, finding an optimal solution for such a problem is impossible.

However, in the next section, we adopt an approach to find an efficient sub-optimal solution.

Despite the non-convex MINLP nature of P1, the subsequent sections will explore a method-

ological approach designed to approximate an efficient sub-optimal solution. This approach

will uncover algorithmic strategies to navigate the problem’s complexity, aiming to identify

solutions that significantly enhance the system’s EE while maximizing user admission under

the specified constraints. Through this endeavor, we aspire to achieve a balanced and op-

timized operational paradigm for IRS-assisted wireless communication systems, particularly

in contexts characterized by finite blocklength communications and EE requirements.

3Please note P1 ensures user fairness for a subset of the users, i.e., the total number of admitted users.
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5.5 Proposed AO Solution

The optimization problem P1, characterized by its non-convex nature due to the highly cou-

pled optimization variables, presents significant challenges for direct solution methodologies.

Given the complexities inherent in P1, conventional optimization techniques may fall short in

offering feasible solutions. To tackle this complexity, we introduce a novel solution strategy

based on Alternating Optimization (AO), renowned for its efficacy in addressing problems

marred by non-convexity and variable coupling with manageable computational demands.

Transitioning to a Single-Objective Optimization Problem (SOOP)

Our methodology begins by transforming the MOOP into a more tractable Single-Objective

Optimization Problem (SOOP). This transformation is facilitated by the introduction of

weighting coefficients, which serve to merge the distinct objectives of the MOOP into a

unified objective function. These coefficients are carefully chosen to reflect the prioritization

or preference between the original objectives, enabling a balanced consideration of EE and

user admission within a singular optimization framework.

Decomposition into Sub-Problems

Following this consolidation into a SOOP, we further dissect the overarching problem into

two manageable sub-problems, each focusing on specific aspects of the optimization:

1. Active Beamformers and User Admission Optimization: The first sub-problem con-

centrates on optimizing the active beamforming strategies at the AP and determining

the admission status of potential users. To address the non-convexity and mixed-

integer nature of this sub-problem, we employ a combination of the Big-M method,

Semi-Definite Programming (SDP), and fractional programming techniques grounded

in the quadratic transform. This approach allows for an effective optimization of the

active beamformers while sensibly selecting the subset of users to be admitted, aligning

with the system’s capacity and EE objectives.

2. Phase Shift Optimization: The second sub-problem is dedicated to the optimization

of the IRS phase shifts, a critical component in maximizing the system’s reflective

enhancement capabilities. The resolution of this sub-problem is achieved through the

utilization of the penalty method and the Successive Convex Approximation (SCA)

technique. These methods are proficient at navigating the unit-modulus constraints

associated with the IRS phase shifts, facilitating an iterative refinement process that

converges towards an optimal set of phase shift values.

Implementation and Iterative Refinement

The AO approach operates by iteratively solving these sub-problems, progressively refining

the solution with each iteration. By alternately optimizing the active beamforming and user
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admission strategy and then the IRS phase shifts, the method effectively decouples the

originally intertwined variables, making the problem more tractable. This iterative process

continues until convergence criteria are met, indicating that further iterations yield negligible

improvements in the objective function.

Through this structured AO framework, we posit that a sub-optimal yet highly efficient

solution to P1 can be attained. This solution strategy not only overcomes the formidable

barriers posed by the problem’s non-convexity but also ensures that the system’s performance

is optimized across both EE and user admission dimensions.

5.5.1 First-stage: Optimizing wk with Fixed Θ

At this stage, when we fix the phase shifts at the IRS, denoted by Θ, our focus shifts to

optimizing the active beamforming vectors, wk , at the AP, alongside the admission control

decisions for the IoT users. The utilization of SDP facilitates this optimization by allowing

us to represent the beamforming vectors in a semidefinite matrix form, with Wk =wkw
H
k

and subsequently the channels, Hk = hkh
H
k , ∀k ∈ K.

To effectively manage the product of the binary variable uk and the beamforming matrix

Wk , we introduce an auxiliary variable W̃k . This is achieved through the big-M method,

which imposes additional constraints to overcome the complexities associated with binary

optimization variables. These constraints are outlined as follows:

0⪯ W̃k ⪯ pmaxIMuk , ∀k ∈ K, (5.19a)

Wk − (1−uk)pmaxIM ⪯ W̃k ⪯Wk ,∀k ∈ K. (5.19b)

In the subsequent phase of optimization, the binary nature of the variable uk is relaxed to a

continuous spectrum, facilitating a more tractable optimization process. This relaxation is

governed by the following constraints:

∑
k∈K

uk− ∑
k∈K
(uk)

2 ≤ 0, (5.20)

0≤uk ≤ 1, ∀k ∈ K. (5.21)

Also note that the data rate can be rewritten as: In the optimization of the active beamform-

ing matrices with the IRS phase shifts held constant, the data rate for each user, denoted

by Rk(W̃k), is recast as the difference between two terms, Fk(W̃k) and Gk(W̃k) as follows:

Rk(W̃k) = Fk(W̃k)−Gk(W̃k),∀k ∈ K. (5.22)

Thus, the SINR γk , crucial to determining the quality and reliability of the communication

link for each user, is subsequently formulated as:

γk =
Tr(hkW̃k)

∑
i∈K,i ̸=k

Tr(hkW̃i)+σ
2
k

, ∀k ∈ K. (5.23)

Given that the constraint (5.18b) in P1 — belonging to the reliability constraint of each

admitted user based on their SINR levels — is inherently non-concave, we address this
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challenge by introducing auxiliary variables ξk ,∀k ∈ K. These variables serve as a lower
bound to the SINR, facilitating a reformulation of the SINR constraint to accommodate

the optimization process. Consequently, the SINR in (5.23) is redefined in a manner that

enables its decomposition into a more tractable form, captured by the inequality:

0≤ ξk ≤ γk =
fk(W̃k)

gk(W̃k)
,∀k ∈ K, (5.24)

where fk(W̃k) represents the numerator of the SINR equation, denoting the trace of the

product between the user’s channel matrix and their corresponding beamforming matrix.

Meanwhile, gk(W̃k) encompasses the denominator, accounting for the aggregate inter-

ference from other users plus the noise floor, σ2k , for each user k . The nominator and

denominator of (5.24) can be expressed as:

fk(W̃k) = Tr(hkW̃k), ∀k ∈ K, (5.25)

gk(W̃k) = ∑
i∈K,i ̸=k

Tr(hkW̃i)+σ
2
k ,∀k ∈ K, (5.26)

respectively.

The optimization problem P1 can now be restated with the introduction of a weighting

coefficient 0< α < 1, which indicates the relative importance of EE versus user admission.

This weighted approach reinforces the multi-objective nature of our study, allowing for a

harmonized optimization that does not singularly prioritize one objective over the other

but seeks a balanced improvement across both dimensions. The constraints encapsulated

within the modified optimization problem denoted as P10 encompass a wide array of system

requirements, from ensuring minimum data rate thresholds for user connectivity to adhering

to the AP’s power budget. Moreover, the rank constraint onWk serves as a testament to the

solution’s feasibility within the physical constraints of beamforming technology. By exploiting

the lower bound in (5.24), SDP, big-M, and the introduction of coefficient 0< α < 1 that

indicates the importance of the different objectives, the main optimization problem in the

first stage can be recast as:
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P2 : max
uk ,W̃k ,Wk ,ξk

αEef f (W̃k ,uk)+(1−α) ∑
k∈K

uk (5.27a)

s.t. : 0≤ ξk ≤
fk(W̃k)

gk(W̃k)
, ∀k ∈ K, (5.27b)

Rk(ξk)≥ Rkth, ∀k ∈ K, (5.27c)

rank(Wk)≤ 1, ∀k ∈ K, (5.27d)

∑
k∈K
Tr(W̃k)≤ pmax, (5.27e)

0⪯ W̃k ⪯ pmaxIMuk , ∀k ∈ K, (5.27f)

Wk − (1−uk)pmaxIM ⪯ W̃k ⪯Wk ,∀k ∈ K, (5.27g)

∑
k∈K

uk − ∑
k∈K
(uk)

2 ≤ 0, (5.27h)

0≤ uk ≤ 1, ∀k ∈ K, (5.27i)

where

Rk(ξk) = Fk(ξk)−Gk(ξk), ∀k ∈ K, (5.28)

in which

Fk(ξk) = log(1+ξk), ∀k ∈ K, (5.29)

Gk(ξk) =Q
−1(ϵk)

√
a2

md

(
1− (1+ξk)−2

)
,∀k ∈ K. (5.30)

P2 is still a non-convex optimization problem. Addressing the inherent non-convexity of P2
presents a significant challenge, requiring sophisticated mathematical maneuvers to reach a

viable solution. In an effort to make this complex problem more tractable, we first reformu-

late the optimization problem into a canonical form amenable to DC programming. This

reformulation is a strategic step that enables us to apply convex approximation techniques to

the non-convex components of the problem, thereby simplifying the optimization landscape.

A key aspect of this approach involves addressing the constraint represented in (5.27b)

by employing the first-order Taylor expansion to approximate the non-convex terms, thus

converting them into a convex framework. Specifically, the constraint is re-expressed in

a manner that clearly expresses the relationship between the auxiliary variable ξk and the

function gk(W̃ k), as follows:

ξkgk(W̃k)≤ fk(W̃k)

⇒ ξkAk(W̃k)≤ fk(W̃k)−ξkσ2k ,∀k ∈ K, (5.31)

where

Ak(W̃k) = ∑
i∈K,i ̸=k

Tr(hkW̃i), ∀k ∈ K. (5.32)

This representation in (5.31) shows the interaction between ξk and the summation of the

trace operations across the non-self user beamforming matrices, denoted by Ak(W̃k), within
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the system’s operational context. The non-convex nature of (5.31), stemming from the

product of optimization variables, W̃i and ξk , ∀i , k ∈ K, poses a considerable challenge.
However, we do this by decomposing this product into a DC form as follows:

ξkAk(W̃k) = Pk(ξk ,W̃k)−Qk(ξk ,W̃k),∀k ∈ K, (5.33)

where

Pk(ξk ,W̃k) =
1

2

(
ξk +Ak(W̃k)

)2
, ∀k ∈ K, (5.34)

Qk(ξk ,W̃k) =
1

2
(ξk)

2+
1

2

(
Ak(W̃k)

)2
,∀k ∈ K, (5.35)

in which Pk(ξk ,W̃k) and Qk(ξk ,W̃k) represent the convex and concave components, re-

spectively. By denoting Ωk = {ξk ,Wk ,W̃k ,uk} as a set of optimization variables, we have:

Uk(Ωk) = Pk(Ωk)−Qk(Ωk),∀k ∈ K. (5.36)

Thus, P2 can be recast as follows:

To effectively address the challenges posed by the non-convex optimization problem P2, we

further refine our approach and introduce P3, a recast version that used the principles of DC

programming to facilitate a more tractable solution approach. Thus, the updated optimizing

problem can be given as follows:

P3 : max
Ωk

α

∑
k∈K

Rk(ξk)

∑
k∈K
Tr(W̃k)+Ps+NPd +PAPc

(5.37a)

+(1−α) ∑
k∈K

uk −λ
(

∑
k∈K
(uk −u2k )

)
s.t. : Uk(Ωk)≤ fk(W̃k ,uk)−ξkσ2k , ∀k ∈ K, (5.37b)

Rk(ξk)≥ ukRkth, ∀k ∈ K, (5.37c)

ξk ≥ 0, ∀k ∈ K, (5.37d)

rank(Wk)≤ 1, ∀k ∈ K, (5.37e)

∑
k∈K
Tr(W̃k)≤ pmax, (5.37f)

0⪯ W̃k ⪯ pmaxIMuk , ∀k ∈ K, (5.37g)

Wk − (1−uk)pmaxIM ⪯ W̃k ⪯Wk ,∀k ∈ K, (5.37h)

∑
k∈K

uk − ∑
k∈K
(uk)

2 ≤ 0, (5.37i)

0≤ uk ≤ 1, ∀k ∈ K, (5.37j)

where λ is a large constant that acts as a penalty factor.

The objective function in P3 seamlessly integrates the EE and user admission control objec-

tives, complemented by a penalty term regulated by λ, to enforce user fairness and manage
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the binary nature of user admission decisions. The constraints in P3 are designed to en-

capsulate the requirements of the system. It should be noted that the objective function

and constraints (5.37b) and (5.37c) belong to the class of DC problems. Thus, the SCA

technique can be directly applied to approximate the non-convex problem in each iteration.

Indeed, the objective function and constraints (5.37b) and (5.37c) are approximated by a

more tractable one at a given local point. To this end, we use first-order Taylor expansion

to obtain a globally lower-bound of functions Gk(ξk) and Qk(Ωk), ∀k ∈ K. By denoting
∇□ as representing the gradient with respect to □, the lower-bounds of these functions at
iteration t are respectively given by:

Gk(ξk)≤ G̃k(ξk)≜ Gk(ξtk)+∂TξkGk(ξ
t
k)(ξk −ξtk),∀k ∈ K, (5.38)

Qk(Ωk)≥ Q̃k(Ωk)≜Qk(Ωtk)+∂TΩkQk
(
Ωtk
)
(Ωk −Ωtk)

+Tr

(
∇H

W̃k
Qk
(
Ωtk
)(
W̃k −W̃ t

k

))
,∀k ∈ K. (5.39)

Therefore, we have:

R̃k(ξk) = Fk(ξk)− G̃k(ξk), ∀k ∈ K, (5.40)

Ũk(Ωk) = Pk(Ωk)− Q̃k(Ωk), ∀k ∈ K. (5.41)

Then, P4 with any given local point at iteration t can be approximated as:

P4 : max
Ωk

α

∑
k∈K

R̃k(ξk)

E
+(1−α) ∑

k∈K
uk (5.42a)

−λ

(
∑
k∈K

uk −
((
utk
)2−2utk (uk −utk))

)
s.t. : Ũk(Ωk)≤ fk(Wk ,uk)−ξkσ2k , ∀k ∈ K, (5.42b)

R̃k(ξk)≥ ukRkth, ∀k ∈ K, (5.42c)

ξk ≥ 0, ∀k ∈ K, (5.42d)

rank(Wk)≤ 1, ∀k ∈ K, (5.42e)

∑
k∈K
Tr(W̃k)≤ pmax, (5.42f)

0⪯ W̃k ⪯ pmaxIMuk , ∀k ∈ K, (5.42g)

Wk − (1−uk)pmaxIM ⪯ W̃k ⪯Wk ,∀k ∈ K, (5.42h)

0≤ uk ≤ 1, ∀k ∈ K, (5.42i)

where,

E = ∑
k∈K
Tr(W̃k)+Ps+NPd +P

AP
c . (5.43)

The optimizing problem P4 is still non-convex due to existence of a fractional term in the

objective function. A common approach to handling fractional objective functions, like
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the one in P4, is Dinkelbach’s method. Dinkelbach’s method, renowned for its efficacy

in addressing optimization problems with fractional objective functions, transforms such

functions into a more tractable subtractive form through the introduction of an auxiliary

variable. This transformation facilitates the iterative solution of the problem by alternating

between solving the transformed subtractive problem in an inner loop and updating the

auxiliary variable in an outer loop. While Dinkelbach’s method guarantees convergence to a

global optimum under certain conditions, its applicability is limited to scenarios where the

transformed subtractive problem is convex and involves only a single fractional objective

function.

Nevertheless, suppose the transformed optimization problem in subtractive form is likewise

nonconvex. Consequently, only a suboptimal solution to the inner optimization problem can

be achieved with reasonable computational complexity, e.g., by employing the Weighted

Sum Mean Square Error (WSMSE) method or Successive Convex Approximation (SCA).

This is where the convergence of Dinkelbach’s method cannot be assured. Furthermore,

Dinkelbach’s method can only tolerate a single fractional objective function. For exam-

ple, Rk(Wk) in Eef f (Wk) is a sum of logarithms of fractional functions, and therefore,

Dinkelbach’s method cannot be applied.

Thus, we exploit the fractional programming procedure [195], which can handle the fraction-

al/multiplicative functions and even the function of fractional/multiplicative functions more

flexibly. Similar to Dinkelbach’s method, fractional programming also introduces auxiliary

parameters to decouple the optimization variables and updates the optimization variables

and auxiliary parameters iteratively. However, the adopted quadratic transformation for

fractional programming is more flexible such that the resultant inner optimization problem

is usually convex. Therefore, the fractional programming method is guaranteed to converge

to a stationary point of the original optimization problem and enjoys a polynomial-time

computational complexity. In the following, we first present a solution methodology for the

optimization problem Eef f (Wk) based on the quadratic transformation [195, 196], which

can handle the severe variable coupling and can be readily used for developing a concrete

algorithm for resource allocation policy.

The objective function in P4 is in a format of concave-convex in which we use semidefinite

relaxation (SDR) to remove the rank-one constraint (5.27d). In order to solve P4, we use

the fractional programming method based on the quadratic transformation, which introduces

an auxiliary parameter to transform a fractional form function into an equivalent subtractive

form. To do so, we utilize the result of Corollary 1 in [195] as follows:

Corollary 1 Consider f as a non-decreasing function, then the sum-of-ratio problem

max
x

fObj(x)

gObj(x)
(5.44a)

s.t. : x ∈ X , (5.44b)

is equivalent to the following problem

max
x, mObj

2mObj

√
fObj(x)−m2ObjgObj(x) (5.45a)

s.t. : x ∈ X ,mObj ∈ R, (5.45b)
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where mObj is an auxiliary variable. The proof of the equivalence between (5.44) and (5.45)

is provided in [195]. When fObj(x) is a concave function with respect to x in a convex set X ,
the subtractive function 2mObj

√
fObj(x)−m2ObjgObj(x) would be a concave function with

respect to x. Consequently, the resulting problem in (5.45) is a convex optimization problem

for a given mObj . Finally, we note that the optimal auxiliary variable is given by:

mObj =

√
fObj(x)

gObj(x)
. (5.46)

Thus, we can develop an iterative algorithm with a polynomial-time computational com-

plexity to update x and mObj alternatingly. However, the algorithm is only guaranteed to

converge to a sub-optimal solution of the main problem in (5.45) if the transformed problem

in (5.44) can globally be solved [195].

In the following, we demonstrate how to execute the quadratic transformation to achieve a

sub-optimal solution of P4. The problem P4 can be transformed into the following equivalent

optimization problem by adopting the quadratic transformation in (5.44) and (5.45):

P5 : max
Ωk , mObj

α

(
2mObj

√
∑
k∈K

R̃k(ξk)−m2ObjE
)

(5.47a)

+(1−α) ∑
k∈K

uk −λ

(
∑
k∈K

uk −
((
utk
)2−2utk (uk −utk))

)
s.t. : Ũk(Ωk)≤ fk(Wk ,uk)−ξkσ2k , ∀k ∈ K, (5.47b)

R̃k(ξk)≥ ukRkth, ∀k ∈ K, (5.47c)

ξk ≥ 0, ∀k ∈ K, (5.47d)

∑
k∈K
Tr(W̃k)≤ pmax, (5.47e)

0⪯ W̃k ⪯ pmaxIMuk , ∀k ∈ K, (5.47f)

Wk − (1−uk)pmaxIM ⪯ W̃k ⪯Wk ,∀k ∈ K, (5.47g)

0≤ uk ≤ 1, ∀k ∈ K, (5.47h)

where mObj denotes the new auxiliary variable corresponding to the objective function of

the optimization problem in P5 and can be updated globally as:

mObj =

√
∑
k∈K

R̃k(ξk)

E
. (5.48)

The resulting subtractive function in (5.47) is concave with respect to the optimization

variables for given auxiliary variables. Generally, P5 yields a solution with a rank higher than

one due to constraint (5.27d). Therefore, to solve (5.47) for a given mObj , we use the

SDR to remove constraint (5.27d) 4. The resulting problem is now a convex Semi-Definite

4In essence, the quadratic transformation methodology provides a robust framework for tackling the
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Programming (SDP) problem that numerical convex solvers, such as CVX, can solve. Fi-

nally, the solution to the relaxed SDP problem is optimal if it satisfies constraint (5.27d),

i.e., rank(Wk)≤ 1.

To validate our methodology, we investigate the SDP relaxation’s tightness in the following

theorem.

Theorem 1 For a given pmax and mObj , and by assuming that the channel vectors of all

users, hk , ∀k ∈ K are mutually statistically independent, the optimal beamforming matrices
W
∗
k of the relaxed version of the problem in P5 are rank-one, i.e., rank(Wk)≤ 1, ∀k ∈ K

with probability one.

Proof 2 The SDP relaxed problem is in P5 with respect to the remaining optimization

variables and satisfies Slater’s constraint qualification Therefore, strong duality holds, and

solving the dual problem is equivalent to solving the primal problem. Therefore, one can

prove Theorem 1 by exploiting the Karush–Kuhn–Tucker (KKT) conditions of P5 [197]. ■

We can now rewrite the constraint in a mathematically tractable form via the DC method

represented as:

∥W ∥∗−∥W ∥2 ≤ 0. (5.49)

Note that ∥W ∥∗ = ∑i σi ≥ ∥W ∥2 =maxi{σi} holds for any givenW ∈HM×M , where σi is
the i-th singular value of W . The equality holds if and only if W achieves rank one i.e.,

rank(W ) = 1 [2]. Now, we take the first-order Taylor approximation of ∥W ∥2 as:

∥W ∥2 ≥

=φ(W )︷ ︸︸ ︷
∥W (t)∥2+Tr

(
λmax

(
W (t)

)
λHmax

(
W (t)

)(
W −W t

))
. (5.50)

By resorting to (5.50), a convex approximation can be obtained for (5.49) which is given

by:

φ̃t(W )≜ ∥W ∥∗−φ(W )≤ 0. (5.51)

As a result, by augmenting φ̃t(W ) to the objective function of P6 with ψ≫ 1 as a penalty
factor to penalize any non-rank-one matrix, the optimization problem in the (t+1)-iteration

can be written as follows:

optimization challenges presented in P4. By transforming the problem into P5 and iteratively solving for the

auxiliary variable mObj , we establish a concrete algorithmic methodology to achieving a sub-optimal solution

that effectively balances EE with the practical considerations of user admission and system constraints. This

approach illustrates the potential of fractional programming in optimizing complex communication systems.
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P6 : max
Ωk

α

(
2mObj

√
∑
k∈K

R̃k(ξk)−m2ObjE

)
+(1−α) ∑

k∈K
uk

−λ

(
∑
k∈K

uk −
((
utk
)2−2utk (uk −utk))

)
−ψ(φ̃t(W )) (5.52a)

s.t. : Ũk(Ωk)≤ fk(Wk ,uk)−ξkσ2k , ∀k ∈ K, (5.52b)

R̃k(ξk)≥ ukRkth, ∀k ∈ K, (5.52c)

ξk ≥ 0, ∀k ∈ K, (5.52d)

∑
k∈K
Tr(W̃k)≤ pmax, (5.52e)

0⪯ W̃k ⪯ pmaxIMuk , ∀k ∈ K, (5.52f)

Wk − (1−uk)pmaxIM ⪯ W̃k ⪯Wk ,∀k ∈ K, (5.52g)

0≤ uk ≤ 1, ∀k ∈ K. (5.52h)

Consequently, P6 is a convex optimization problem and can be efficiently solved.

5.5.2 Second-stage: Optimizing Θ

In the second stage of our optimization process, the focus is on the optimization of the

phase shifts at the IRS, denoted as Θ, with the active beamformers W̃k being held constant

from the previous stage. This stage of optimization specifically targets the maximization of

the data rate, a key performance indicator for the effectiveness of IRS-assisted communi-

cation systems. However, the optimization of Θ is notably challenged by the unit-modulus

constraint, as expressed in constraint (5.18c), which presents the feasible set for the phase

shifts and significantly complicates the optimization process.

To address the complexities introduced by this constraint, we employ a strategic reparame-

terization of the problem. This approach involves defining a new vector v that encapsulates

the phase shifts at the IRS, with each element being the exponential representation of the

phase shift. Accordingly, we first define:

v =(e jα1 , ...,e jαN )H ∈ CN×1, (5.53)

ṽ =[vT τ ]T ∈ C(N+1)×1, (5.54)

where τ ∈C is a dummy variable with |τ |= 1, to accommodate the unit-modulus constraint
within our optimization framework in a more tractable manner. We note that the aug-

mented vector ṽ is defined to combine the phase shift vector v and the dummy variable τ .

By extending the dimensionality of the problem with the inclusion of τ , we create additional

flexibility that can be exploited during the optimization process, thereby enhancing the po-

tential for finding a viable solution to the originally intractable problem. To facilitate the

solution design, we also define:

V = ṽṽH ∈ C(N+1)×(N+1), (5.55)
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which indicates that the matrix V is semi-definite and satisfies rank(V) ≤ 1. Thus, we
obtain: ∣∣∣(hHiu,kΘh+hHbu,k)W̃k

∣∣∣2 ≜Tr(V XkW̃kX
H
k )

=Tr(W̃kYk), ∀k ∈ K, (5.56)

where

Xk =
[(
diag

(
hHiu,k

)
H
)T
h∗bu,k

]T
, ∀k ∈ K, (5.57)

Yk = X
H
k V Xk , ∀k ∈ K.

In addressing the challenges posed by the non-convex data rate constraint and the new

objective function for the optimization of the phase shifts at the IRS, Θ, we embark on a

strategic approach similar to that employed in the optimization of the active beamforming

vectors. This strategy involves the clever use of auxiliary variables, in this case, denoted as

(Υk), to facilitate the application of the SCA method, thus enabling the iterative refinement

of the solution towards optimality. The application of auxiliary variables serves to effec-

tively linearize the non-linear aspects of the optimization problem, thereby rendering it more

tractable. Specifically, the data rate for each user k , now denoted as R̃k(Υk), is expressed

as a difference between two terms: This means:

R̃k(Υk) = Fk(Υk)− G̃k(Υk), ∀k ∈ K. (5.58)

Given this foundation, the optimization problem concerning the IRS phase shifts can be

reformulated, taking into consideration the simplifications and assumptions applicable to this

stage of the optimization process. Specifically, contributions from user admission variables

uk and total power considerations, which have been addressed in the preceding sub-problem,

are omitted from the objective function to focus solely on the optimization of Θ. Now, we

restate the optimization problem as follows:

P7 : max
V ,Υk

∑
k∈K

R̃k(Υk) (5.59a)

s.t. : Υk ≥ 0,V ⪰ 0,Ωk = {Υk ,V }, ∀k ∈ K, (5.59b)

R̃k(Υk)≥ ukRkth, ∀k ∈ K, (5.59c)

Ũk(Ωk)≤ fk(V )−ξkσ2k , ∀k ∈ K, (5.59d)

rank(V )≤ 1. (5.59e)

Similar to P6, P7 usually does not give a rank-one solution because of constraint (5.59e).

By rewriting (5.59e) as:

∥V ∥∗−∥V ∥2 ≤ 0, (5.60)

and owing to (5.50), a convex approximation, φ̃t(V ) ≤ 0, of rank-one constraint can be
made. Thus, supplementing φ̃t(V ) to the objective function of P8 with ζ≫ 1 as a penalty
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Algorithm 4 Proposed Algorithm for IRS-Based Energy Efficiency and Admission Control

Maximization for IoT Users With Short Packet Lengths

Input: Set m
(0)
Obj , Imax, and Dmax.

1: repeat

2: Calculate G̃k(ξk), Q̃k(ξk ,W̃k), and φ̃
2(W ) via a Successive Convex Approximation

(SCA) structure.

3: Solve P6 for a given Θ, and m
(d−1)
Obj .

4: if |
√

∑k∈K R̃
(d)
k (ξk)−m

(d−1)
Obj −E

(d)| ≤ ε
5: return Ω=Ω(d), m∗Obj =m

(d−1)
Obj .

6: else Update m
(d)
Obj =

√
∑k∈K R̃k (ξk )

E , end if.

7: d = d +1.

8: until d =Dmax
9: Calculate G̃k(Υk) and φ̃

2(V ) via an SCA structure.

10: Solve P8 for the obtained W̃ , uk , from the previous steps.

11: i = i +1

12: until i = Imax.

13: return Υ ,V .

factor to penalize any non-rank-one matrix, the optimization problem in the (t+1)-iteration

can be written as follows:

P8 : max
V ,Υk

∑
k∈K

R̃k(Υk)−ζ(φ̃t(V )), (5.61a)

s.t. : Υk ≥ 0,V ⪰ 0,Ωk = {Υk ,V }, ∀k ∈ K, (5.61b)

R̃k(Υk)≥ ukRkth, ∀k ∈ K, (5.61c)

Ũk(Ωk)≤ fk(V )−ξkσ2k , ∀k ∈ K, (5.61d)

The optimization problem P8, structured to address the phase shift optimization at the IRS,

Θ, with considerations for the non-convex constraints and auxiliary variables, mirrors the

analytical strategy employed in solving P6. This mirrored approach underscores the versa-

tility of our algorithmic framework, which can overcome the complexities inherent in both

active beamforming and phase shift optimization within IRS-assisted MTC-enabled wireless

communication systems. The algorithmic implementation of this strategy is summarized

in Algorithm 4, a procedural blueprint that gives the iterative steps required to achieve

convergence to a locally optimal solution.
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5.6 Computational Complexity and Convergence Analysis

In the computational complexity and convergence analysis of our proposed algorithm, we

study the mathematical intricacies that define the computational demand of solving the op-

timization problems, specifically P6 and P8. This analysis provides insight into the efficiency

and scalability of the algorithm, crucial aspects when considering its practical application.

The computational complexity of solving an SDP problem, which is central to our optimiza-

tion approach, is determined by several factors, including the size of the problem and the

desired solution accuracy. For an SDP problem characterized by m constraints and involving

an n× n Positive Semi-Definite (PSD) matrix, the computational complexity is generally
expressed as:

O
(√
n log(1/ζ)(mn3+m2n2+m3)

)
, (5.62)

where ζ>0 is the solution accuracy [2]. This formula shows the connection between the

problem size, the number of constraints, and the accuracy of the solution, offering a com-

prehensive view of the computational demand. Applying (5.62) to the optimization problem

P6, with m = 6K+1 constraints and an n =M PSD matrix, yields the following complexity

order:

O1 =O log
(
1

ζ1

)
(6K+1)

(
(M)3.5+(6K+1)2.5M2+(6K+1)2

)
, (5.63)

where ζ1 is the solution accuracy specific to P6. This provides a quantitative measure of

the computational resources required to solve the problem, highlighting the impact of the

number of users (K) and the size of the active beamforming matrix (M). Similarly, for

the optimization problem P8, which focuses on the phase shift optimization at the IRS, the

complexity can be formulated as:

O2 =O log
(
1

ζ2

)
(4K+1)

(
(N)3.5+(4K+1)2.5N2+(4K+1)2

)
, (5.64)

with ζ2 representing the solution accuracy for P8. This expression determines the compu-

tational demands associated with optimizing the IRS phase shifts, emphasizing the role of

the number of IRS elements (N) and users (K).

The overall computational complexity of the proposed solution approach is thus a function

of the complexities of solving P6 and P8, scaled by the number of iterations, Iiter, required

for the AO method to converge. This yields an aggregate complexity of:

Otot =O(Iiter(O1+O2)), (5.65)

offering a comprehensive overview of the computational demands of the algorithm across

both stages of optimization. Through this analysis, we gain valuable insights into the com-

putational implications of employing the proposed AO-based algorithm in IRS-assisted MTC-

enabled systems.

In the following, we also prove that our algorithm is convergent.

Proposition 2 The objective function value of P1 would be improved via this iterative al-

gorithm.
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Proof 3 Let us consider {W (j),u(j),Θ(j+1)} as the feasible solution set to P8. Then, the
feasible solution set of P8 is a feasible solution to P1 as well. Therefore, {W (j),u(j),Θ(j)}
and {W (j+1),u(j+1),Θ(j+1)} are feasible to P1 in the (j)-th and (j +1)- th iterations,
respectively. Now, we define fP1(W

(j),u(j),Θ(j)), fP8(Θ
(j)), and fP6(W

(j),u(j)) as the

objective functions of problem P1, P8 and P6 in the (j)-th iteration, respectively. Thus, we

have

fP1(W
(j+1),u(j+1),Θ(j+1))

(a)
= fP8(Θ

(j+1))
(b)

≥ fP8(Θ
(j))

= fP1(W
(j+1),u(j+1),Θ(j)), (5.66)

where (a) follows the fact that problem P1 is equivalent to problem P8 for optimal W

and u, and (b) holds since fP8(Θ
(j+1))≥fP8(Θ(j)) according to sub-problem 2 (that is the

second-stage: Optimizing Θ). Similarly, for a given Θ(j), we have

fP1(W
(j+1),u(j+1),Θ(j))

(a)
= fP6(W

(j+1),u(j+1))
(b)

≥ fP6(W
(j),u(j))

= fP1(W
(j),u(j),Θ(j)). (5.67)

From the above two inequalities, we can conclude the following inequality holds

fP1(W
(j+1),u(j+1),Θ(j+1))≥fP1(W

(j),u(j),Θ(j)). (5.68)

Thus, we have shown that the objective function of P1 is monotonically non-decreasing after

each iteration. ■

5.7 Numerical Results for the MTC-enabled IRS-aided Net-

work

In this section, we demonstrate the proposed algorithm’s effectiveness for maximizing EE

and IoT user admission in IRS-enabled systems with short packet lengths. We consider a

simulation setup within a (100,100) meter rectangular area. Here, the AP is positioned at

the coordinates (0,0) meters, and the IRS is at (50,0) meters, with the assumption that

all users are distributed randomly throughout this defined area. The model for path loss

employed in this study is 3gpp-complainant [55] and is given by: 35.3+37.6log10(dk)[dB],

with dk representing the meter-measured distance between the AP and IoT user k .

For the purpose of achieving a fine-grained optimization, the AO method’s convergence tol-

erance is set to 10−2, and the thermal noise spectral density is −174 [dBm/Hz]. Moreover,
the decoding error probability, a critical parameter in the context of short packet commu-

nications, is standardized across users at ϵk = 10
−7. Additional simulation parameters are

uniformly applied across all scenarios, including a total of K = 20 IoT users, M = 5 antennas

at the AP, a packet length (md) of 250 symbols, and a threshold data rate (R
k
th) set at 1.6

[bits/Sec/Hz].
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Table 5.1: Simulation Parameters for Multi-user MTC-enabled IRS Systems.

Parameter Value

Area dimensions (100,100) meters

AP location (0,0) meters

IRS location (50,0) meters

Path loss model 35.3+37.6log10(dk) dB

AO convergence tolerance 10−2

Thermal noise density −174 dBm/Hz
Decoding error probability, ϵk 10−7

Number of users, K 20

Number of AP antennas, M 5

Number of IRS elements, N 50

Minimum transmit power, pmax 30 dBm

Block code length, md 250 symbols

Threshold rate, Rkth 1.6 bits/Second (Sec)/Hz

These simulation conditions are carefully chosen to reflect realistic operational environments

and constraints, providing a robust framework within which the performance and implications

of the proposed algorithm can be comprehensively assessed [165, 178]. The detailed setup,

as shown in Table 5.1, encompassing both the physical deployment of network components

and the algorithmic parameters, enables a thorough investigation into the algorithm’s poten-

tial to significantly improve system performance in terms of EE and the capacity to support

a higher number of IoT users within IRS-enabled wireless communication networks.

Fig. 5.3 illustrates the average EE as a function of varying maximum transmit power levels,

pmax, with α= 1. To contextualize the performance of the proposed algorithm, we compare

it against three baseline schemes: The first baseline focuses on optimizing the network’s

data rate as per [165]. The second assumes arbitrary passive beamforming at the IRS, and

the third baseline envisions a scenario without IRS assistance (cf., Chapter 3). Across all

schemes, a common trend emerges where the EE initially rises with increasing pmax but

eventually plateaus. Specifically, in the first baseline scenario, a subsequent decline in EE is

noted, underscoring an insight that enhancing the data rate beyond a certain point, where

the system achieves peak EE, leads to increased overall network power consumption, thereby

diminishing EE.

This analysis further demonstrates the significant impact of phase shift optimization, illus-

trating that EE escalates with the increase of the reflecting elements at the IRS. Addition-

ally, Fig. 5.3 explores the correlation between the average number of admitted IoT users

and pmax, when setting α= 0. An upward trajectory in user admission rates is observed as

pmax escalates, attributable to the network’s enhanced capability to support an expanded

user base while adhering to the strict quality requirements necessitated for IoT users with

finite blocklength in MTC-enables networks.

Crucially, the figure shows the superior performance of the proposed scheme over the baseline

alternatives, attributed to the strategic deployment of IRS and the concurrent optimization

of active and passive beamforming matrices at the AP and IRS. This comprehensive com-

parison not only highlights the advantages of integrating IRS into the network but also
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Figure 5.3: EE and the average number of admitted users vs. pmax

illustrates the proposed scheme’s efficacy in optimizing network parameters to achieve su-

perior performance metrics.

In a further evaluative step of Fig. 5.3, the proposed scheme’s performance is benchmarked

against an idealized (and unattainable) performance upper bound represented by Shannon’s

capacity formula, achieved by setting the channel dispersion Vk in (5.8) to zero. This

comparison serves as a theoretical touchstone, emphasizing the practical efficiency and

effectiveness of the proposed algorithm in addressing the complex landscape of IRS-assisted

wireless networks for IoT MTC-enabled applications. Through these comparative analyses,

the proposed algorithm’s role in pushing the boundaries of what is achievable in terms of EE

and IoT user admission in contemporary wireless systems is vividly observed.

5.7.1 Tradeoff between EE and the Average Number of Admitted

Users

Fig. 5.4 plots the tradeoff region between EE and the number of IoT admitted users, across

a spectrum of values for the weighting coefficient 0< α < 1, incremented in steps of 0.05.

This illustration brings to light a significant tradeoff between EE and user admission: as

EE is optimized, the number of users that can be admitted into the network conversely

diminishes. This phenomenon underscores a fundamental principle where the pursuit of

maximal EE inherently restricts the network’s ability to accommodate an increasing number
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Figure 5.4: EE vs. the average number of admitted users for IoT users with short packet lengths

in an IRS-assisted MTC network.

of users, establishing EE as a monotonically decreasing function in relation to user admission

rates. Another insight from this analysis is the distinct performance dynamics influenced by

varying α values. Specifically, when α is set towards higher values, the optimization leans

favorably towards EE, albeit at the cost of admitting a relatively limited user base. This

scenario implies that while the network may deliver high data rate services, it does so for a

narrower number of users. On the contrary, as α values are reduced, there is a noticeable

shift in optimization focus towards enhancing the number of admitted users. This adjustment

naturally entails a more inclusive network that can support a larger user base, adhering to

the minimum QoS standards required by users.

The modification of α effectively directs the optimization problem’s emphasis between max-

imizing EE and expanding user admission. Consequently, in scenarios where α is lowered to

prioritize user inclusivity, although the fairness within the network improves, it is observed

that EE performance experiences a decline. This exploration into the tradeoff region high-

lights the inherent challenges in balancing EE with user admission objectives and proves the

strategic role that the parameter α plays in navigating this balance.
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5.7.2 User Admissibility vs. User Serviceability

In this chapter, we aim exclusively towards enhancing the framework of an IRS-assisted

MTC-enabled system, specifically focusing on maximizing the number of users the network

can viably support. Central to our proposition is the strategic allocation of resources to those

users whom the system is capable of admitting, striving for fairness in distribution among this

subset. It is critical to understand that our algorithm does not purport to accommodate

every potential user5. Instead, our intention is rooted in determining the extent of user

support achievable, particularly through the lens of maximizing EE.

The above discussion presents two seemingly contradictory inquiries that cannot be concur-

rently addressed:

• The capacity of our designed network to fairly admit a certain number of users; known
as user admissibility.

• The network’s ability to extend services to all potential users; referred to as user
serviceability.

In this chapter, we have answered the user admissibility question. It is imperative to recognize

that the attempt to maximize the total number of users the system can support does

not inherently guarantee the serviceability of all users. In scenarios where maximizing user

admissibility coincides with the capability to serve all users, such alignment represents a

special case rather than a standard expectation. This distinction underscores that, should the

network manage to provide service to every user, it effectively admits them all, establishing

a benchmark of user admissibility6. Further investigation of our system’s design reveals

an embedded fairness in resource allocation, ensuring that admitted users receive equitable

consideration.

In what follows, we explain in more detail why our design is fair (i.e., we have inherent user

fairness) and explore the ways we could tackle user serviceability.

User Admissibility

Within the domain of MTC-enabled services, the necessity for short packet lengths inherently

aligns with the requirement for modest data rates among URLLC users. This foundational

aspect of MTC-enabled applications leads us to a preliminary conclusion regarding the eq-

uitable treatment of ’admitted’ MTC-enabled IoT users within the framework of our study.

Given the unique constraints and needs of these users, fairness in resource allocation emerges

not just as an objective but as an intrinsic characteristic of our system design.

To critically assess and quantify this inherent fairness, our analysis employs Jain’s fairness

index, a methodologically robust and universally recognized metric for evaluating fairness

5User fairness across time over all users is out of the scope of this chapter. We do not claim that we

support all users; rather, we want to answer the question how many users can be supported (in the milieu

of maximizing energy efficiency)
6If we can give service to all users, then we are admitting them all.
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in resource allocation scenarios [198]. Jain’s fairness index is particularly relevant to our

discussion for its ability to deliver a quantifiable measure of how equitably resources are

distributed among users, including those within MTC contexts. The mathematical expression

for Jain’s fairness index in our scenario is formulated as:

IJ =

(
∑
k∈K

ukRk(uk ,wk ,Θ)
)2

∑
k∈K

uk ∑
k∈K
(Rk(uk ,wk ,Θ))2

. (5.69)

This index operates within a range from 0 to 1, where a value of 1 means perfect fairness —

every user benefits from identical throughput levels — while a score of 0 denotes absolute

unfairness. Intriguingly, a fairness index value of 0.5 is indicative of a perfectly equitable

resource allocation among the users.

The crux and primary innovation of our study pertains to the maximization of the overall

number of admitted users while concurrently guaranteeing a minimum data rate for each

accepted user. In particular, the proposed problem formulation allows a network designer to

access all pertinent parameters, of which the most salient are the aggregate / achievable

count of admitted users and the energy efficacy provided through our methodology

The essence and novelty of our investigation lie in the strategic objective, as in P1, to

enhance the total number of users that can be admitted into the system, ensuring si-

multaneously that each admitted user is guaranteed a minimum requisite data rate. This

multi-objective role is well thought of in our problem formulation P1, which equips network

designers with the capability to evaluate critical system parameters effectively. These in-

clude the collective number of users that can feasibly be supported by the system, and the

level of EE achieved through the implementation of our proposed methodologies. Through

this approach, our study not only addresses the question of user admissibility but also sheds

light on the broader implications of resource allocation fairness, particularly as it applies to

MTC-enabled IoT users within an IRS-assisted communication framework.

The implication of our findings is that by employing Jain’s fairness index, fairness can be

ensured while achieving the highest possible number of admissible users. Specifically, our

results demonstrate that it is feasible to optimize resource allocation in a communication

network such that each user receives an equitable share of resources while concurrently

maximizing the total number of admissible users. In essence, our study establishes the

possibility of achieving both high system performance and fairness.

By examining the Pareto efficiency graph depicted in Fig 5.5, it is possible to infer that nine

users can be fully admitted into the network, with an EE of approximately 8 [bits/million

Joule (mJoule)/Hz]. Notably, the (8,9) point lies on the Pareto optimal boundary of the

graph, signifying that any point inside the Pareto region represents a feasible solution to the

optimization problem, albeit non-optimal.

Figure 5.5 displays the dynamics between the fairness indices achieved through our proposed

scheme and the number of users, particularly when the fairness constraint, as defined by

(5.69), is integrated into the primary optimization framework P1. The figure illustrates a

notable trend: with the increase of users, the arena of competition becomes increasingly

fierce. This phenomenon is attributed to the inevitable rise in users facing less favorable

channel conditions and those designated with lower priority levels, who subsequently face
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Figure 5.5: Jain’s fairness index versus the total number of users in for IoT users with short packet

lengths in an IRS-assisted MTC network.

challenges in securing access to communication services. The ambition is to enhance the

total number of users the system can feasibly support. It is imperative to acknowledge,

however, that while our focus is on maximizing user admission, the aspiration to optimize

fairness across the board or to guarantee service provision to every prospective user lies

beyond our design objectives. Despite this, our analysis reveals a compelling insight: the

algorithm we propose does not overlook fairness entirely but rather ensures a degree of

equity among the set of users it admits.

This balance illustrates a deliberate design consideration within our algorithm, aiming to

strike a compromise between broadening user admission and maintaining fairness among

those admitted. Such a compromise is reflective of the complex trade-offs inherent in

optimizing communication systems, especially those with the challenges of accommodating

a growing user base while striving to uphold a pinch of fairness.

User Serviceability

To address the challenge of ensuring service to all users within a network, a shift in perspec-

tive is required, moving away from merely maximizing the total user count. This transition is

crucial because in a scenario where all users are guaranteed admission, the goal of maximiz-

ing user numbers loses its relevance. The issue of user serviceability, highlighted earlier, can

be approached from multiple angles, drawing upon existing strategies within the literature
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to ensure service distribution over time.

One potential strategy involves redefining the optimization problem based on a Max-Min fair-

ness methodology. This approach focuses on equalizing the minimum service time necessary

for each user to receive adequate service, a concept that has been thoroughly investigated

in prior studies, such as in [199]. Alternatively, adopting a Medium Access Control (MAC)

layer perspective offers another pathway to achieving temporal user fairness. By assigning

time slots (or minislots) to MTC-enabled IoT users, it becomes feasible to ensure that var-

ious user types are authorized their respective services in alignment with MTC-enabled IoT

constraints, as explored in [200].

The Max-Min fairness approach provides another distinct viewpoint on network manage-

ment, diverging from the perspective centered on the optimization of total user admission.

Moreover, our current investigation, which seeks to optimize user admission alongside EE at

the Physical (PHY) layer, lays a foundational framework that can be effectively integrated

into MAC layer protocols. This integration is crucial for ensuring cross-temporal fairness

among all user types, as demonstrated in Fig. 2 of[200]. Such synergy between the PHY

layer algorithm and MAC layer scheduling underscores the applicability and relevance of our

study within broader communication system architectures, emphasizing the contribution of

our findings to enhancing network efficiency and fairness.

In summary, while our study deliberately sidelines the consideration of user serviceability to

maintain a focus on maximizing user admissibility, it presents a comprehensive framework

for understanding and addressing the complexities of equitable resource allocation. The

insights gleaned from our analysis not only contribute to optimizing network performance

but also underscore the potential for implementing our findings within integrated PHY and

MAC layer strategies, thereby reinforcing the importance of our contributions to the field.

5.8 Insights and Practical Implications of MTC-enabled

services for IRS-aided Networks

Thus far, our exploration within this chapter has centered around MTC-enabled, IRS-assisted

networks, focusing particularly on a DL multi-user MISO configuration with short packet

transmission. Our journey took us through the complexities of designing resource allocation

strategies that optimize active and passive beamforming, with the goal of enhancing EE

while also increasing the admittance of IoT users, all within the scope of meeting stringent

QoS criteria for each MTC-enabled user. Given the non-convex nature of the core problem,

our approach was hierarchical and structured; we initially segmented the main problem into

two distinct sub-problems, active and passive beamforming, before delving into the SCA

and penalty-based methodologies to untangle the intricacies of beamforming matrices. Our

simulations illustrated the key role of the IRS in improving system EE and facilitating QoS

compliance for users constrained by short packet lengths, marking an improvement over

traditional approaches.

In the ensuing sections of this chapter, we introduce and study Ultra-Reliable Low-Latency

Communication (URLLC) systems, a facet of modern wireless communication. URLLC
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can be thought of as an essential feature for various MTC services, including a myriad of

emergent and mission-critical applications [201]. In URLLC systems, reliability, and minimal

latency are of significant importance, which is not necessarily the same as conventional

requirements in MTC scenarios. This shift is necessitated by the evolving demands of

next-generation wireless systems. We develop a system model and analysis of how URLLC

services can benefit from IRS. Before that, let’s talk about URLLC in a bit more detail.

5.8.1 Ultra-Reliable Low-Latency Communication (URLLC) in IRS-

aided Networks

The integration of IRS into the communication system helps to enhance reliability, reduce

packet retransmission, and minimize delay. Thus, the IRS can be a potential and cost-

effective solution to realize URLLC. To facilitate low-latency communications, the packet

size in URLLC must be extremely small [161]. This mode of operation, referred to as short

packet transmission7, does not align well with conventional Shannon’s capacity theorem,

which assumes that coding is performed on an infinite blocklength [8]. However, URLLC

functions within a finite blocklength regime, which requires a different approach. Polyanskiy

et al. in [163] determined the achievable regime as a complex function of the Signal-to-Noise

(SNR) ratio, blocklength, and the probability of decoding errors.

As data traffic demand increases, so does the energy consumption of wireless networks.

Therefore, EE becomes a pivotal aspect of future network design [3]. In [178], Singh et al.

sought to maximize EE in downlink multi-user Multi-Input Single-Output (MISO) networks

by jointly optimizing precoders at the Base Station (BS) and the Decoding Error Probability

(DEP) with finite blocklength codes. Further, Nasir et al. developed a unique class of

conjugate beamforming and a new path-following algorithm to enhance URLLC rates and

EE in cell-free massive Multi-Input Multi-Output (cfm-MIMO) settings in [202]. However,

[178] and [202] only consider the downlink system, while a more comprehensive full-duplex

system is not accounted for. Ghanem et al. closed this gap in [203, 165] and aimed to

maximize system EE through a joint effort of power control and sub-carrier assignment in

downlink and uplink communication, ensuring the Quality of Service (QoS) requirements for

users in both directions are met.

Nonetheless, not all these strategies, as referenced in [3, 178, 202, 203, 165], are exclusively

applicable or can be extended to IRS-assisted URLLC services. As such, it is necessary to ex-

amine IRS-assisted URLLC networks in their own context. Hashemi et al. authors presented

the performance analysis of the average achievable data-rate and error probability over an

IRS-aided URLLC transmission with/without phase noise in [168]. Considering non-linear

energy harvesting, the end-to-end performance of the IRS-assisted wireless system was ana-

lyzed in [204] for industrial URLLC applications, and the approximate closed-form expression

of the block error rate was derived. Xie et al. studied an IRS-assisted downlink multi-user

URLLC system and jointly optimized the user grouping and the blocklength allocation at

the BS, as well as the reflective beamforming at the IRS for latency minimization in [90].

The majority of current research in the field falls still short of thoroughly examining the

7We extensively use this in the previous sections of our studies on MTC-enabled services.



114 CHAPTER 5. ENERGY EFFICIENT ADMISSION CONTROL IN IRS NETWORKS

advantages of utilizing the IRS platform in URLLC networks with the aim of optimizing

EE [205, 8, 111, 167, 3, 206]. The IRS can assist URLLC systems in lowering the antic-

ipated worst-case Signal-to-Interference-plus-Noise Ratio (SINR) in applications requiring

low latency. Furthermore, it would be intriguing to assess whether the Quality of Service

(QoS) is upheld in the context of short packet transmission in an IRS-supported URLLC

system. In this chapter, we aim to design a resource allocation algorithm for a downlink

URLLC-enabled IRS system, wherein a multi-antenna BS serves multiple single-antenna

URLLC receivers via a smart, reconfigurable reflector. As a result, our primary focus in

the following sections is on enhancing the total EE in the proposed network, which offers

valuable insights into the system’s design. To extend our study of MTC to URLLC, we do

the following:

• We formulate a non-convex EE problem, subject to the minimum required data-rate
for each URLLC user and unit-modulus constraints at the IRS.

• We employ an AO algorithm to solve the EE maximization problem, optimizing both
active and passive beamformers at the BS and IRS, respectively. Using an innovative

iterative rank relaxation and SCA method, we approach the IRS rank-one constrained

problem. We then apply the Dinkelbach algorithm and a penalty-based approach to

obtain a suboptimal solution.

• We use simulation to indicate that the integration of IRSs and a multi-antenna BS
enhances the performance of URLLC users with short packet transmissions.

Building upon the foundation of MTC-enabled IRS-aided networks in our earlier discussions,

we now introduce a system model incorporating URLLC services in an IRS-assisted network.

5.9 URLLC-enabled System Model and Problem Formula-

tion

We consider a downlink MISO multi-user URLLC-enabled IRS-assisted system, represented

in Fig. 5.6, which comprises an IRS with N elements, a BS equipped with M antennas, and

K users, each with a single antenna. The group of IRS elements, BS antennas, and users

are respectively denoted by the sets N = {1, ...,N}, M = {1, ...,M}, and K = {1, ...,K}.
Additionally, we suppose that Bk bits of information are assigned to user k . In this setup,

the BS transforms these information bits into a block code in time slot l , characterized by

a length of md symbols. We decode the k-th user block code as xk,l , with l being part of

the set L= {1,2, ...,md}. Following these assumptions, the transmission signal emanating
from the BS can be expressed as

s[l ] = ∑
k∈K

ωk,lxk,l ,∀l ∈ L, (5.70)

where ωk,l ∈CM×1 represents the beamforming vector for user k . The channel links exhibit
time invariance (slow fading). Additionally, we assume that the BS possesses full access to

the Channel State Information (CSI) and has comprehensive knowledge of all URLLC users’
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Figure 5.6: Illustration of a multi-user IRS-assisted MISO downlink network comprising one BS and

K URLLC users employing finite block length transmissions. h is the channel matrix between the

BS and the IRS, hIRS,1 denotes the channel response vector from the IRS to user 1, and hBS,1
indicates the channel between the BS and user 1.

delay requirements. As a result, our proposed algorithm is positioned as the theoretical

upper limit of performance when contrasted with strategies devised under the constraints of

partial or no CSI availability [83, 165, 174, 9]. The baseband equivalent channel responses

for BS-to-IRS, IRS-to-user k , and BS-to-user k are denoted as h ∈ CN×M , hIRS,k ∈ CN×1,
and hBS,k ∈ CM×1, respectively. Also, we define the matrix of reflection coefficients at the
IRS as Ψl = diag(α1,le

jφ1,l ,α2,le
jφ2,l , ...,αN,le

jφN,l ), where αn,l ∈ [0,1] and φn,l ∈ (0,2π],
∀n ∈N ,∀l ∈ L are the reflection amplitude and phase shift of the n-th reflection coefficient
at the IRS during time slot l , respectively. Now, by defining the combined channel link seen

by the k-th URLLC user as:

hHk ≜ h
H
IRS,kΨlh+h

H
BS,k, ∀k ∈ K,∀l ∈ L, (5.71)

the SINR of that user can be expressed as:

Γk,l =

∣∣hHk ωk,l ∣∣2
∑

i ̸=k,i∈K

∣∣hHk ωi ,l ∣∣2+σ2k ,∀k ∈ K,∀l ∈ L, (5.72)

where σ2k represents the noise variance received at user k . In the context of URLLC systems,

ensuring low-latency and high-reliability wireless communication requires finite and short

blocklength transmissions. Thus, an accurate estimate of the achievable data-rate for each

user can be delineated as follows [163]:

Rk(ωk,l ,Ψl) = Uk(ωk,l ,Ψl)−Vk(ωk,l ,Ψl), ∀k ∈ K, (5.73)

where

Uk(ωk,l ,Ψl) = ∑
l∈L
log2(1+Γk,l), ∀k ∈ K, (5.74)
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Vk(ωk,l ,Ψl) = ∑
l∈L

βk
√
∆k,l , ∀k ∈ K, (5.75)

βk =
Q−1(ϵk)√

md
, ∀k ∈ K. (5.76)

Here, ϵk refers to the decoding error probability, md , as defined earlier, is representative of

the blocklength, and ∆k,l the channel dispersion, computed as:

∆k,l = (log2 e)
2

(
1−

1

(1+Γk,l)
2

)
,∀k ∈ K,∀l ∈ L. (5.77)

To ensure users’ Quality of Service (QoS) regarding the received number of bits, the relia-

bility, and the latency, a minimum data-rate denoted by Rmin,k which should be satisfied for

each user as follows:

Rk(ωk,l ,Ψl)≥ Rmin,k , ∀k ∈ K. (5.78)

Next, we describe the EE as the ratio of the total system data-rate over the associated

network power consumption in [bits/Joule/Hz]:

ηef f (ωk,l ,Ψl) =

∑
k∈K
Rk(ωk,l ,Ψl)

∑
k∈K

∑
l∈L
∥ωk,l∥2+Ps+NPd +PBSc

, (5.79)

where Ps represents the static power consumption necessary for sustaining the basic circuit

operations of the IRS, while Pd is the dynamic power expended per reflecting component,

and Pc denotes the circuit power at the BS.

Following this, we begin by formulating a resource allocation problem to optimize energy

efficiency while accounting for feasibility constraints in a downlink MISO IRS-aided URLLC

system with short packet transmissions. Subsequently, we propose an iterative algorithm

to work out this optimization problem. Our objective is to maximize the total EE of the

system under consideration. We aim to achieve this by concurrently optimizing the active

beamformers at the BS and the phase shifts at the IRS. Consequently, the task of maximizing

the overall energy efficiency of the system can be mathematically articulated as follows:

P9 : max
ωk,l ,Ψl

ηef f (ωk,l ,Ψl)

s.t. :Rk(ωk,l ,Ψl)≥ Rmin,k ,∀k ∈ K, (5.80a)

|Ψnn,l |= 1, ∀n ∈N ,∀l ∈ L, (5.80b)

∑
l∈L

∑
k∈K
∥ωk,l∥2 ≤ pmax, (5.80c)

ωk,l = 0, ∀k ∈ K,∀l ≥ Tk , (5.80d)

where (5.80a) is the minimum data-rate requirement (Rmin,k) of each URLLC user k . The

constraint (5.80b) seeks that the diagonal phase shift matrix contains N unit-modulus el-

ements along its main diagonal. The constraint (5.80c) defines the limitation of the BS



5.10. PROPOSED SOLUTION: A NOVEL RANK RELAXATION METHOD 117

transmission power budget, with pmax signifying the maximum permissible BS transmission

power. The constraint (5.80d) is imposed to safeguard the real-time URLLC service func-

tionality, ensuring that user k receives service within the first Tk time slots to satisfy its

delay requirements.

Given the non-convex nature of the objective function and constraints, the optimization

problem P9 is non-convex and NP-hard. As a rule, finding an optimal solution for such

problems is typically non-trivial and out of the question. However, in the following section,

we employ a strategy to find an efficient polynomial time suboptimal solution.

5.10 Proposed Solution: A Novel Rank Relaxation Method

Problem P9 poses a significant challenge due to its non-convex nature and the strong cou-

pling of optimization variables. As such, there is a lack of a standard, well-structured

method to solve P9. In response to this, we propose an Alternating Optimization (AO)

approach based on Successive Convex Approximation (SCA) with reasonable computational

complexity aimed at securing a suboptimal solution. This AO approach involves two distinct

non-convex sub-problems. The first sub-problem focuses on determining the optimal active

beamformers at the BS, while the second sub-problem concentrates on optimizing the phase

shifts at the IRS. For the latter, we incorporate a modified objective function to eliminate

feasibility concerns. In more specific terms, we first optimize the beamforming vectors at

the BS and then design the phase shifts at the IRS alternatively, taking into account the

previously found beamforming vectors at the BS. Moving forward, we adopt the SCA tech-

nique to initially derive a lower bound for Rk(ωk,l ,Ψl), which will subsequently be utilized

when addressing each subproblem.

Lemma 2 Let (j) denote the subscript associated with the feasible solution procured in the

j-th iteration of the SCA algorithm. A lower bound approximation of Rk(ωk,l ,Ψl) is given

by:

Rk(ωk,l ,Ψl)≥ R̃k(ωk,l ,Ψl) = ∑
l∈L
R̃(j)k,l(ωk,l ,Ψl), (5.81)

R̃(j)k,l(ωk,l ,Ψl)≜−γk,lbk,l +2ρk,lℜ

{
∑

i ̸=k,i∈K
a
(j)
i ,k,la

H
i,k,l +σ

2
k

}

+2ℜ


a
(j)
k,k,la

H
k,k,l

b
(j)
k,l

(
b
(j)
k,l −

∣∣∣a(j)k,k,l ∣∣∣2)
+ξk,l ,

∀k ∈ K,∀l ∈ L, (5.82)
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where

ak,i ,l = h
H
k ωi ,l ,∀i , k ∈ K,∀l ∈ L, (5.83)

bk,l = ∑
i∈K

∣∣hHk ωi ,l ∣∣2+σ2k ,∀k ∈ K,∀l ∈ L, (5.84)

ρk,l =
βk (log2 e)

2

b
(j)
k,l

√(
Γ
(j)
k,l

)2
+2Γ

(j)
k,l

, ∀k ∈ K,∀l ∈ L, (5.85)

γk,l =

∣∣∣a(j)k,k,l ∣∣∣2
b
(j)
k,l

(
b
(j)
k,l −

∣∣∣a(j)k,k,l ∣∣∣2) +
ρk,l

(
b
(j)
k,l −

∣∣∣a(j)k,k,l ∣∣∣2)
b
(j)
k,l

,∀k ∈ K,∀l ∈ L, (5.86)

ξk,l = log2

(
1+Γ

(j)
k,l

)
−

∣∣∣a(j)k,k,l ∣∣∣2
b
(j)
k,l

(
b
(j)
k,l −

∣∣∣a(j)k,k,l ∣∣∣2)

−
βk

(
2∆
(j)
k,l +(log2 e)

2
)

2

√
∆
(j)
k,l

−
ρk,lb

(j)
k,l

2
(
1+Γ

(j)
k,l

) .∀k ∈ K,∀l ∈ L. (5.87)

In the (j +1)-th iteration, the data-rate function R̃k,l(ωk,l ,Ψl) exhibits concavity with

respect to each variable, reaching its boundary at the point (ω
(j)
k,l ,Ψ

(j)
l ).

Proof 4 According to the data-rate equation in (5.73), we can drive a lower bound on

Uk(ωk,l ,Ψl) and an upper bound on Vk(ωk,l ,Ψl). In order to approximate the non-convex

logistic function, we utilize the MM algorithm [207]. This is achieved by constructing a

surrogate function using a first-order Taylor approximation, which is expressed as follows:

Uk(a)≃ Uk(a(j))+∇aUk(a(j)).(a−a(j))≜ Ũk(a),∀k ∈ K, (5.88)

Vk(b)≃ Vk(b(j))+∇bVk(b(j)).(b−b(j))≜ Ṽk(b),∀k ∈ K, (5.89)

where a,b = {ωk,l ,Ψl} and j is the iteration number. Moreover, a(j) and b(j) denote the
solutions of the problem at (j)th iteration. Based on (5.83)-(5.87), we first rewrite the

SINR formula as follows:

Γk,l =
|ak,k,l |2

bk,l −|ak,k,l |2
,∀k ∈ K,∀l ∈ L. (5.90)

Equivalently, we can rewrite the channel dispersion as:

∆k,l = (log2 e)
2

1−(bk,l −|ak,k,l |2

bk,l

)2 ,∀k ∈ K,∀l ∈ L. (5.91)
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Subsequently, we have:

Uk(ωk,l ,Ψl) =−∑
l∈L
log2

(
1−
|ak,k,l |2

bk,l

)
= ∑
l∈L
Uk,l(ωk,l ,Ψl), ∀k ∈ K, (5.92)

Vk(ωk,l ,Ψl) = ∑
l∈L

βk
√
∆k,l

= ∑
l∈L
Vk,l(ωk,l ,Ψl), ∀k ∈ K. (5.93)

Thus, employing the MM technique allows us to derive the following lower limit for Uk,l(ωk,l ,Ψ):

Uk,l(ωk,l ,Ψ)≥−

∣∣∣a(j)k,k,l ∣∣∣2
b
(j)
k,l

(
b
(j)
k,l −

∣∣∣a(j)k,k,l ∣∣∣2)bk,l

+2ℜ

 a
(j)
k,k,la

H
k,k,l

b
(j)
k,l −

∣∣∣a(j)k,k,l ∣∣∣2
+ξUk,l ,∀k ∈ K,∀l ∈ L, (5.94)

where

ξUk,l = log2

(
1+Γ

(j)
k,l

)
−

∣∣∣a(j)k,k,l ∣∣∣2
b
(j)
k,l

(
b
(j)
k,l −

∣∣∣a(j)k,k,l ∣∣∣2) ,∀k ∈ K,∀l ∈ L. (5.95)

Similarly, we use the first-order Taylor approximation to derive the following upper limit for

Vk,l(ωk,l ,Ψ):

Vk,l(ωk,l ,Ψ)≤ βk
√
∆jk,l +

(log2 e)
2βk

2
√
∆jk,l

(
1−

1

(1+Γk,l)
2

)
,

∀k ∈ K,∀l ∈ L. (5.96)

Now, by defining Ξk,l ≜ 1/(1+Γk,l) and according to [3], we can rewrite:

1

(1+Γk,l)
2
= Ξ2k,l (5.97)

≥ 2Ξ(j)k,lΞk,l − (Ξ
(j)
k,l)
2 (5.98)

=
2(

1+Γ
(j)
k,l

)
(1+Γk,l)

−
1(

1+Γ
(j)
k,l

)2 ,∀k ∈ K,∀l ∈ L, (5.99)

where the inequality holds due to convexity of (Ξk,l)
2. The term 1/(1+Γk,l) in (5.99) is
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non-convex due to its fractional form. We rewrite this term as follows and then apply MM:

1

1+Γk,l
=

bk,l −|ak,k,l |2

bk,l
≥−

(
b
(j)
k,l −

∣∣a(j)k,k,l ∣∣2)bk,l∣∣b(j)k,l ∣∣2
+2ℜ


∑

i ̸=k,i∈K
a
(j)
i ,k,la

H
i,k,l +σ

2
k

b
(j)
k,l

 ,∀k ∈ K,∀l ∈ L, (5.100)

where the inequality holds due to the convexity with respect to the ai ,k,l and bk,l . Thus, we

arrive at an upper bound for as follows: Vk,l(ωk,l ,Ψ):

Vk,l(ωk,l ,Ψ)≤
(log2 e)

2βk√
(Γ
(j)
k,l)
2+2Γ

(j)
k,l


(
b
(j)
k,l −

∣∣a(j)k,k,l ∣∣2)bk,l∣∣b(j)k,l ∣∣2
−2ℜ


∑

i ̸=k,i∈K
a
(j)
i ,k,la

H
i,k,l +σ

2
k

b
(j)
k,l


+ξVk,l ,∀k ∈ K,∀l ∈ L,

(5.101)

where

ξVk,l =

(
2∆
(j)
k,l +(log2 e)

2
)
βk

2

√
∆
(j)
k,l

+
(log2 e)

2βk

2
(
1+Γ

(j)
k,l

)√(
Γ
(j)
k,l

)2
+2Γ

(j)
k,l

,∀k ∈ K,∀l ∈ L. (5.102)

Ultimately, the lower bound of the data-rate function in (5.73) can be approximated as:

R̃k(ωk,l ,Ψl)≜ ∑
l∈L

(
Uk,l(ωk,l ,Ψ)−Vk,l(ωk,l ,Ψ)

)
,∀k ∈ K. (5.103)

This completes the proof. ■

The lower bound presented is more manageable compared to the original data-rate function

R̃k(ωk,l ,Ψl) in (5.73). However, this bound still involves coupled optimization variables.

To address this, we implement the AO approach. Specifically, we optimize ωk,l and Ψl by

alternatively refining each variable while keeping the others constant.

5.10.1 Step One: Optimizing Ωk,l with Fixed Ψl

In this sub-problem, we presume that the passive reflecting elements at the IRS, i.e., Ψl

are fixed, and we proceed with designing the active beamformers, ωk,l , at the BS. By

employing the principles of Semi-Definite Programming (SDP), we derive the following:
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Ωk,l = ωk,lω
H
k,l ∈ SM+ and Hk = hkhHk ∈ SM+ , ∀k ∈ K. Leveraging on the aforementioned

SDP relaxation, we can rewrite the SINR in (5.72) as follows:

Γk,l =
Tr(hHk Ωk,l)

∑
i∈K,i ̸=k

Tr(hHk Ωi ,l)+σ
2
k

, ∀k ∈ K,∀l ∈ L, (5.104)

Consequently, the data-rate function defined in (5.73) can be reshaped as:

Rk(Ωk,l) = Uk(Ωk,l)−Vk(Ωk,l),∀k ∈ K. (5.105)

With the aid of the SDP transformations, the EE optimization problem P9 can be reformu-

lated as follows:

P10 : max
Ωk,l

ηef f (Ωk,l) (5.106a)

s.t. : Rk(Ωk,l)≥ Rmin,k ,∀k ∈ K, (5.106b)

Ωk,l ⪰ 0, ∀k ∈ K,∀l ∈ L, (5.106c)

rank(Ωk,l)≤ 1, ∀k ∈ K,∀l ∈ L, (5.106d)

∑
l∈L

∑
k∈K
Tr(Ωk,l)≤ pmax, (5.106e)

Tr(Ωk,l) = 0, ∀k ∈ K,∀l ≥ Tk . (5.106f)

It is important to note that the constraint (5.106b) in P10 does not exhibit concavity. To

circumvent this non-concavity, we employ the outcome from Lemma 2. A proposed surrogate

lower bound of Rk(Ωk,l) is introduced, where it is guaranteed that Rk(Ωk,l) ≥ R̃k(Ωk,l).

Hence, we can reexpress P10 as follows:

P11 : max
Ωk,l

η̃ef f (Ωk,l) =

∑
k∈K
R̃k(Ωk,l)

Etot(Ωk,l)
(5.107a)

s.t. : R̃k(Ωk,l)≥ Rmin,k , ∀k ∈ K, (5.107b)

Ωk,l ⪰ 0, ∀k ∈ K,∀l ∈ L, (5.107c)

rank(Ωk,l)≤ 1, ∀k ∈ K,∀l ∈ L, (5.107d)

∑
l∈L

∑
k∈K
Tr(Ωk,l)≤ pmax, (5.107e)

Tr(Ωk,l) = 0, ∀k ∈ K,∀l ≥ Tk , (5.107f)

where

Etot(Ωk,l) = ∑
l∈L

∑
k∈K
Tr(Ωk,l)+Ps+NPd +P

BS
c . (5.108)

The numerator of the objective function and constraint (5.107b) exhibit the form of convex-

concave functions, which introduces favorable properties to the optimization problem. Nev-
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ertheless, despite this advantageous characteristic, the overall problem remains non-convex

due to the presence of the non-convex rank-one constraint (5.106d) and the fractional ob-

jective function. As a result, resolving this optimization problem necessitates the application

of specialized techniques that can effectively address these non-convexities. Our forthcom-

ing focus firstly centers on resolving the non-convex rank-one constraint (5.106d), which

emerges within the context of our optimization problem. Fortunately, an innovative method

has been proposed in [208], specifically devised to address these types of rank constraints.

We hereby direct our attention to the ensuing proposition.

Proposition 3 Consider a nonzero positive semidefinite beamforming matrix, denoted as

Ωk,l ∈ SM+ , whereM represents the dimensionality of the matrix. We assert thatΩk,l is a rank

one matrix if and only if the inequality ϖk,l IM−1−℧TΩk,l℧⪰ 0 holds true, where ϖk,l = 0,

IM−1 denotes an identity matrix with dimension M−1, and ℧ ∈ RM×(M−1) corresponds to
the eigenvectors corresponding to the M−1 smallest eigenvalues of Ωk,l .

Proof 5 Assuming the nonnegative eigenvalues of Ωk,l are arranged in descending order

as [κM ;κM−1; ...;κ1], we can exploit the relationship between an eigenvector’s Rayleigh
quotient and its associated eigenvalue. Consequently, the matrix ϖk,l IM−1 −℧TΩk,l℧,
∀k ∈ K,∀l ∈ L, takes on the form of a diagonal matrix, with its diagonal elements set as
[ϖk,l −κM−1;ϖk,l −κM−2; ...;ϖk,l −κ1]. In light of this, we observe that Ωk,l possesses

M−1 smallest eigenvalues all being zero if and only if the conditionsϖk,l IM−1−℧TΩk,l℧⪰
0 and ϖk,l = 0, ∀k ∈ K,∀l ∈ L, are satisfied simultaneously. Consequently, Ωk,l qualifies as

a rank one matrix under these conditions [208]. ■

According to proposition 3, we can replace the rank constraint (5.107b) with a positive

semidefinite constraint:

ϖk,l IM−1−℧(q)
T

Ωk,l℧(q) ⪰ 0,∀k ∈ K,∀l ∈ L. (5.109)

Given the unavailability of ℧(q)
T
, we resort to the SCA method and employ the smallest

eigenvectors of Ωk,l . To achieve the goal of ultimately having ϖk,l = 0 while facilitating the

attainment of an initial feasible point, we introduce a penalty term for ϖk,l in the objective

function. Thus, at SCA iteration (q), the following convex problem is addressed:

P12 : max
Ωk,l ,ϖk,l

η̃ef f (Ωk,l)− ς(q) ∑
l∈L

∑
k∈K

ϖk,l (5.110a)

s.t. : R̃k(Ωk,l)≥ Rmin,k , ∀k ∈ K, (5.110b)

Ωk,l ⪰ 0, ∀k ∈ K,∀l ∈ L, (5.110c)

ϖk,l IM−1−℧(q)
T

Ωk,l℧(q) ⪰ 0,∀k ∈ K,∀l ∈ L, (5.110d)

∑
l∈L

∑
k∈K
Tr(Ωk,l)≤ pmax, (5.110e)

Tr(Ωk,l) = 0, ∀k ∈ K,∀l ≥ Tk , (5.110f)
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We emphasize that the penalty factor’s updates follow an interior iterative sub-algorithm

with the formula ς(q) =min(νς(q−1),ϑmax), where ν represents a positive coefficient factor,
and ϑmax denotes the maximum allowable penalty factor.

The objective function in P12 is a fractional function, rendering the optimization problem to

be still non-convex. To tackle this final issue, we adopt a strategy to handle fractional pro-

gramming problems. Specifically, we employ the widely recognized Dinkelbach method [209],

with (d) as its iteration, to address the fractional form of the optimization problem. Denot-

ing η̃∗ef f (Ωk,l) as the optimal energy efficiency point within the feasible solution set defined

by its constraints, we then transform the problem into a non-fractional optimization problem

for further resolution. Thus, the problem can be restated as follow:

P13 : max
Ωk,l ,ϖk,l

∑
k∈K
R̃k(Ω(d)k,l )−ϱ

(d)Etot(Ω(d)k,l )− ς
(d)

∑
l∈L

∑
k∈K

ϖk,l (5.111a)

s.t. : R̃k(Ωk,l)≥ Rmin,k , ∀k ∈ K, (5.111b)

Ωk,l ⪰ 0, ∀k ∈ K,∀l ∈ L, (5.111c)

ϖk,l IM−1−℧(q)
T

Ωk,l℧(q) ⪰ 0,∀k ∈ K,∀l ∈ L, (5.111d)

∑
l∈L

∑
k∈K
Tr(Ωk,l)≤ pmax, (5.111e)

Tr(Ωk,l) = 0, ∀k ∈ K,∀l ≥ Tk , (5.111f)

where

ϱ(d) =max
Ω
(d)
k,l

η̃
(d)
ef f (Ω

(d)
k,l ), (5.112)

and ς(d) is the new penalty factor update rules:

ς(d) =min(νς(d−1),ϑmax)×Etot(Ω(d)k,l ). (5.113)

Finally, the convexity of the objective function in P13 with respect to the active beamforming

variables can be demonstrated through a formal proof based on the following proposition.

Proposition 4 The optimal energy efficiency, denoted as η̃∗ef f (Ω
∗
k,l), serves as a means to

derive the resource allocation policy if and only if

max
Ωk,l

∑
k∈K
R̃k(Ω(d)k,l )−ϱ

(d)Etot(Ω(d)k,l − ς
(q)

∑
l∈L

∑
k∈K

ϖk,l =

∑
k∈K
R̃k(Ω∗k,l)−ϱ∗ Etot(Ω∗k,l)− ς(q) ∑

l∈L
∑
k∈K

ϖk,l = 0, (5.114)

for ∑k∈K R̃k(Ω∗k,l)≥ 0 and Etot(Ω∗k,l)≥ 0, where Ω∗k,l provides the optimal solution to P13.

Proof 6 Let’s denote ϱ∗ be the optimal solution, corresponding to the optimal resource
allocation policy Ω∗k,l of the objective function in P13, that is:

ϱ∗ =max
Ωk,l

∑
k∈K
R̃k(Ωk,l)

Etot(Ωk,l)
− ς(q) ∑

l∈L
∑
k∈K

ϖk,l (5.115)
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The optimal EE can then be calculated as follows:

ϱ∗ =

∑
k∈K
R̃∗k(Ω∗k,l)

E∗tot(Ω∗k,l)
− ς(q) ∑

l∈L
∑
k∈K

ϖk,l

≥
∑
k∈K
R̃k(Ωk,l)

E(d)tot (Ωk,l)
− ς(q) ∑

l∈L
∑
k∈K

ϖk,l . (5.116)

It becomes readily apparent that:

∑
k∈K
R̃k(Ωk,l)−ϱ∗Etot(Ωk,l)− ς(q) ∑

l∈L
∑
k∈K

ϖk,lEtot(Ωk,l)≤ 0, (5.117)

Thus, it can be inferred that:

∑
k∈K
R̃k(Ω∗k,l)−ϱ∗Etot(Ω∗k,l)− ς(q) ∑

l∈L
∑
k∈K

ϖk,lEtot(Ω∗k,l) = 0, (5.118)

Therefore, we have:

max
Ωk,l

∑
k∈K
R̃k(Ωk,l)−ϱ∗ Etot(Ωk,l)

− ς(q) ∑
l∈L

∑
k∈K

ϖk,lEtot(Ωk,l) = 0, (5.119)

and this can be attained through the resource allocation policy. Thus, this concludes the

proof. ■

The optimization problem P13 is now a convex problem and can be efficiently solved by

standard convex optimization solvers such as CVX [210]. Ultimately, we detail our proposed

algorithm in Algorithm 5.

5.10.2 Step Two: Optimizing Ψl

In the second sub-problem, equipped with the optimal active beamforming matrices ωk,l
from the preceding subproblem, we progress with the optimization of the passive reflecting

elements at the IRS, denoted by Ψl . Given that the semidefinite matrix ωk,l is provided,

the optimization problem in P9 shifts towards the maximization of the data-rate. The

major hurdle in optimizing the phase shifts at the IRS arises due to the constraint (5.80b).

Particularly, the constraint (5.80b) imposes a unit-modulus constraint, which presents a

significant challenge in the quest to solve the problem. As such, we start by defining e =

(e jφ1 , ...,e jφN )H ∈ CN×1 and ẽ = [eT ψ]T ∈ C(N+1)×1, where ψ ∈ C is a dummy variable
with |ψ| = 1. To aid in crafting the solution, we further define E = ẽẽH ∈ C(N+1)×(N+1).
Consequently, we derive the following:∣∣(hHIRS,kΨlh+h

H
BS,k)Ωk,l

∣∣2 ≜ Tr(EZkΩk,lZ
H
k )

= Tr(Ωk,lYk), ∀k ∈ K, (5.120)
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Algorithm 5 Iterative SCA-based Resource Allocation Algorithm for Energy Efficient Multi-

user IRS-Assisted URLLC Systems Based on a Novel Rank Relaxation Method

Input: Set d =0 for the Dinkelbach procedure, set the maximum number of iteration Dmax,

initialize the beamformer matrix Ωk,l =Ω0k,l , initialize ς
0, set ϑmax≫ 1, ν > 1, and set

the tolerance ε= 10−3.
1: repeat

2: Calculate R̃k(ωk,l ,Ψl) for a given Ψl .

3: Calculate the rank-one relaxation constraint in (5.109).

4: Solve P13 for ϱ
(d−1).

5: if
∣∣ ∑
k∈K
R̃k(Ω(d)k,l )−ϱ

(d−1)Etot(Ω(d)k,l )

−ς(d) ∑
l∈L

∑
k∈K

ϖk,l

∣∣≤ ε
6: return Ωk,l =Ω

(d)
k,l , ϱ

∗ = ϱ(d−1).

7: else ϱ(d) = η̃
(d)
ef f (Ω

(d)
k,l ), end if.

8: Update ς(d) =min(νς(d−1),ϑmax).
9: d ← d +1.

10: until d =Dmax.

11: return Ωk,l =Ω∗k,l .

where

Zk =
[(
diag

(
hHIRS,k

)
H
)T
h∗BS,k

]T
, ∀k ∈ K, (5.121)

Yk =Z
H
k EZk , ∀k ∈ K. (5.122)

In a manner akin to P11, we address the non-convex constraint (5.80a) and the objective

function. To achieve this, we employ Lemma 2 and subsequently rewrite the data-rate

function as:

R̃k(Ψl) = Uk(Ψl)−Vk(Ψl),∀k ∈ K. (5.123)

Now, we restate the optimization problem P9 as follows:

P14 : max
E,Ψl

∑
k∈K

R̃k(Ψl)

s.t. : R̃k(Ψl)≥ Rmin,k , ∀k ∈ K, (5.124a)

diag(Ψl) = 1N+1, ∀l ∈ L, (5.124b)

rank(E)≤ 1, (5.124c)

Ψl ⪰ 0, ∀l ∈ L, (5.124d)

E ⪰ 0. (5.124e)

Following a similar approach as in P14, and drawing on the insights from proposition 3, we

can substitute the rank constraint (5.124c) with a positive semidefinite constraint:

ζl IN −Υ(g)
T

ΨlΥ
(g) ⪰ 0,∀l ∈ L. (5.125)
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where Υ(g) is an N× (N+1) matrix at the (g)-th SCA iteration with its columns corre-
sponding to the smallest N eigenvectors of Ψl . Furthermore, to sustain a rank of one for

Ψl , equation (5.125) must hold true, assuming ζl = 0. Hence, by incorporating ζl as a

penalty term into the objective function of P14, we write the subsequent convex problem:

P15 : max
E,Ψl

∑
k∈K
R̃k(Ψl)−κ(g) ∑

l∈L
ζl (5.126a)

s.t. : R̃k(Ψl)≥ Rmin,k , ∀k ∈ K, (5.126b)

diag(Ψl) = 1N+1, ∀l ∈ L, (5.126c)

ζl IN −Υ(g)
T

ΨlΥ
(g) ⪰ 0, ∀l ∈ L (5.126d)

Ψl ⪰ 0, ∀l ∈ L, (5.126e)

E ⪰ 0. (5.126f)

where κ(g) is a sequences of increasing weights. The optimization problem P15 now can
be efficiently solved just as P13 [210]. The solution of these two sub-problems yields the

suboptimal solution of P9.

Proposition 5 The objective function of P9 is ensured to be monotonically non-decreasing

throughout the iterations of the proposed algorithm.

Proof 7 Let’s denote the objective functions of P9, P13, and P15 respectively as ℸP9 ,
ℸP13 , and ℸP15 . Also, in consideration of {Ωs

k,l ,Ψ
s
l } and {Ω

s−1
k,l ,Ψ

s−1
l } as the feasible

solutions of P9 in the s-th and (s−1)-th iterations respectively, we can establish the following
inequalities:

ℸP9(Ω
s
k,l ,Ψ

s
l ) = ℸP13(Ω

∗
k,l ,Ψ

s
l )

≥ ℸP13(Ψ
s−1
l ) = ℸP9(Ω

s
k,l ,Ψ

s−1
l ), (5.127)

ℸP9(Ω
s
k,l ,Ψ

s−1
l ) = ℸP15(Ω

s
k,l ,Ψ

∗
l )

≥ ℸP15(Ω
s−1
k,l ) = ℸP9(Ω

s−1
k,l ,Ψ

s
l ). (5.128)

By utilizing inequalities (5.127) and (5.128), we can guarantee the improvement in the value

of the objective function of P9 after every iteration. ■

Ultimately, the final iterative AO algorithm that solves subproblems is presented in Algorithm

6.
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Algorithm 6 Proposed Iterative AO algorithm Toward Energy Efficient Multi-user IRS-

Assisted URLLC Systems Based on a Novel Rank Relaxation Method

Input: Set s = 0, maximum number of iteration Smax, and initialize the beamformer matrix

and phase shifts as Ωk,l =Ω0k,l and Ψl =Ψ0l , respectively.

1: repeat

2: Solve problem P13 for given Ψ
s
l , and obtain the

optimal solution Ωs
k,l based on Algorithm 5.

3: Solve problem P15 for given Ω
s
k,l , and obtain the

optimal solution Ψs
l .

4: s ← s+1.

5: until s = Smax
6: return {Ω∗k,l ,Ψ∗l }= {Ωs

k,l ,Ψ
s
l }.

Table 5.2: Simulation Parameters for Multi-user IRS-Assisted URLLC Systems.

Parameter Value

Area dimensions (100,100) meters

AP location (0,0) meters

IRS location (50,0) meters

Path loss model 35.3+37.6log10(dk) dB

AO convergence tolerance 10−2

Thermal noise density −174 dBm/Hz
Decoding error probability, ϵk 10−7

Number of users, K 4

Number of AP antennas, M 5

Number of IRS elements, N 20

Minimum transmit power, pmax 30 dBm

Block code length, md 250 symbols

Threshold rate, Rkth 1.6 bits/Sec/Hz

5.11 Numerical Results for the URLLC-enabled IRS-assisted

Network

This section provides simulation results to investigate the efficiency of the proposed algo-

rithm in downlink MISO URLLC systems enabled IRS, utilizing finite blocklength codes.

A rectangular region with dimensions of (100,100) meters is considered. The BS is po-

sitioned at (0,0) meters; the IRS is located at (50,0) meters and all users are scattered

randomly within the boundaries of this rectangle region. The path loss model is expressed as

35.3+37.6log10(dk) [dBm], where dk refers to the distance in meters between the BS and

the k-th URLLC user. The convergence tolerance for the proposed AO algorithm, which is

based on rank relaxation, SCA, and the Dinkelback method, is set at 10−2. It is assumed that
the thermal noise density stands at −174 [dBm/Hz]. In addition, the maximum probability
of decoding error for URLLC user k , represented as ϵk , is set to be 10

−7. Furthermore, the
simulation parameters are configured with K = 4, M = 5, and Rmin,k = 1.6 [bits/Sec/Hz],

in accordance with the methodology outlined in references [8, 3]. All simulation parameters
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Figure 5.7: Impact of tolerable decoding error, ϵk , on the EE in an URLLC-enabled IRS-assisted

network.

are also summarized in Table 5.2.

Fig. 5.7 visualizes the relationship between mean EE and various maximum decoding error

probability thresholds, denoted by ϵk,max, while maintaining a constant block code length of

250 symbols (md = 250). The graph highlights a noticeable upward trajectory in EE as the

tolerance for decoding error widens. This enhancement in EE can be directly linked to the

inverse relationship between Q−1(ϵk) and ϵk , where an increased allowable decoding error
probability leads to a reduced rate loss Vk(ωk,l ,Ψl) as specified in (5.73). Consequently, this

dynamic facilitates the fulfillment of minimal data-rate requirements at lower transmission

powers, effectively boosting EE. Furthermore, the graph illustrates an incremental gain in

EE with an increase in the number of IRS’s reflecting elements, showcasing the significant

impact of IRS size on system efficiency.

In addition to showcasing these trends, the figure conducts a comparative analysis with

two foundational models for further context. The first baseline scheme adheres to a static

beamforming approach at the IRS, while the second baseline scheme operates under the

assumption of an IRS-free environment. The empirical evidence, as delineated in the figure,

unequivocally demonstrates the enhanced performance of our proposed approach over the

IRS-less baseline scheme 2. This enhanced efficacy is attributed to the strategic deployment

of IRS technology coupled with the synchronized optimization of both active and passive

beamforming matrices at the BS and IRS, respectively. When comparing against baseline

scheme 1, our method exhibits an improvement, thereby emphasizing the critical value of
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Figure 5.8: Impact of the blocklength, md , on the EE in an URLLC-enabled IRS-assisted network.

IRS integration and optimization within the system. This detailed comparison validates

the superiority of our proposed methodology and reinforces the role of the IRS in elevating

the EE of URLLC-enabled wireless communication systems, particularly under the stringent

constraints of short packet transmissions and variable decoding error probabilities.

Fig. 5.8 illustrates the impact of the blocklength size, denoted as md , on the achievable EE

at a constant ϵk = 10
−7. With an increase in md , the EE initially experiences a moderate

boost, followed by a slow elevation until it plateaus. In comparison to the scenario with an

IRS, the scenario without it consistently exhibits a lower EE, independent of the quantity

of reflecting elements. Smaller N values necessitate higher transmit power to meet QoS

standards, leading to a reduction in EE. This reduction arises from the amplified interference

in the data-rate function due to multi-user interference in the SINR function, resulting in an

increase in transmit power, a decrease in data-rate, and consequently a negatively pruned

EE.

Fig. 5.8 illustrates the impact of blocklength size, represented by md , on the EE of the

system, maintaining a consistent decoding error probability of ϵk = 10
−7. The figure shows

a relationship between md and EE: as md increases, there is a discernible, albeit moderate,

uplift in EE, which gradually ascends to a stable plateau. This pattern highlights the balance

between blocklength size and system efficiency, where longer blocklengths, up to a certain

threshold, contribute to enhancing EE.

The contrast between scenarios with and without the deployment of an IRS is starkly de-
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picted. Invariably, configurations lacking an IRS lag in EE performance across all tested

blocklengths, underscoring the IRS’s role in energy optimization. Notably, the presence

of fewer reflecting elements, denoted by smaller N values, compels the system to elevate

transmit power levels to adhere to Quality of Service (QoS) criteria, inadvertently impact-

ing EE negatively. This effect is primarily attributed to the escalated interference within

the data-rate function, a consequence of multi-user interference affecting the SINR, which

necessitates an upsurge in transmit power. Such an increase, while aimed at maintaining

service standards, paradoxically diminishes data-rate efficiency and, by extension, truncates

EE.

This phenomenon demonstrates a critical insight: the size of md and the strategic deploy-

ment of IRS elements play crucial roles in achieving optimal EE. Especially in multi-user

environments where interference is a significant concern, the IRS emerges as a vital tool for

mitigating adverse effects on EE. Through careful management of blocklength and leverag-

ing the benefits of IRS technology, URLLC systems can help overcome the complex interplay

between QoS demands and EE, optimizing performance across these metrics.

5.12 Conclusion

This chapter delved into the resource management problem within downlink multi-user con-

figurations, facilitated by Intelligent Reflecting Surfaces (IRS) for enhancing both Machine-

Type Communication (MTC) and Ultra-Reliable Low-Latency Communications (URLLC)

systems. Central to our investigation was the strategic design of resource allocation mecha-

nisms through active and passive beamforming, aimed at optimizing Energy Efficiency (EE)

across these network models.

In the first part of this chapter which was dedicated to MTC-enabled networks, our analysis

focused on achieving a dual objective: maximizing EE while also broadening user admittance,

framed within the context of a Multi-Objective Optimization Problem (MOOP). This ap-

proach was tailored to address the scalable nature of MTC networks, which are characterized

by their need for efficient connectivity across a multitude of devices.

Transitioning to URLLC systems, the complexity inherent in meeting URLLC standards

necessitated a more focused objective, concentrating solely on maximizing EE. This refine-

ment acknowledges the strict latency and reliability demands of URLLC applications, which

significantly influence the formulation and optimization of resource allocation strategies.

Both the MTC and URLLC models were designed with a keen emphasis on meeting the

diverse Quality of Service (QoS) requirements of different user types, incorporating the

challenges associated with short packet transmissions. Given the non-convex nature of the

primary problem, we employed the Alternating Optimization (AO) technique to decompose

the optimization problem into two distinct, more tractable sub-problems: optimizing the

active beamformers at the transmitter and adjusting the phase shifts at the IRS.

Further advancing our methodological approach, we introduced an innovative iterative semi-

definite and rank relaxation strategy, coupled with the Successive Convex Approximation

(SCA) technique and a penalty-based methodology, to effectively tackle each sub-problem.
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Through simulation studies, we evaluated the efficacy of our proposed relaxation algorithms,

highlighting the IRS’s capability to significantly enhance EE and enable both MTC and

URLLC systems to meet, and in many cases exceed, the set QoS standards—thereby out-

performing existing conventional strategies.

The insights gained from our research illuminate the potential of IRS technology not just

as an adjunct to existing networks but as an evolutionary mechanism that can significantly

elevate system performance. These findings lay a robust foundation for future explorations

into rank-constrained resource allocation strategies within IRS-aided systems. As we look

ahead, the groundwork established here opens avenues for further investigations into the

deployment of IRS technology, aiming to refine and extend the applicability of resource

management techniques in the era of intelligent wireless communications.
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Chapter 6666666666666666666666666666666666666666666666666666666666666666666666666
Joint Offloading and Resource

Allocation in Uplink MEC-IRS Networks

IN this chapter, we delve into the utilization of a Mobile Edge Computing (MEC) serverplaced at an Access Point (AP) side (or 5G Node B (gNB) side) to meet the stringent

demands of delay sensitivity and reliability in multiuser Machine Type Communication (MTC)

scenarios. The strategy involves offloading computational tasks to the MEC server in order

to significantly reduce the latency for low-power IoT devices. Intelligent reflecting surfaces

(IRSs) are employed to support the offloading process. These IRSs play a crucial role

in enhancing the robustness of offloading, improving spectrum efficiency, and broadening

network coverage. They achieve this by altering the propagation of incident radio-frequency

waves through the adjustment of phase shifts using passive reflecting components.

This chapter represents a pivotal shift in focus from previous discussions, which were predom-

inantly centered around downlink scenarios, to an in-depth exploration of uplink dynamics

within the realm of MEC and multiuser MTC. Specifically, it highlights the strategic em-

ployment of a MEC server at an AP to tackle the critical challenges of delay sensitivity

and reliability that are paramount in multiuser MTC environments. By offloading computa-

tional tasks in the uplink to the MEC server, the approach significantly alleviates latency for

low-power IoT devices, thus optimizing the network’s performance.

Consequently, our investigation zeroes in on the optimization of joint radio resource allo-

cation and edge offloading decisions in a multiuser IRS-aided MEC network. This network

is characterized by a multi-antenna AP that receives information symbols from a collection

of Internet of Things (IoT) users, with these users transmitting short packets. Specifically,

our objective is to minimize the overall power consumption of the system by formulating it

as an optimization problem, taking into account various constraints. These include ensur-

ing the Quality of Service (QoS) for MTC-enabled IoT users, adherence to transmit power

feasibility, limitations on capacity, and restrictions related to IRS phase shifts.

The challenge lies in the non-convex nature of the problem we have formulated, which

complicates the task of finding an effective solution. In response to this, we introduce a

novel, efficient iterative algorithm. This algorithm leverages Successive Convex Approxi-

mation (SCA) techniques, combined with a penalty-based method to manage unit-modulus

constraints that arise due to the passive reflecting elements present at the IRS. Through sim-

133
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ulation, we demonstrate the enhanced efficiency and performance of our proposed algorithm

when compared to other existing baseline methodologies. This proves the IRS’s potential

in substantially improving the efficiency and reliability of edge computing in multiuser MTC

environments.

This chapter is based on :

J. Jalali, A. Khalili, R. Berkvens and J. Famaey, “Joint Offloading Policy and Resource

Allocation in IRS-aided MEC for IoT Users with Short Packet Transmission”, in 2023

IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, Hong Kong,

Oct. 2023, pp. 1–7. https://doi.org/10.1109/VTC2023-Fall60731.2023.10333867

https://doi.org/10.1109/VTC2023-Fall60731.2023.10333867
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6.1 Introduction

IN THE landscape of modern technological advancements, the proliferation of Internetof Things (MTC) applications has been remarkable, propelling the need for support-

ing an array of computation-heavy and latency-critical applications. Among these are

cutting-edge domains such as autonomous driving, Augmented Reality (AR), Virtual Re-

ality (VR), and Unmanned Aerial Vehicles (UAVs), which are cited extensively in the litera-

ture [211, 212, 213]. These innovative applications are designed to facilitate instantaneous

interactions, whether between humans and machines or among machines themselves, thereby

underpinning the essence of Machine Type Communication (MTC). As we stand on the cusp

of the 6th-Generation (6G) of wireless networks, there is a pressing need to ensure these

networks are robustly equipped to support a myriad of IoT devices, enabling them to perform

real-time computations, communications, and control tasks seamlessly.

However, IoT devices often face significant constraints due to their inherent design consid-

erations, which prioritize cost-effectiveness and compactness. These constraints typically

manifest as limited battery life and less powerful processors. Thus, one of the paramount

challenges for forthcoming IoT networks is enhancing the computational capabilities of these

devices. Such an enhancement is crucial for them to efficiently manage heavy computational

loads while adhering to stringent latency requirements [214]. While cloud computing has

been a traditional recourse, offering abundant computational resources, it often falls short

by introducing considerable computational latency. This latency is primarily attributed to

the physical remoteness of cloud servers from the devices [215].

In response to these challenges, especially for mission-critical and time-sensitive applications

spanning healthcare, autonomous driving, and tactical internet operations, Ultra-Reliable

and Low-Latency Communication (URLLC) has emerged as a beacon of hope. URLLC is

a specialized MTC service category tailored to meet the demanding reliability and latency

specifications envisioned for future 6G networks [216]. It is distinguished by its capacity to

achieve exceptionally low decoding error rates, below 10−5, and to meet latency requirements
as stringent as 1 ms. Nevertheless, it is important to acknowledge that the conventional

Shannon capacity formula may not be entirely adequate for characterizing the performance

within the URLLC-driven, short packet communication regime of IoT systems [3]. This

recognition paves the way for exploring novel approaches and solutions to fulfill the ambi-

tious goals set forth for 6G networks, ensuring they are capable of supporting the dynamic

landscape of IoT applications with their evolving demands.

To address the challenges posed by computational latency within the IoT networks, mobile

edge computing (MEC) emerges as a robust solution, offering a strategic alternative to

alleviate network congestion and significantly reduce latency when compared to traditional

cloud computing solutions [217]. This innovative approach involves the strategic placement

of computing servers at the network’s edge, such as within cellular Base Stations (BSs),

gNBs, or WiFi Access Points (APs). By doing so, MEC facilitates the immediate offloading

of both data and computational tasks directly from IoT devices to the nearest MEC server.

This not only facilitates the data processing workflow but also enhances the quality of

experience for end-users by minimizing delays and optimizing data throughput [218].

In the realm of MEC, the nature of tasks to be offloaded can vary widely, necessitating a
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classification system based on their specific dependencies and the possibility of partitioning.

This differentiation gives rise to two primary offloading paradigms: partial offloading and

binary offloading. Each paradigm requires a delicate approach to optimize the allocation

of computational and communication resources. The ultimate goals of these optimizations

include minimizing energy consumption [219], reducing computation latency [220, 221],

maximizing computation throughput [222], and boosting the overall energy efficiency of

the system [223]. However, the effectiveness of these offloading strategies [219, 220, 221,

222, 223] can be adversely affected by wireless channel attenuation that occurs during

data transmission between APs and IoT devices, potentially hampering the efficiency of the

offloading process [224].

To overcome this challenge and ensure optimal offloading efficacy, the deployment of mas-

sive Multiple-Input Multiple-Output (m-MIMO) technology stands out as an enhancement

strategy within MEC systems. m-MIMO technology amplifies the signal strength and im-

proves the reliability of wireless connections, thus ensuring that the data offloading from

IoT devices to MEC servers is not only feasible but performed with the highest efficiency.

By employing m-MIMO, the system can counteract the detrimental effects of wireless chan-

nel attenuation, ensuring that the computational tasks are offloaded and processed with

minimal latency and maximum reliability [225]. This technological synergy between MEC

and m-MIMO paves the way for a new era of IoT network operations, where computational

latency is significantly reduced, and the network’s capacity to handle increasingly complex

and latency-sensitive applications is greatly enhanced.

While the integration of m-MIMO technology into MEC systems significantly enhances

offloading efficiency, it is accompanied by notable challenges, including increased energy

consumption and the financial burden associated with sophisticated hardware requirements.

In response to these challenges, the concept of Intelligent Reflecting Surfaces (IRSs) emerges

as a groundbreaking and cost-effective approach to amplify spectral and energy efficiency

across forthcoming mobile network generations [226].

An IRS is characterized by its innovative digitally-controlled meta-surface, which is comprised

of a controller and numerous low-cost passive reflecting elements. These elements are dis-

tinctive because they operate without the need for any Radio-Frequency (RF) chains, thereby

sidestepping the energy and cost implications associated with traditional active elements.

Through precise manipulation of the phase shifts of each element under the guidance of the

IRS controller, it is possible to dynamically modify the wireless propagation environment.

This capability enables a range of beneficial outcomes, such as enhanced signal strength or

diminished interference, customized to specific network requirements [8, 10, 3].

Furthermore, IRS technology significantly upholds task offloading efficiency within MEC

networks by leveraging substantial passive beamforming gains. By optimally positioning

IRSs in proximity to IoT devices, it is feasible to counteract the severe signal attenuation

that often occurs due to distance challenges or Non-Line-of-Sight (NLoS) conditions. Such

strategic deployment not only extends the effective service range of MEC systems but also

ensures a more reliable and efficient communication link between IoT devices and MEC

servers. This enhancement is pivotal for realizing the ambitious goal of equipping future IoT

networks with superior computational capabilities, enabling them to support a plethora of

advanced, real-time applications [227].



6.1. INTRODUCTION 137

Fundamentally, IRS technology represents a paradigm shift in how wireless networks can opti-

mize environmental interactions to improve performance metrics. By harmonizing with MEC

architectures, IRSs unlock new possibilities for achieving unparalleled efficiency and cover-

age, thus setting a new benchmark for the deployment of high-performance, energy-efficient

IoT networks specialized for the demands of the next-generation wireless communication.

In this chapter, our focus is on the joint uplink resource allocation design for IRS-assisted

URLLC MEC systems operating with finite block-lengths. The essence of our study is

captured through several key contributions, which are elaborated as follows:

• Our first major contribution involves a thorough examination of the ‘joint’ radio re-
source allocation and edge offloading decision-making process within an IRS-enhanced

MEC network. This network architecture features a multi-antenna AP tasked with

receiving information symbols from a set of MTC-enabled IoT users with finite block-

length transmission. Central to our approach is the development of a sophisticated

resource allocation algorithm. This algorithm is crafted to minimize the overall system

power consumption, adhering to strict constraints related to peak transmit power and

QoS requirements while taking interference into account

• The complexity of the problem is further underscored by its non-convex and Mixed Inte-
ger Non-Linear Programming (MINLP) nature, presenting a challenge to conventional

solution strategies. To navigate these complexities, we adopt a two-step methodolog-

ical approach. Firstly, we utilize Successive Convex Approximation (SCA) techniques

to iteratively approach the problem’s solution. Secondly, we integrate a penalty-based

framework specifically designed to address the unique unit-modulus constraints asso-

ciated with the passive reflecting elements of the IRS. This innovative combination of

strategies enables us to obtain a suboptimal solution that closely aligns with the ideal

objectives of the system.

• Our investigation concludes with a series of simulation studies designed to validate the
theoretical models and proposed solution strategies. These simulations vividly illus-

trate the transformative potential of integrating IRS technology within MEC-assisted

URLLC frameworks. The results unambiguously demonstrate that the strategic de-

ployment of IRS, in tandem with multi-antenna APs, is a potent enabler of both low

latency and high reliability. This is a significant milestone, heralding a new era of

performance capabilities for URLLC systems in the context of edge computing.

This chapter is organized as follows: Section 6.2 introduces the system and channel models.

Section 6.3 formulates the proposed resource allocation problem. The resource allocation

algorithm design policy is presented in Section 6.4. Section 6.5 evaluates the performance of

the proposed schemes using computer simulations, and conclusions are drawn in Section 6.6.

Notations: We use the following notations in this chapter. Matrices are represented by

capital boldface letters, vectors and scalars by small boldface and small normal face letters,

respectively. I denotes an identity matrix, and Cx×y represents a x × y complex-valued
matrix. The superscript (·)H denotes the conjugate transpose of a matrix, and (·)T denotes
the transpose of a matrix. The notations E[·], tr(·), and diag(·) are used to denote statistical
expectation, trace, and diagonalization operator, respectively. ∇f (·) represents the gradient
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of the function f (·), and ∂f (a)∂g is the first derivative of f with respect to g evaluated at g= a.

|x| denotes the 2-norm of vector x. The notation CN (µ,Σ) represents the distribution of a
circularly symmetric complex Gaussian (CSCG) random vector with mean µ and covariance

matrix Σ, where ∼ indicates “with the distribution of.”

6.2 System Model for a MEC-enabled Uplink IRS Network

This section presents the system and channel models in the IRS-assisted Orthogonal Fre-

quency Division Multiple Access (OFDMA) MEC system for IoT users with short packet

lengths. In particular, we consider a single-cell multi-user uplink communication that com-

prises an AP associated with a MEC server, equipped with NAP antennas Fig. 6.1. The

primary function of this AP is to facilitate edge computing services by capturing uplink

transmissions from K single-antenna URLLC users. These users are denoted by the index

k and collectively form the set K = {1, . . . ,K}. The transmissions from these users to the
AP can be direct or mediated through an IRS. The IRS itself is comprised of M passive

reflecting elements, each characterized by specific phase shifts and amplitudes.

To quantitatively describe the operational dynamics of the IRS, we introduceΦ=diag(β1e
jα1 ,

β2e
jα2 , . . . ,βMe

jαM ) as the matrix of reflection coefficients. In this representation, βm ∈
[0,1] and αm ∈ (0,2π], for each m ∈ {1, ...,M}, signify the reflection amplitude and phase
shift of the m-th reflective element at the IRS, respectively1.

The system’s bandwidth is partitioned into N orthogonal sub-carriers, each identified by the

index set N = {1, . . . ,N}. The bandwidth allocated to each sub-carrier is denoted by Bs ,
which in turn defines the symbol duration Ts =

1
Bs
. In terms of temporal structure, the

uplink frame is segmented into L time slots, enumerated by the set L = {1,2, ...,L}. For
analytical rigor, we assume the availability of perfect channel state information (CSI) of the

entire system at the AP, serving as a theoretical performance benchmark.

The system is designed with a keen awareness of the delay requirements for all users, with

the AP being privy to this critical information. This ensures that only users whose delay

requirements are potentially feasible within the current resource block are considered for

system admission. Furthermore, each user is associated with a computational task, denoted

by (Bk ,Dk), where Bk represents the task size in bits, and Dk specifies the computation time

in time slots, also referred to as the service delay. This comprehensive modeling framework

lays the foundation for optimizing the performance of IRS-assisted OFDMA MEC systems,

ensuring the seamless provision of edge computing services to IoT users with strict latency

requirements.

6.2.1 Signal and Channel Models

In an uplink scenario, each IoT user independently sends its own signal to the network’s AP.

The signal that arrives at the AP within time slot l on subcarrier n is characterized by the

1Notably, for the sake of maximizing reflection efficiency, it is generally assumed that the amplitudes of

all passive elements are set to one, i.e., βm = 1, for all m, as proposed by Basar et al. [160].
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Figure 6.1: Multi-user IRS-assisted URLLC MEC system with one AP, and K IoT users with finite

block-length transmission. The single-antenna MTC-enabled IoT users offload their tasks in the

uplink to an MEC, directly or via IRS, using a single multi-antenna AP with an edge server.

equation:

y[l ,n] =
K

∑
k=1

√
pk [l ,n](F[n]Φhk [n]+gk [n])uk [l ,n]+z[l ,n], ∀l ∈ L,∀n ∈N , (6.1)

where hk [n]∈CM×1 and gk [n]∈CNAP×1 are the IRS-user and AP-user channel vectors of the
k-th user. Also, F[n] ∈ CNAP×M , Φ ∈ CM×M , uk [l ,n] ∈ C, and pk [l ,n] are AP-IRS channel
matrix, phase shift matrix of the IRS, transmit symbol of user k on subcarrier n in time

slot l , and the power of user k on subcarrier n and time slot l , respectively. Furthermore,

z[l ,n] ∈ CNAP×1 is the received noise vector at the AP with CN (0,σ2INAP), and we assume
E{|uk [l ,n]|2}= 1, ∀k, l ,n. The received signal vector on n-th subcarrier via adopting receive
beamforming is given by:

ũ[l ,n] = VH[l ,n]y[l ,n], ∀l ∈ L,∀n ∈N , (6.2)

where V[l ,n]∈CNAP×K is a matrix whose k-th columns are given by [wk [n]]∈CNAP×1,∀k,n.
As a result, the signal-to-interference plus noise ratio (SINR) of user k on subcarrier l can

be expressed as:

γk [l ,n] =

∥∥wHk [n]h̄k [n])∥∥2 pk [l ,n]
∑
K
j ̸=k
∥∥wHk [n]h̄j [n])∥∥2 pj [l ,n]+ σ̃2 , ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.3)

where

h̄k [n] = F[n]Φhk [n]+gk [n], ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.4)

σ̃2 = σ2
∥∥wHk [l ,n]∥∥2 , ∀k ∈ K,∀l ∈ L. (6.5)
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6.2.2 Achievable Rate with Short Packet Transmission

Utilizing the SINR values calculated for each IoT user, we can now analyze the computation

of achievable data rates, which is essential in the context of MTC-enabled systems where

low-latency communication is of significant importance. The constraints of such systems

inherently involve the necessity for finite and short blocklengths in transmissions, diverging

from traditional models that assume infinite blocklengths where Shannon’s capacity formula

would apply directly. Given these conditions, the achievable rate for each user, considering

the finite blocklength regime, can be expressed through an accurate approximation as follows:

Rk(pk ,Φ,xk) = F (pk ,Φ,xk)−G(pk ,Φ,xk), ∀k ∈ K, (6.6)

where

Fk(pk ,Φ,xk) =
L

∑
l=1

N

∑
n=1

log2 (1+ xk [l ,n]γk [l ,n]) , ∀k ∈ K, (6.7)

Gk(pk ,Φ,xk) =Q
−1(ϵk)

√√√√ L

∑
l=1

N

∑
n=1

xk [l ,n]Vk [l ,n], ∀k ∈ K. (6.8)

When formulating an optimization problem for resource allocation in IoT networks, partic-

ularly those utilizing MEC and IRS, the role of subcarrier assignment indicators becomes

crucial. These indicators, denoted by xk [l ,n] in (6.7) and (6.8), play a pivotal role in de-

termining the allocation of subcarrier n in time slot l to user k . To elaborate, if subcarrier

n during time slot l is assigned to user k , then xk [l ,n] = 1; otherwise, it is set to 0. This

binary representation forms the foundation of the subcarrier allocation mechanism within the

network, ensuring that each subcarrier’s assignment is explicitly defined. For comprehensive

optimization, the power allocation pk [l ,n] optimization variables for each user k , across all

time slots l and subcarriers n, are aggregated into a vector pk . Similarly, the subcarrier

assignment indicators are collected into a vector xk , thereby facilitating a structured ap-

proach to resource management within the network. This vectorized representation not only

simplifies the mathematical treatment of the optimization problem but also enhances the

clarity of the computational model being employed.

Additionally, within the context of communication reliability, decoding error rates are sym-

bolized by ϵk , reflecting the probability of erroneous interpretation of the transmitted data

for user k . Moreover, the concept of channel dispersion, denoted as Vk [l ,n], quantifies the

variability of the channel capacity around its mean, especially in scenarios involving short

packet transmissions. The mathematical expression for channel dispersion incorporates the

inverse of the Gaussian Q-function, Q−1(·), a statistical tool used for mapping the relation-
ship between the error probability and the channel’s SINR. The channel dispersion Vk [l ,n] is

calculated as:

Vk [l ,n] = a
2
(
1− (1+γk [l ,n])−2

)
, ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.9)

where a= log2(e). To meet the user’s delay requirements, all symbols of user k are assigned

to the first Dk time slots.
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6.2.3 Offloading decision

In this section, we study the decision-making process regarding ‘task offloading’ in IoT

networks, particularly those incorporating mobile edge computing MEC and IRS. A new

aspect of our discussion revolves around the introduction and examination of the binary

decision variable sk , which plays an essential role in determining the offloading strategy for

each IoT user. This variable serves as an indicator for the edge offloading decision for each

IoT user. Specifically, when sk = 1, it means that user k opts to offload its computational

tasks to the edge server; conversely, a value of 0 indicates a preference for local processing.

The QoS for each IoT user k , is a concern, especially with regard to service delay Dk .

To ensure adherence to QoS standards, Dk must not surpass an established acceptable

maximum threshold, Tmax, within any given time slot. It is assumed for the purposes of

this model that the data processing duration is short and that the response time delay is

negligible, thereby facilitating a seamless user experience.

When the decision is made to process data locally, the computation’s energy demands are

predominantly governed by the Central Processing Unit (CPU)’s power consumption. This

consumption is complex, encompassing dynamic power, short circuit power, and leakage

power, as detailed in the research findings presented in [228]. Further studies have demon-

strated that the CPU’s power consumption at optimal operating frequency correlates directly

with (BkDk
)c, with c representing the power scaling factor [229]. This relationship forms the

basis of the proposed model to estimate local execution power consumption: Therefore, we

adopt the following model to estimate the power consumption of local execution:

E lock = (1− sk)ß̂
(Bk)

c

(Dk)c
, ∀k ∈ K, (6.10)

where ß̂ is a constant value that depends on the application parameter. On the other hand,

IoT users have the option and flexibility to offload their data processing tasks to the edge

server via the uplink, should the need arise. Therefore, the power required for IoT user’s

offloading transmission data to the edge server can be stated as follows:

Eoflk = ∑
l∈L

∑
n∈N

skxk [l ,n]pk [l ,n]+ skpcir , ∀k ∈ K. (6.11)

where pcir is the constant circuit power consumption during transmission. Consequently,

the total power consumption of the system in the uplink is represented by the sum of local

and offloading power consumption, given by:

E total = ∑
k∈K

(
Eoflk +E lock

)
. (6.12)

This comprehensive analysis not only describes the power consumption dynamics associated

with edge offloading and local processing decisions but also emphasizes the importance

of such decisions in optimizing the performance and sustainability of IoT networks. In the

following section, we will focus on developing strategies to minimize this power consumption,

thereby enhancing the efficiency of these networks.
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6.3 Problem Formulation

In this section, we aim to construct a joint optimization framework that addresses both

resource allocation and offloading decisions within IoT networks that benefit from the ad-

vancements of MEC and IRS. The main objective is to minimize the overall power con-

sumption while simultaneously ensuring that the QoS requirements of MTC-enabled IoT

users with short packet length transmission are met. This optimization ambitiously seeks

to balance the uplink transmit power, adjust the IRS’s phase shifts, and smartly allocate

subcarriers, alongside making informed decisions about data offloading. The formulation of

this optimization problem is precisely presented as follows:

P1 : min
p,Φ,s,x

E total (6.13a)

s.t. : Dk ≤ skTmax, ∀k ∈ K,∀l ∈ L, (6.13b)

L

∑
l=1

N

∑
n=1

xk [l ,n]pk [l ,n]≤ skpk,max, ∀k ∈ K, (6.13c)

|Φm,m|= 1, ∀m ∈M, (6.13d)

0≤ αm < 2π, ∀m ∈M, (6.13e)

K

∑
k=1

xk [l ,n]≤ 1, ∀k ∈ K,∀l ∈ L, (6.13f)

sk ∈ {0,1}, ∀k ∈ K,∀l ∈ L, (6.13g)

xk [l ,n] ∈ {0,1}, ∀k ∈ K,∀l ∈ L,∀n ∈N . (6.13h)

In this formulation, the sets of variables p, x, s, and Φ embody a comprehensive collection

of optimization parameters, crucial for fine-tuning system performance. These variables

are utilized to optimize the system performance and make decisions related to power allo-

cation, subcarrier assignment, offloading decisions, and phase shifts of the IRS elements,

respectively.

In P1, the constraint (6.13b) is imperative for ensuring that the service delay experienced by
each user upon offloading computational tasks does not exceed a predetermined maximum

threshold, denoted by Tmax. The condition (6.13c) effectively restricts each user’s transmit

power to a specified maximum limit, pmax, ensuring energy-efficient operation. The con-

straint (6.13d) imposes the unit modulus constraint on the IRS elements, while constraint

(6.13e) restricts that each reflecting element can be adjusted according to its phase. Ad-

ditionally, (6.13f) mandates that each subcarrier is exclusively assigned to a single user to

avoid interference. Lastly, the constraints (6.13g) and (6.13h) represent the binary nature

of the subcarrier assignment and offloading decision variables.

The problem P1 is a challenging non-convex Mixed Integer Non-Linear Problem (MINLP)
with interdependent optimization variables, non-convex phase shift constraints, and binary

variables. Solving such non-convex optimization problems optimally is a complex task. How-

ever, we propose an efficient solution using the SCA method and a penalty-based approach
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to tackle the unit-modulus constraints because of passive reflecting elements at the IRS,

which offers a sub-optimal yet computationally efficient approach.

6.4 Solution of the Optimization Problem

In addressing the solution to the optimization problem outlined in P1, our approach initiates
with a strategic simplification of the delay threshold constraint, denoted by (6.13b). This

initial step converts the constraint into a format that eases mathematical manipulation and

subsequent analysis. Such a transformation is not only methodical but essential, as it lays

the groundwork for a more linear and manageable exploration of the problem and solution

space.

Given that the achievable data rate for each user k within the network is intricately linked

to two pivotal factors — the size of the transmitted bitstream and the experienced delay —

it becomes imperative to precisely define the relationship between these elements and the

user’s data rate. To this end, we derive an expression that correlates the aforementioned

parameters with the achievable data rate, thereby facilitating a direct connection to the

user’s operational parameters as captured in the following equation derived from (6.6):

Rk(pk ,Φ,xk) =
Bk
Dk

, ∀k ∈ K. (6.14)

To continue the solution process for the optimization problem initially presented as P1, we
propose an alternative formulation, denoted as P2. This reformulation contains a revised
constraint that is more amenable to analytical treatment, thus facilitating a more efficient

resolution pathway. Accordingly, reformulated problem can be given as follows:

P2 : min
p,Φ,s,x

E total (6.15a)

s.t. : Rk(pk ,Φ,xk)≥ skBk , ∀k ∈ K, (6.15b)

L

∑
l=1

N

∑
n=1

xk [l ,n]pk [l ,n]≤ skpk,max, ∀k ∈ K, (6.15c)

|Φm,m|= 1, ∀m ∈M, (6.15d)

0≤ αm < 2π, ∀m ∈M, (6.15e)

K

∑
k=1

xk [l ,n]≤ 1, ∀k ∈ K,∀l ∈ L, (6.15f)

sk ∈ {0,1}, ∀k ∈ K,∀l ∈ L, (6.15g)

xk [l ,n] ∈ {0,1}, ∀k ∈ K,∀l ∈ L,∀n ∈N . (6.15h)

In this redefined context, the transformed constraint (6.15b) ensures that the offloading

traffic for each user k satisfies a minimum data transmission requirement of Bk bits. This
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adjustment is critical for maintaining the integrity of QoS standards across the network,

particularly in scenarios where offloading is deemed beneficial or necessary.

Secondly, addressing the complexities associated with binary variable interactions, notably

the multiplication of two binary variables in P2, necessitates a strategic simplification. To
this end, we impose a maximum value constraint on xk [l ,n] by setting xk [l ,n] ≤ sk . This
maneuver effectively reduces the complexity of terms involving the product of sk and xk [l ,n],

thereby simplifying the complexity.

With these modifications, P2 emerges as a refined optimization problem that retains the core
objectives of minimizing total power consumption and adhering to QoS prerequisites, yet

is framed in a manner that enhances tractability and solution feasibility. This restructured

approach paves the way for deploying sophisticated analytical techniques, such as SCA, to

navigate the challenges inherent in solving non-convex MINLPs, thereby inching closer to

identifying a viable and efficient solution. Thus, the optimization problem stated in equation

P2 can be reformulated as follows:

P3 : min
p,Φ,s,x

Ē total = ∑
k∈K

(
Ēoflk +E lock

)
(6.16a)

s.t. :
L

∑
l=1

N

∑
n=1

pk [l ,n]≤ pk,max, ∀k ∈ K, (6.16b)

L

∑
l=1

pk [l ,n]≤ skpk,max, ∀k ∈ K,∀n ∈N , (6.16c)

xk [l ,n]≤ sk , ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.16d)

(6.13c)− (6.13h),(6.15b),

where

Ēoflk = ∑
l∈L

∑
n∈N

xk [l ,n]pk [l ,n]+ skpcir , ∀k ∈ K.

To effectively address the inherent non-convexity arising from the multiplication of xk [l ,n]

and pk [l ,n], a key step in our optimization strategy involves introducing a new variable,

p̃k [l ,n] = xk [l ,n]pk [l ,n]. This innovative approach is beneficial in handling of the product

term, thereby simplifying the complexity of the optimization problem. Utilizing the well-

established big-M method [129], which is a common technique for linearizing product terms

involving binary variables in optimization problems, we incorporate additional constraints

into our revised problem P3. These new constraints effectively linearize the non-convex
term, thereby rendering the optimization problem more tractable (getting even closer to the

solution but not quite there). The modified optimization problem, inclusive of these new

constraints, is presented as follows:
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P4 : min
p,p̃,Φ,s,x

Ẽ total = ∑
k∈K

(
Ẽoflk +E lock

)
(6.17a)

s.t. : R̃k(pk , p̃k ,Φ,xk)≥ skBk , ∀k ∈ K, (6.17b)

L

∑
l=1

N

∑
n=1

p̃k [l ,n]≤ skpk,max, ∀k ∈ K, (6.17c)

p̃k [l ,n]≤ xk [l ,n]pk,max, ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.17d)

p̃k [l ,n]≤ pk [l ,n], ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.17e)

p̃k [l ,n]≥ pk [l ,n]− (1− xk [l ,n])pk,max, ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.17f)

p̃k [l ,n]≥ 0, ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.17g)

(6.13d)− (6.13h),(6.16b)− (6.16d),

where

Ẽoflk = ∑
l∈L

∑
n∈N

p̃k [l ,n]+ skpcir , ∀k ∈ K. (6.18)

Moreover, we have:

R̃k(pk , p̃k ,Φ,xk) = F̃k(pk , p̃k ,Φ,xk)− G̃k(pk , p̃k ,Φ,xk), ∀k ∈ K, (6.19)

where

γ̃k [l ,n] =

∥∥wHk [n]h̄k [n])∥∥2 p̃k [l ,n]
∑
K
j ̸=k
∥∥wHk [n]h̄j [n])∥∥2 p̃j [l ,n]+ σ̃2 , ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.20)

F̃k(pk , p̃k ,Φ,xk) =
L

∑
l=1

N

∑
n=1

log2 (1+ γ̃k [l ,n]) , ∀k ∈ K, (6.21)

G̃k(pk , p̃k ,Φ,xk) = aQ
−1(ϵk)

√√√√ L

∑
l=1

N

∑
n=1

(
1− (1+ γ̃k [l ,n])−2

)
, ∀k ∈ K. (6.22)

Furthermore, p̃k represents the collection of optimization variables p̃k [l ,n],∀l ,n.

Next, we deal with the relaxation of integer variables (the I in MINLP) by considering their

continuous counterparts. In our system model, this relaxation involves transforming the

binary nature of certain variables — binary subcarrier allocation and offloading decision

variables — into continuous variables that lie within the range from zero to one. Such a

transformation makes employing conventional optimization techniques that are better suited

for continuous rather than discrete variable spaces possible.

To outline the boundaries within which our optimization should operate, and to ensure the

integrity and feasibility of solutions, we introduce additional constraints into the optimization

problem. These constraints are crafted to define the feasible regions for the newly contin-

uous variables, ensuring that the solutions remain realistic and applicable to the practical
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scenarios envisaged in our IoT network optimization (getting very close to the solution).

The imposition of these constraints is articulated as follows:

P5 : min
p,p̃,Φ,s,x

Ẽ total+λ1(
K

∑
k=1

sk − s2k )

+λ2

(
K

∑
k=1

L

∑
l=1

N

∑
n=1

(
xk [l ,n]− (xk [l ,n])2

))
(6.23a)

s.t. : 0⩽ sk ⩽ 1, ∀k ∈ K,∀l ∈ L, (6.23b)

0⩽ xk [l ,n]⩽ 1, ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.23c)

K

∑
k=1

(
sk − (sk)2

)
⩽ 0, (6.23d)

K

∑
k=1

L

∑
l=1

N

∑
n=1

(
xk [l ,n]− (xk [l ,n])2

)
⩽ 0, (6.23e)

(6.13d)− (6.13f),(6.16b)− (6.16d),(6.17b)− (6.17g).

where λ1 and λ2 are penalty factors that need to be greater than one.

To facilitate the optimization of phase shifts in our IRS-assisted network, we convert the

SINR function, (6.20), into a formulation that is more attractive to mathematical ma-

nipulation. The application of Semi-Definite Programming (SDP) emerges as a strategic

approach to achieve this objective. SDP is a powerful optimization framework that allows

for the optimization of a linear objective over the cone of positive semidefinite matrices,

making it particularly suitable for handling problems involving quadratic forms and linear

matrix inequalities. By leveraging SDP, we can transform the SINR function into a form

that not only retains the essence of the original problem but also simplifies the process of

optimizing the phase shifts of the IRS elements. The transformed SINR function under the

SDP framework can be represented as follows:∥∥wHk [n]h̄k [n]∥∥2 =Tr(Uk [n]ΥUHk [n]Wk [n]
)
, ∀k ∈ K,∀n ∈N , (6.24)

where

Uk [n] =
[(
FH[n]diag(hHk [n])

)T
g∗k [n]

]T
, ∀k ∈ K,∀n ∈N , (6.25)

Wk [n] = wk [n]w
H
k [n], ∀k ∈ K,∀n ∈N , (6.26)

Υ= ϖϖH ∈ C(M+1)×(M+1), (6.27)

ϖ = [ϱT κ ]T ∈ C(M+1)×1. (6.28)

In (6.28), κ ∈C is a dummy variable with |κ |2 = 1, and ϱ= [e jα1 ,e jα2 , . . . ,e jαM ]H ∈CM×1.
To simplify the complexity and facilitate the solution of P5, we introduce a set of auxiliary
variables χk [l ,n],∀k ∈K,∀l ∈L,∀n ∈N . These auxiliary variables are designed to set a lower
bound on the SINR equation (6.20). This approach not only simplifies the mathematical
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representation of the SINR constraint but also ensures that it becomes more amenable to

the optimization techniques we intend to apply. Therefore, we have:

0≤ χk [l ,n]≤ γ̃k [l ,n]≜
Ck [l ,n]
Dk [l ,n]

, ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.29)

where

Ck [l ,n] = Tr
(
Zk [n]Wk [n]

)
p̃k [l ,n], ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.30)

Dk [l ,n] =
K

∑
j ̸=k
Tr
(
Zj [n]Wk [n]

)
p̃j [l ,n]+ σ̃

2, ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.31)

with

Zq[n] =Uq[n]ΥU
H
q [n], ∀q = {k, j},∀k ∈ K. (6.32)

Consequently, the achievable rate in (6.17b) can be restated as:

R̃k(χk) = F̃k(χk)− G̃k(χk), ∀k ∈ K, (6.33)

where χk is the collection of optimization variables χk [l ,n],∀l ,n.

To further refine the approach towards solving P5, we introduce an additional layer of
optimization variables, denoted by Ik [l ,n],∀k ∈K,∀l ∈ L,∀n ∈N . These slack optimization
variables are utilized to set an upper bound on the denominator of the SINR approximation

as expressed in equation (6.29). This deliberate move simplifies the handling of the SINR

constraint by decoupling the interactions within its denominator and numerator, thereby

rendering the optimization problem more tractable2. The incorporation of Ik [l ,n] into our
optimization framework leads to the following reformulation:

χk [l ,n]Ik [l ,n]≤ Ck [l ,n], ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.34)

Ik [l ,n]≥Dk [l ,n], ∀k ∈ K,∀l ∈ L,∀n ∈N , (6.35)

where Ik [l ,n] can be thought of the k ’s user interference on time slot l and subcarrier n. By
referring to the objective function of P5 as ¨̄E total, the revised optimization problem (which
is a touch away from the solution) is formulated as follows:

2Transforming fractional problems, like those involving SINR, into non-fractional forms simplifies solving

them by enabling the use of more straightforward optimization techniques. This approach improves solu-

tion efficiency and accuracy, making complex problems more tractable. By introducing slack variables and

employing techniques such as the big-M method, we essentially decouple the numerator and denominator

of this ratio, thereby simplifying the SINR constraint into a more tractable form. This approach aligns with

the goal of making the problem more amenable to optimization algorithms, enabling us to apply advanced

mathematical tools and techniques.
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P6 : min
p,p̃,Φ,s,x,χ,Υ

¨̄E total (6.36a)

s.t. : F̃k(χk)− G̃k(χk)≥ skBk , ∀k ∈ K, (6.36b)

diag(Υ) = 1M+1, (6.36c)

Υ⪰ 0, (6.36d)

rank(Υ)≤ 1, (6.36e)

(6.13d)− (6.13f),(6.16b)− (6.16d),(6.17b)− (6.17g),
(6.23b)− (6.23e),(6.34),(6.35).

The optimization problem P6 remains non-convex due to the non-convex nature of (6.34),
(6.35), and the rank constraint (6.36e). This non-convexity presents significant challenges in

the pursuit of an efficient solution. Notably, constraints (6.34) and (6.35) are characteristic

of Difference of Convex (DC) problems, a category well-documented in literature [3, 8, 129,

9]. This identification is crucial as it opens avenues for applying DC programming strategies

to navigate the problem’s complexity.

Moreover, the bilinear term χk [l ,n]Ik [l ,n] on the left-hand side of (6.34) further compli-
cates the optimization by introducing an additional layer of non-convexity. Despite this

complexity, there’s a silver lining: this product term can be reformulated as the difference

of two convex functions. Such a reformulation effectively translates both (6.34) and (6.35)

into a DC problem framework. This transformation not only demystifies the path to ad-

dressing the non-convexity but also significantly enhances the feasibility of devising a potent

and efficient resource allocation algorithm. The DC representation thus serves as a linchpin

in our strategy, enabling a more nuanced and tractable approach to solving the optimization

problem presented by P6. This, the DC form of (6.34) and (6.35) can be expressed as
follows:

ς1(χk [l ,n],Ik [l ,n])− ς2(χk [l ,n],Ik [l ,n])≤(
ς3(Υ, p̃k [l ,n])− ς4(Υ, p̃k [l ,n])

)
,

∀k ∈ K,∀l ∈ L,∀n ∈N , (6.37)

K

∑
j ̸=k

(
ς5(Υ, p̃j [l ,n])− ς6(Υ, p̃j [l ,n])

)
+ σ̃2 ≤ Ik [l ,n],

∀k ∈ K,∀l ∈ L,∀n ∈N , (6.38)

where
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ς1(χk [l ,n],Ik [l ,n]) = 0.5(χk [l ,n]+Ik [l ,n])2, (6.39)

∀k ∈ K,∀l ∈ L,∀n ∈N ,
ς2(χk [l ,n],Ik [l ,n]) = 0.5(χk [l ,n])2+0.5(Ik [l ,n])2, (6.40)

∀k ∈ K,∀l ∈ L,∀n ∈N ,

ςζ(Υ, p̃ϑ[l ,n]) = 0.5
(
p̃ϑ[l ,n]+Tr(Zj [n]Wk [n])

)2
, (6.41)

∀{ζ,ϑ}= {{3,k},{5, j}},∀k ∈ K,∀l ∈ L,∀n ∈N ,

ςζ(Υ, p̃ϑ[l ,n]) = 0.5(p̃ϑ[l ,n])
2+0.5

(
Tr(Zj [n]Wk [n])

)2
, (6.42)

∀{ζ,ϑ}= {{4,k},{6, j}},∀k ∈ K,∀l ∈ L,∀n ∈N , .

Both sides of (6.37) and the left-hand side of (6.38) are not convex. To address the non-

convexity of the left-hand side of (6.37), we apply the SCA technique, which involves using

a first-order Taylor expansion to obtain a convex approximation of the non-convex terms as

follows:

ς̄2(χk [l ,n],χ
(i)
k [l ,n],Ik [l ,n],I

(i)
k [l ,n]) = 0.5(χ

(i)
k [l ,n])

2

+χ
(i)
k [l ,n](χk [l ,n]−χ

(i)
k [l ,n])+0.5(I

(i)
k [l ,n])

2

+I(i)k [l ,n](Ik [l ,n]−I
(i)
k [l ,n]),

∀k ∈ K,∀l ∈ L,∀n ∈N . (6.43)

Similarly, to address the non-convexity of the right-hand side of (6.37) and the left-hand side

of (6.38), we also employ the SCA technique. Thus, we can approximate these non-convex

terms as follows:

ς̃ζ(Υ, p̃ϑ[l ,n],Υ
(i), p̃

(i)
ϑ [l ,n]) = ςζ(Υ

(i), p̃
(i)
ϑ [l ,n])

+Tr(∇Υ(ςζ(Υ
(i), p̃

(i)
ϑ [l ,n])

H(Υ−Υ(i)))

+Tr(∇p̃ϑ(ςζ(Υ
(i), p̃

(i)
ϑ [l ,n])

H(p̃ϑ[l ,n]− p̃
(i)
ϑ [l ,n])),

∀{ζ,ϑ}= {{4,k},{6, j}},∀l ∈ L,∀n ∈N , (6.44)

where∇Υ(ςζ(Υ, p̃ϑ[l ,n]) and∇p̃ϑ(ςζ(Υ, p̃ϑ[l ,n]) are the gradients of ςζ(Υ, p̃ϑ[l ,n]), (6.42),
with respect to Υ and p̃ϑ, respectively. Therefore, (6.37) and (6.38) can be approximated

as follows:

ς1(χk [l ,n],Ik [l ,n])− ς̄2(χk [l ,n],χ(i)k [l ,n],Ik [l ,n],I
(i)
k [l ,n])

≤
(
ς3(Υ, p̃k [l ,n])− ς̃4(Υ, p̃k [l ,n],Υ(i), p̃

(i)
k [l ,n])

)
, (6.45)

K

∑
j ̸=k

(
ς5(Υ, p̃j [l ,n])− ς̃6(Υ, p̃j [l ,n],Υ(i), p̃

(i)
j [l ,n])

)
+ σ̃2

≤ Ik [l ,n], ∀k ∈ K,∀l ∈ L,∀n ∈N . (6.46)

Unfortunately, P6 is still not convex. However, the convexity of P6 hinges on the rank of Υ.
Typically, P6 yields solutions with a rank higher than one. To overcome this last challenge, we
reformulate constraint (6.36e) utilizing the DC method, resulting in the following expression:

∥Υ∥∗−∥Υ∥2 ≤ 0. (6.47)



150 CHAPTER 6. RESOURCE ALLOCATION IN UPLINK MEC-IRS NETWORKS

Algorithm 7 Proposed Iterative SCA Algorithm for Offloading and Resource Allocation in

an Uplink IRS-assisted MEC Network

Input: Set iteration index i = 1, and maximum number of iteration Tmax, randomly initialize
p0, p̃0, Φ0, s0, x0, χ0, Υ0, and penalty factors [λ1,λ2,δ]

T ≻ 13
1: repeat

2: Calculate (6.43) and (6.44)

3: Solve P7 for given p(i), p̃(i), Φ(i), s(i), x(i), χ(i), and
Υ(i), and retain the intermediate solution

4: Set i = i +1 and p(i) = p∗, p̃(i) = p̃∗, Φ(i) =Φ∗,
s(i) = s∗, x(i) = x∗, χ(i) = χ∗, and Υ(i) =Υ∗

5: until i = Tmax
6: return p∗, p̃∗, Φ∗, s∗, x∗, χ∗, Υ∗

Note that ∥Υ∥∗ = ∑i τi ≥ ∥Υ∥2 = maxi{τi} holds for any given Υ, where τi is the i-th

singular value of Υ. The equality holds if and only if Υ achieves rank one i.e., rank(Υ) = 1

[3]. Now, we take the first-order Taylor approximation of ∥Υ∥2 as:

∥Υ∥2 ≥

=κ(Υ)︷ ︸︸ ︷
∥Υ(t)∥2+Tr

(
λmax

(
Υ(t)

)
λHmax

(
Υ(t)

)(
Υ−Υt

))
. (6.48)

By utilizing (6.48), we can obtain a convex approximation for (6.47), expressed as:

κ̃t(Υ)≜ ∥Υ∥∗−κ(Υ)≤ 0. (6.49)

Finally, the optimization problem is formulated by adding κ̃t(Υ) to the objective function of

P6 with a penalty factor δ≫ 1 to penalize non-rank-one matrices. The modified optimization
problem with convex objective function and constraints (we arrived to a soltuion) can be

written as follows:

P7 : min
p,p̃,Φ,s,x,χ,Υ

¨̄E total− δ(κ̃t(Υ)) (6.50a)

(6.13d)− (6.13f),(6.16b)− (6.16d),(6.17b)− (6.17g),
(6.23b)− (6.23e),(6.36b)− (6.36d),(6.45),(6.46).

The optimization problem P7 can be effectively solved by utilizing well-established convex
optimization packages like CVX [9, 8, 129, 3]. Finally, we outline our proposed algorithm in

Algorithm 7.

6.5 Performance Evaluation

In this section, we present the simulation results that verify the performance of our proposed

IRS-assisted OFDMA uplink URLLC MEC system, adhering to the simulation parameters
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provided in Table 6.1, unless specified otherwise. The simulation environment is designed,

positioning the network’s center at the coordinate origin (0,0) meters, with the AP strate-

gically placed at (0,−100) meters and the IRS at (50,0) meters. Furthermore, the network
hosts five MTC-enabled IoT users (K = 5), whose locations are randomly distributed within

a circle of 4 meters radius centered at (25,0) meters.

To accurately model the signal propagation within this environment, we adopt a path-loss

model expressed as L(d) = a0(d/d0)
−ξ, where a0=−0.001 represents the signal attenuation

at a reference distance d0 = 1 meter, d denotes the link distance, and ξ is the path-loss

exponent. Specific to our setup, the path-loss exponents for the AP-IRS, IRS-user, and

AP-user links are respectively configured to 2.2, 2.2, and 3.4. This setup assumes Rician

fading across all communication links, characterized by a Rician factor of 3 dB, to closely

mimic realistic signal propagation scenarios and evaluate the performance of our system

under practical conditions.

In our simulation framework, we address the small-scale fading by adopting distinct models

for different channel links. Specifically, we model the fading between the AP and the users

using Rayleigh fading, which is typical for environments where the LoS component is absent

or negligible. Conversely, for the channels connecting the AP to the IRS and the IRS to the

users, we employ a Rician fading model. The Rician model is characterized by a Rician factor

of 10, indicating a significant LoS component in these links, which is common in scenarios

where the IRS is strategically placed to enhance the communication link’s quality.

The choice of fading models is crucial for accurately representing the physical environment’s

impact on the transmitted signals. Rayleigh fading is ideal for urban environments where

obstacles frequently obstruct the direct path, while Rician fading models scenarios with a

clear dominant path but accompanied by scattered multipath components.

The comprehensive simulation results we present are the culmination of averaging over

multiple realizations of both path loss and multi-path fading effects. This averaging process

ensures that the outcomes reflect a robust understanding of the system’s performance across

various propagation conditions, thereby providing insights that are both reliable and indicative

of real-world operational scenarios. The consideration of these fading models enhances the

fidelity of our simulations, ensuring they capture the essential characteristics of wireless

transmission in diverse environments.

6.5.1 Performance Bound and Benchmark Schemes

To rigorously evaluate the effectiveness of the resource allocation algorithm we propose, we

undertake a comparative analysis against a suite of benchmark schemes, each designed to

highlight different aspects of system performance under varied conditions:

• Lower bound: To obtain a lower bound on the system performance, Shannon’s ca-
pacity formula is adopted in problem P1, i.e., Vk [l ,n],∀k , (6.8), is set to zero. The
resulting optimization problem is solved using a modified version of the proposed al-

gorithm.

• Method A: This is the proposed Algorithm 7.
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Table 6.1: Simulation Parameters for Offloading and Resource Allocation in an Uplink IRS-assisted

MEC Network

Parameter Value

Total number of reflecting elements, M 50

Total number of uplink time slots, L 4

Total number of subcarriers, N 32

Bandwidth of each sub-carrier 30 kHz

Noise power density -174 dBm/Hz

Maximum transmit power of each user, pk,max 23 dBm

Circuit power consumption of user k , pcir 50 mW

Packet decoding error probability, ϵk 10−6

Number of bits per packet (bitstream size), Bk 160 bits

• Method B: In this scheme, we adopt random phase shifts for the IRS elements and
optimize the users’ power allocation and offloading decisions.

• Method C: In this approach, we maintain a fixed sub-carrier allocation for offloading
while optimizing other variables using SCA.

• Method D: We remove the IRS from the system in this scheme. We consider the
uplink power allocation and passive beamforming based solely on the direct link between

the AP and the user.

6.5.2 Simulation Results

Fig. 6.2 illustrates the relationship between system power consumption and packet error

probability, highlighting the impact of acceptable error rate and joint resource optimiza-

tion on power consumption. Notably, power consumption demonstrates a monotonically

decreasing behavior as packet error probability increases. This trend is primarily due to the

characteristics of the complementary error function employed in the normal approximation

for the data rate function, i.e., (6.6), which naturally declines as packet error probability

escalates. Therefore, embracing a higher packet error probability threshold can significantly

diminish the required transmit power to adhere to the latency demands of MTC-enabled

IoT applications. Consequently, this means as the packet error probability increases, the

influence of the dissipation part in the normal approximation fades away.

This depiction also reveals that, in scenarios adhering to the lower bound on performance

(lower bound), power consumption remains unaffected by packet error probability variations.

This is because of the foundational assumption of zero packet error probability inherent

in Shannon’s capacity formula, where channel dispersion Vk [l ,n], ∀k ∈ K,∀l ∈ L,∀n ∈ N ,
(6.8), is nullified. The discernible gap between the lower bound and the outcomes of our

proposed algorithm (Method A) represents the necessary compromise to satisfy the rigorous

delay and reliability requisites of ultra-reliable low-latency communication with short packet

transmissions.

Incorporating IRSs into the system architecture not only paves the way for remarkable power

efficiency enhancements but also significantly boosts energy conservation. Nonetheless, it
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Figure 6.2: Average power consumption [dBm] vs. packet decoding error probability in an IRS-aided

network.

is important to weigh the computational demands and the initial outlay required for IRS

implementation. Increasing the number of reflecting elements (M) enhances the passive

beamforming gain, thereby reducing the transmit power of IoT devices and facilitating effi-

cient offloading.

The performance of the scheme utilizing random IRS beamforming (Method B) is inferior to

that of a system utilizing an optimal beamforming vector (Method A), but it still surpasses

the performance benchmarks set by strategies reliant on fixed sub-carrier allocation (Method

C). It is important to note that deploying IRSs plays a crucial role in maximizing the capa-

bilities of MEC servers. By dynamically modifying the wireless propagation environment in

real-time, IRSs help ensure that users are not forced to allocate more power due to poor

channel conditions. This allows for efficient offloading of user tasks to edge servers rather

than having to compute the tasks locally. Furthermore, deploying IRSs helps guarantee that

transmissions are completed within the desired delay, meeting the latency requirements of

the system. This comprehensive analysis accentuates the pivotal role of IRSs in enhancing

system performance, facilitating effective task offloading in MEC landscapes, and ensuring

that the network’s energy consumption is optimized.

Fig. 6.3 presents an in-depth analysis of how varying task sizes (commonly known as bit-

stream sizes), influence the overall power consumption within the system. It is observed

that with the increase in the task sizes, there is a corresponding increment in power con-

sumption across all schemes. This trend is primarily attributed to the increased demand
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Figure 6.3: Average power consumption [dBm] vs. the task size [bits] in the uplink of an IRS-

assisted OFDMA URLLC MEC network.

for higher SINRs and the subsequent necessity for elevated transmit power levels to sustain

reliable communication. Significantly, the incorporation of IRSs into the system architec-

ture markedly enhances the SINR values by introducing additional LoS connections. This

enhancement allows the system equipped with IRS technology (method A) to efficiently

manage and support larger task sizes with reduced power consumption compared to config-

urations without IRS capabilities (method D).

The effectiveness of the proposed algorithm is further demonstrated through its superior

performance relative to the alternative strategies that employ non-optimized subcarrier allo-

cation and random IRS phase shifts (methods B and C). By strategically leveraging the SINR

improvements offered by the IRS, the proposed algorithm substantially minimizes power con-

sumption. This is achieved through the optimization of data offloading decisions, subchannel

allocation strategies, and transmission power settings, demonstrating the algorithm’s capa-

bility to adaptively balance the system’s power requirements.

Furthermore, these results highlight the critical decision-making process involved in selecting

between offloading computational tasks to the edge or processing them locally, especially in

scenarios characterized by the transmission of larger data sets. The proposed algorithm’s

approach to resource allocation demonstrates its potential to significantly influence power

efficiency, making it a vital tool for managing the energy demands of IRS-assisted OFDMA

URLLC MEC systems. This detailed examination determines the transformative impact of

IRS technology on enhancing network performance, particularly in facilitating energy-efficient
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management of increasing computational demands, especially when processing huge data

sets.

6.6 Conclusions

This chapter studied the process of designing a resource allocation algorithm for an uplink

multiuser IRS-aided MEC system. Centered on addressing the strict requirements for end-

to-end transmission delay and reliability, crucial for MTC-enabled IoT users, our exploration

continued toward a comprehensive joint resource allocation and offloading decision scheme.

This scheme, distinctively characterized by its focus on short packet transmission, leverages

the IRS’s capability to significantly enhance the communication channel, thereby ensuring

improved levels of reliability through the provision of virtual LoS links. The IRS was deployed

to enhance the communication channel and to increase reliability by providing virtual LoSs.

To navigate the complexities of this study, we formulated an optimization problem aimed

at minimizing the average system power consumption, all while adhering to URLLC MTC-

enabled user’s QoS constraints. This formulation revealed the problem’s inherent non-convex

MINLP nature, underscoring the substantial challenges encountered in the quest for an op-

timal solution. In response to these challenges, we engineered an efficient, low-complexity

algorithm. This algorithm, which integrates SCA techniques alongside an iterative rank min-

imization method, demonstrated remarkable proficiency in converging to a local optimum.

The simulation results presented serve not only as a testament to the proposed algorithm’s

effectiveness but also illuminate the significant, practical benefits of integrating IRS technol-

ogy within MEC systems. Particularly noteworthy is the IRS’s invaluable role in extending

coverage and facilitating task offloading for multiple energy-constrained URLLC devices,

thereby heralding a new era of enhanced network performance and efficiency.

As we move to the next chapter, we aim to investigate the application of IRS technology

within the millimeter-wave (mmWave) spectrum. This forthcoming discussion promises

to unravel the potential of the IRS to revolutionize communication in the high-frequency

mmWave bands, offering insights into novel strategies for overcoming the challenges posed

by this spectrum while maximizing the benefits of IRS-enhanced communication networks.
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Active IRS for mmWave Wireless

Networks

INTELLIGENT REFLECTING SURFACES (IRSs) have emerged as a revolutionary tech-nology capable of substantially enhancing the efficiency and performance of various appli-

cations by intelligently manipulating signal propagation paths. By acting as low-cost passive

devices, IRSs can adjust the scattering, refraction, and reflection characteristics of radio

waves, thereby significantly reducing interference at one or more selected receivers. In this

chapter, we explore the concept of an active IRS-assisted Multiple-Input Single-Output

(MISO) system within the context of a millimeter-Wave (mmWave) wireless network. This

setup allows for signals transmitted from the Access Point (AP) to be reflected by the IRS,

facilitating their reception by the user. To fully leverage the advantages of IRS-assisted

wireless networks, it is crucial to optimize not just the phase shift at the IRS but also to

take advantage of amplitude variation (now the elements are ‘active’) through the use of

cost-effective hardware.

Until now, in previous chapters, our discussion has centered on the lower frequency range,

specifically Frequency Range 1 (FR1), which encompasses frequencies from 450 MegaHertz

(MHz) to 6 GHz. This range, utilized by current cellular networks, supports traditional

cellular bands and strikes a balance between coverage and capacity. We have established

a fundamental comprehension of how IRSs operate within these spectrums. Shifting our

focus to a higher frequency domain, the significance of Frequency Range 2 (FR2) becomes

apparent in appreciating the utility of IRSs. FR2, which extends from 24 GHz to 52 GHz,

delves into the mmWave spectrum. This range is distinguished by its potential to deliver

substantially higher data rates and bandwidth, courtesy of larger available frequency blocks.

However, this comes with the trade-offs of reduced transmission distances and an increased

vulnerability to physical obstructions. In this chapter, we want to answer the question of

whether Active IRS is useful for FR2.

Thus, in this chapter, we formulate the system sum rate maximization problem to opti-

mize both the active and passive beamformer at the AP and the IRS, considering amplitude

control at the IRS from the limited available power with low-cost hardware. To tackle

this complex problem, we introduce two low-complexity algorithms. In particular, the first

sub-problem utilizes the Weighted Minimum Mean Square Error (WMMSE) methodology to

enhance beamforming at the AP, while the second is approached through Successive Convex

157
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Approximation (SCA). Our numerical results show the advantages of active IRS configura-

tions, demonstrating their superior performance in comparison to passive IRS setups.
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7.1 Introduction to IRS-assisted mmWave Networks

To meet the growing demand for high-speed multimedia access, it’s crucial to significantly

enhance the capacity of existing wireless networks through the integration of diverse wireless

technologies and network architectures. Recent investigations have highlighted the potential

of ultra-dense networking and massive Multiple-Input Multiple-Output (m-MIMO) systems.

Furthermore, the adoption of innovative techniques, such as exploiting the millimeter-wave

(mmWave) spectrum, has been identified as a promising approach to satisfy the burgeoning

capacity requirements [230]. Notably, the use of mmWave bands and the incorporation of

additional antenna elements, coupled with the deployment of Radio Frequency (RF) chains

operating at exceedingly high frequencies, pose challenges related to increased hardware

costs and elevated energy consumption in practical mmWave systems. Consequently, there

is a pressing need for novel strategies that address both spectral and energy efficiency to

ensure the sustainable development and deployment of future wireless networks [18, 231].

In response to these challenges, intelligent reflecting surfaces (IRS) have emerged as a

critical technological innovation, facilitating the creation of smarter radio environments.

This cutting-edge technology employs an array of artificial reflecting elements, such as low-

cost printed dipoles, to reflect incident RF waves in specific directions while minimizing power

consumption. These reflecting elements are controlled by an intelligent mechanism, enabling

the manipulation of signal propagation without introducing additional thermal noise. This

attribute of IRS, leveraging passive reflection beamforming, ensures significantly lower power

consumption compared to traditional Amplify-and-Forward (AF) relays, thereby offering an

efficient and sustainable solution for the evolution of wireless networks [91, 232].

Recent research on IRS-aided communication systems has predominantly concentrated on

refining IRS parameters to enhance the performance of outdoor communication networks

[64, 60, 233]. Notably, [64] delves into an IRS-assisted single-cell multi-user Multiple-

Input Single-Output (MISO) setup, focusing on optimizing the induced phases for both

passive and active beamformers. This optimization aims to amplify the overall received

signal power for users equipped with single antennas. The studies presented in [60, 233]

extend this approach by striving to boost both energy and spectral efficiency within an

IRS-aided multi-user MISO framework. They achieve this through the development of a

transmit power allocation strategy at the Access Point (AP) and the adjustment of IRS

phase-shifts, specifically tailored for scenarios where zero-forcing precoding is applied in the

digital domain.

While a substantial body of literature has addressed IRS-based networks [136, 174], only

a select few have explored the manipulation of reflection amplitudes within IRS systems

[231, 234]. The investigations in [231, 234] are particularly groundbreaking, evaluating the

impact of amplitude variation in networks characterized by imperfect Channel State Informa-

tion (CSI). By employing advanced optimization techniques, such as penalized Dinkelbach

and block successive upper-bound minimization algorithms, these studies succeed in fine-

tuning reflection coefficients to maximize data transmission rates. This meticulous control

over reflection amplitudes facilitates notable performance enhancements when compared to

traditional full reflection/phase-shift control methods.

Answering whether to go with passive or active IRS deployment in the next generation of
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wireless communication networks led to significant recent attraction in the field [235, 236,

237, 238, 239]. Research in [235] prioritizes the strategic placement of IRS elements to

optimize data rates in a system comprising a single-user, Single-Input Single-Output (SISO)

configuration alongside an active or passive IRS and a single-antenna AP. In the context

of the upcoming sixth-Generation (6G) wireless communications, [236] advocates for active

IRS as a pivotal 6G technology, capable of mitigating multiplicative fading. This study

provides a comprehensive comparison between active and conventional passive IRS models

to identify performance limitations. Additionally, [237] explores the optimization of user data

rates in a multi-user MISO downlink network, incorporating different types of IRSs as integral

components of the 6G ecosystem. A practical design for active IRS, aimed at minimizing

outage probabilities within a SISO framework with full CSI knowledge, is examined in [238].

Lastly, [239] focuses on a resource allocation problem, aiming to reduce the transmit power

requirements of an AP within an active IRS-enhanced communication network. Here, active

IRSs are leveraged to amplify the reflected signal by harnessing an additional power source,

demonstrating the potential of active IRS deployment in future wireless networks.

The advent of mmWave technology presents a compelling avenue to significantly enhance

throughput in wireless networks, leveraging its capability to support higher frequency bands.

Despite its promise, the mmWave technology is not without its challenges, primarily due

to its short wavelengths, which lead to diminished signal propagation and increased ab-

sorption by physical obstructions. In this context, IRS emerges as a potential solution to

mitigate some of the limitations associated with mmWave communication networks, poten-

tially enhancing performance by intelligently managing signal propagation [84]. However,

the integration of IRS with mmWave technology is not straightforward and can introduce

complexities, such as resource inefficiencies [86]. While IRS technology can amplify signals

for certain users, it may inadvertently escalate destructive interference for others, underlining

the dualistic nature of its impact on network performance.

Addressing these challenges necessitates a nuanced approach, particularly focusing on the

control of reflection amplitudes by IRS. Our objective centers on evaluating the benefits

of amplitude control within IRS-equipped networks, especially against traditional methods

that predominantly utilize full reflection capabilities. To achieve this, we introduce a novel

optimization algorithm aimed at maximizing the data rate of the network, tailored to the

unique characteristics of the mmWave communication channel. This approach employs a

Weighted Minimum Mean Square Error (WMMSE) methodology for optimizing transmit

beamforming with a fixed IRS configuration. Subsequently, we apply Successive Convex

Approximation (SCA) techniques to adjust both the amplitude and phase shift of the IRS

elements, assuming a predetermined transmit beamforming setup.

The core of our analysis is demonstrated through comprehensive simulation results, which

underline the efficacy of amplitude control in maximizing the utility of IRS-assisted wireless

systems. Specifically, our findings highlight the significant potential of employing ampli-

tude control strategies within mmWave networks. By finely tuning the reflective properties

of IRS elements, we can not only overcome some of the inherent drawbacks of mmWave

communication but also unlock new dimensions of network performance optimization. This

approach marks a pivotal step towards realizing the full potential of IRS technology in en-

hancing mmWave wireless networks, offering a promising pathway to overcome the complex

challenges posed by high-frequency wireless communication.
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We summarize the main contribution of this chapter as follows:

• Introduction of IRS in mmWave Networks: The chapter discusses the integration
of IRS with mmWave communication systems, highlighting IRS as a novel solution

to address the inherent challenges of mmWave technology, such as limited signal

propagation and absorption by obstacles.

• Optimization of IRS Parameters: It introduces a new optimization algorithm de-
signed to maximize the network data rate specifically for mmWave channels. This

algorithm uniquely focuses on the amplitude control of the IRS elements, aside from

the traditional phase shift control, to enhance network performance.

• Utilization of Advanced Optimization Techniques: The chapter details the applica-
tion of WMMSE for transmit beamforming optimization when IRS settings are fixed.

Additionally, it employs SCA for the fine-tuning of both amplitude and phase shifts of

IRS elements, providing a dual approach to optimization.

• Simulation Results and Performance Gains: Through comprehensive simulation,
the chapter demonstrates the efficacy of controlling the amplitude of IRS reflections.

This is particularly shown to significantly enhance the performance of IRS-assisted

mmWave wireless networks, suggesting that amplitude control is a promising avenue

to fully exploit the potential of IRS technology.

• Application of IRS in mmWave VR Systems: We then expand the scope of IRS
applications by exploring its integration into mmWave-based Virtual Reality (VR) sys-

tems. This includes optimizing the placement and radiation patterns of IRSs to en-

hance user experience and system efficiency in VR applications.

• IRS Location and Radiation Pattern Optimization: A significant contribution is
the detailed optimization of the location and radiation patterns of IRSs, improving the

performance and immersive quality of mmWave VR systems, marking a novel approach

in the field.

These contributions collectively advance the understanding of how IRS technology can be

effectively deployed in mmWave networks to overcome their limitations, providing valuable

insights into the optimization of network performance through intelligent reflective surfaces.

This chapter is structured as follows: Section 7.2 introduces the system model for an

active IRS-aided mmWave network. Section 7.3 formulates the sum data rate maximization

problem and resolves it using an AO algorithm. In Section 7.4, preliminary results are

presented for the active IRS network to explore scenarios where an active IRS is superior

to a passive one. Section 7.5 provides insights and practical applications, with a special

focus on a VR use case. We study location optimization and resource allocation for the

IRS-assisted VR network in Section 7.6. Section 7.7 formulates the sum data rate problem

for the IRS-assisted VR use case, with the solution provided in Section 7.8. The complexity

of the resource allocation problem for this use case is analyzed in Section 7.9. An evaluation

setup is deployed, and results for the IRS-assisted VR network are analyzed in Section 7.10.

Finally, Section 7.11 concludes the chapter.
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Figure 7.1: An IRS-assisted multi-user MISO mmWave wireless communication system. The AP is

equipped with Nt -antennae and serves K single-antenna mobile users in the downlink. The active

IRS has M reflecting elements in the AP’s LoS signals.

Notations: Throughout this chapter, the following notations are used. The capital bold

face letters are used to denote matrices while using the small bold and small normal face

to denote vectors and scalars, respectively. I represents an identity matrix, Cx×y is a x × y
complex-valued matrix. The superscript (·)H is the conjugate transpose of a matrix, and
transpose of a matrix is expressed as (·)T . The notations E [·], tr (·), and diag(·) are used
to denote the statistical expectation, trace and diagonalization operator, respectively. ∇f (·)
reads as the gradient of the function f (·) and ∂f (a)

∂g is the first derivative of f with respect

to g at g = a. |x| is the 2-norm of vector x. CN (µ,Σ) gives the distribution of a Circularly
Symmetric Complex Gaussian (CSCG) random vector with the mean µ and covariance

matrix Σ, where ∼ means “with the distribution of.” ln(·) represents the natural logarithm
of its argument, and ℜ{·} signifies the real part of the argument.

7.2 System Model of an IRS-assisted mmWave Network

In this section, we focus on the design of a communication network that benefits from

the inclusion of an IRS to aid a MISO multi-user setup. As shown in Fig. 7.1, an AP,

equipped with Nt antennas, is tasked with managing downlink communication to K users

in this network. These users are collectively represented by the set K = {1, ...,K}, which
enumerates them in such a way that each user is distinctly identified.

Central to our discussion is the deployment of an active IRS, which comprises M elements

capable of modifying the phase and amplitude of incoming signals; this ability essentially

makes these elements act as phase shifters and amplifiers. The location of the IRS is
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strategically chosen to be in the Line-of-Sight (LoS) of the AP — such as on a building’s

facade — to facilitate optimal signal reflection towards the the users. The set of these

reflective elements is denoted byM= {1, ...,M}.

A distinguishing feature of the IRS in this scenario is its ability to dynamically switch between

modes that allow reflection and modes that do not, catering to various operational phases

like downlink transmission and channel estimation. This adaptability is crucial for optimizing

the network’s performance across different communication phases. Additionally, the model

presupposes the availability of perfect Channel State Information (CSI) both at the AP and

the IRS and operates under a flat-fading channel model assumption. This model simplifies

the analysis by assuming uniform channel characteristics across the transmission band.

We use the term ’active’ to describe the IRS’s capability in adjusting both the phase and

amplitude of reflected signals, enhancing its utility in the network by providing a more subtle

control over signal propagation. The IRS is not active in the sense that it has its own data.

This ability is encapsulated in the channel matrix G ∈CM×Nt , which represents the complex
interactions between the AP’s antennas and the IRS’s reflective elements. Understanding

this matrix is key to harnessing the full potential of IRS-assisted communication, enabling

signal enhancement and interference mitigation strategies that are responsive to the unique

requirements of the IRS-aided network’s users.

In our system model, the communication between the IRS and each user k is characterized

by a reflecting channel vector fk ∈ CM×1, representing the complex path from the IRS’s
reflecting elements to the mobile user. Concurrently, the direct channel vector linking the

AP directly to user k is denoted as gk ∈CNt×1, capturing the LoS and any multi-path effects
between the AP’s antennas and the user. To manipulate the signals reflected by the IRS, we

employ a phase shift matrix Θ= diag(θ1,θ2, ...,θM), where each θm = e
jϕm corresponds to

the phase shift introduced by the m-th element of the IRS. Here, ϕm represents the phase

shift angle for each element, ranging within [0,2π), and j is the square root of −1, denoting
the imaginary unit. This phase shift matrix is crucial for steering the reflected signals in

desirable directions to enhance communication quality.

Additionally, we introduce an amplitude control matrix A= diag(α1,α2, ...,αM), which gov-

erns the reflection amplitude of each IRS element. The amplitude values αm are adjustable

within the range of [0,αmax], i.e., αm ∈ [0,αmax], allowing for fine-tuned control over the
signal’s strength as it is reflected towards the users. This amplitude control is pivotal for

optimizing the IRS’s impact on the network, enabling a balance between signal enhancement

and interference management.

Contrary to the assumptions made in prior works [86] that considered IRS devices to operate

under full reflection (i.e., αm =1 for all m), our study explores the joint optimization of both

amplitude and phase shift controls at the IRS. This dual-parameter optimization approach

is aimed at unleashing the full potential of IRS technology, facilitating a more nuanced

and effective enhancement of signal propagation and reception in the wireless network.

By adopting this comprehensive control strategy, we endeavor to maximize the benefits of

IRS-assisted communication, making the reflected signals meet the specific needs of the

network’s configuration and the users it serves.
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7.2.1 A Simplified mmWave Channel Model

Full CSI knowledge helps disclose the upper bound of the performance gain [136]. To accu-

rately characterize the mmWave communication channel, we employ the Saleh-Valenzuela

model, a well-established representation that captures the essence of mmWave propaga-

tion [240]. This model is a statistical channel model primarily used to represent the propa-

gation characteristics of radio waves, encapsulating the complex interactions between trans-

mitted signals and the environment, including the effects of path loss, multipath propaga-

tion, and the specific spatial characteristics unique to mmWave frequencies. The simplified

Saleh-Valenzuela mmWave channel matrix G is given by:

G=
√
Nt ×M

∆

∑
i=0

γiζtζrαM(ϕi)αNt (θi), (7.1)

where, ∆, represents the total number of paths, including the LoS and NLoS paths. ζt
and ζr are the transmit and receive antenna gains, respectively. Additionally, γi stands for

complex gain of i-th path, ϕi , and θi are the angles of arrival and the angle of departure

for the i-th path, respectively [240]. Also, the array response function of the IRS can be

expressed as:

αM(ϕ) =
1√
M

[
e j2π(d/λ)sin(ϕ)

]
, (7.2)

αNt (θ) =
1√
Nt

[
e j2π(d/λ)sin(θ)

]
, (7.3)

where λ and d denote the mmWave wavelength and the antenna spacing, respectively.

Therefore, the channel gain from the IRS to the user k is:

fk =
√
MζtζrγiαM(ϕ), ∀k ∈ K. (7.4)

Since mmWave links are notably prone to obstructions, the direct channel gain between

the AP and each user in the network can be significantly weakened. This susceptibility

to blockages is a critical factor in designing and optimizing communication systems in the

mmWave spectrum. Given this context, the formulation of the transmitted signal at the AP

is essential for understanding system performance and is expressed as follows:

x =
K

∑
k=1

wksk , ∀k ∈ K, (7.5)

where sk denotes the transmit data symbol intended for the k-th user and wk ∈CNt×1 is the
transmit beamforming vector associated with that user. The beamforming vector directs

the transmitted signal’s energy toward the intended user, thereby optimizing the signal’s re-

ception and mitigating interference with other users. Furthermore, the aggregate transmit

data vector for all K users in the system is defined as s = [s1, ..., sK ], containing the data

symbols for each user. It is important to note the assumption of normalized power for the

transmit data symbols, which is mathematically represented as E[ssH] = I. This normaliza-
tion implies that the expected value of the outer product of s and its conjugate transpose

sH equals the identity matrix I, indicating that the transmit symbols are uncorrelated and

have unit power. This assumption simplifies the analysis and design of the communication
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system, allowing for clearer insights into the effects of beamforming and channel conditions

on system performance. Consequently, the signal received by mobile user k is a result of

both direct and reflected transmission paths. The formulation of the received signal can be

expressed as follows:

yk =
(
gHk + f

H
k AΘG

)
x + fHk AΘnd +nk , ∀k ∈ K. (7.6)

Here, the received signal yk at user k is a sum of several components:

• The first component, gHk x , represents the direct signal from the AP to user k , con-
sidering the direct channel vector gHk .

• The second component, fHk AΘGx , models the signal that is reflected by the IRS before
reaching user k . This involves the reflecting channel vector fHk , the amplitude control

matrix A, the phase shift matrix Θ, and the AP to IRS channel matrix G.

• The third component, fHk AΘnd , accounts for the noise introduced by the IRS, charac-
terized as dynamic noise nd , which includes the noise arising from both the input signal

and the inherent noise of the IRS’s electronic components due to the amplification

noise power [241].

• The last term, nk , represents the ambient noise at the receiver of user k , also known
as static noise.

Both noise terms nd and nk are modeled as Additive White Gaussian Noise (AWGN)

with a circularly symmetric Gaussian distribution, denoted by nd ∼ CN (0,σ2d INt ) and nk ∼
CN (0,σ2k), respectively. Here, σ2d and σ2k represent the variance of the dynamic and static
noise components, illustrating the stochastic nature of these noise sources within the com-

munication environment. Now, we quantify the quality of a received signal in relation to the

background noise and interference from other signals. For user k in an IRS-aided mmWave

network, the received Signal-to-Interference-plus-Noise Ratio (SINR) can be comprehensively

described by considering both direct paths and paths reflected by the IRS. Accordingly, the

SINR at the receiver k can be expressed as:

γk =

∣∣(gHk + fHk AΘG)wk ∣∣2
K

∑
i=1,i ̸=k

∣∣(gHk + fHk AΘG)wi ∣∣2+σ2d ∣∣fHk AΘ∣∣2+σ2k , ∀k ∈ K. (7.7)

This SINR formulation comes in handy in understanding how the IRS’s reflective capabilities

can significantly influence the received signal quality by not only enhancing the desired signal

but also by potentially increasing the interference and noise levels. We develop our problem

formulation next based on this SINR formulation.

7.3 Sum Data Rate Problem Formulation for the IRS-

assisted mmWave Network

In this section, we maximize the total sum data rate by optimizing the corresponding transmit

beamforming matrixW = [w1, ...,wK ] ∈CNt×K at the AP and reflection coefficients at the
IRS. The associated optimization problem is formulated as:
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P1 : max
W ,θm,αm

K

∑
k=1

Rk (7.8a)

s.t. :
K

∑
k=1

|wk |2 ≤ Pmax , (7.8b)

0≤ θm < 2π, ∀m ∈M, (7.8c)

0≤ αm ≤ αmax, ∀m ∈M, (7.8d)

K

∑
k=1

|AΘGwk |2+σ2d |AΘ|2 ≤ PA, (7.8e)

where

Rk = ln(1+γk)

=

1+
∣∣(gHk + fHk AΘG)wk ∣∣2

K

∑
i=1,i ̸=k

∣∣(gHk + fHk AΘG)wi ∣∣2+σ2d ∣∣fHk AΘ∣∣2+σ2k
 , ∀k ∈ K, (7.9)

Within the realm of wireless communication system optimization, the challenge often lies in

addressing non-convex optimization problems, where the objective function and constraints

do not adhere to convexity principles. Such is the case with the optimization problem

denoted as P1, characterized by its non-convex nature. This complexity arises from the

inherent structure of P1’s objective function and its constraints, which defy straightforward

solutions In P1, the constraint labeled as (7.8b) sets a cap on the total transmit power

emanating from the AP, establishing a threshold at Pmax for the maximum permissible

transmit power. This limitation is crucial for adhering to regulatory standards and managing

interference within the network. Further, the constraints specified in (7.8c) and (7.8d) define

the flexibility afforded by each reflecting element on the IRS. Specifically, these elements can

be individually adjusted in terms of their phase (Θ) and reflection amplitude (A) coefficients.

This adaptability introduces a significant degree of freedom into the optimization problem,

thereby facilitating enhanced performance gains across the wireless network. Finally, the

constraint (7.8e) implies that the power amplified by an active IRS is constrained not to

surpass a specified maximum allowance, denoted by PA. This limitation ensures that the

IRS operates within safe and efficient power levels, optimizing the system’s overall energy

consumption and performance.

Given the non-convexity of P1 due to the non-convex functions in the objection and con-

straints, finding an optimal solution presents a formidable challenge. To navigate this com-

plexity, we advocate for an iterative strategy that alternates between optimizing power allo-

cation and phase shifts. Initially, with a given reflection coefficient Θ and amplitude control

A, the algorithm seeks the optimal transmit beamforming vectorW . Subsequently, it recal-

ibrates to find the best values forW given fixed Θ and A. This iterative loop continues until

the solution stabilizes at an optimal value for the objective function. The ensuing segments

of this section will delve deeper into the mechanics of this iterative algorithm, elucidating
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its procedural steps and underlying logic.

7.3.1 Optimization with respect to the Transmit Beamforming

Given the reflection coefficient matrix Θ and the amplitude control matrix A, the optimiza-

tion problem P1 can be simplified. This adjustment focuses the problem on optimizing the

transmit beamforming vectors, represented as W , at AP within the constraints of the pre-

determined Θ and A. This scenario allows for a targeted optimization strategy, aiming to

enhance the network’s performance by adjusting the AP’s transmission parameters to har-

monize with the static configuration of the IRS. Thus, for given Θ and A, the optimization

problem P1 is reduced to:

P2 : max
W

K

∑
k=1

Rk (7.10a)

s.t. :
K

∑
k=1

||wk ||2 ≤ Pmax, (7.10b)

K

∑
k=1

|AΘGwk |2+σ2d |AΘ|2 ≤ PA, (7.10c)

where Rk = ln(1+γk) with the SINR, γk , given by:

γk =

∣∣hHk wk ∣∣2
K

∑
i=1,i ̸=k

∣∣hHk wi ∣∣2+σ2d ∣∣fHk AΘ∣∣2+σ2k ,∀k ∈ K, (7.11)

in which

hHk = g
H
k + f

H
k A

HΘHG, ∀k ∈ K (7.12)

denotes the combined channel from the AP and the IRS to the k-th user.

To address the complexity of optimizing the original problem P1 with the refined focus as

outlined in P2, we employ the Weighted Minimum Mean Square Error (WMMSE) algorithm.

The main idea of the WMMSE algorithm is to “transform the objective of maximizing the

weighted sum rate into an equivalent problem of minimizing the weighted sum mean square

error.” This transformation facilitates the use of Alternating Optimization (AO) techniques,

enabling an iterative refinement of the solution by optimizing over one set of variables at a

time while keeping others fixed.

The application of the WMMSE algorithm begins with the assumption that the signal in-

tended for user k , sk , is decoded with the help of an equalizer uk . Consequently, the

estimated signal at user k is derived through this decoding process. The iterative nature of

the WMMSE algorithm allows for sequential adjustments to the transmit beamforming vec-

tors, equalizers, and weight matrices, progressively converging to an optimal or near-optimal
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solution that enhances the network’s overall performance. Therefore, by assuming the signal

sk is decoded by using the equalizer uk , the estimated signal at user k becomes:

ŝk = ukyk , ∀k ∈ K. (7.13)

Given the assumption that the signals sk and the noise nk are independent across all users

k in the set K, the Mean Square Errors (MSEs) for estimating the transmitted signals can
be quantified. The MSE for user k , denoted as ek , measures the expected value of the

squared difference between the estimated signal ŝk and the actual transmitted signal sk .

Mathematically, this is expressed as:

ek = E
[
|ŝk − sk |2

]
,∀k ∈ K. (7.14)

Based on this definition, the MSE for each user k can be computed using the following

formula:

ek = |uk |2Bk −2ℜ
{
ukh

H
k wk

}
+1,∀k ∈ K, (7.15)

where Bk is defined as:

Bk =
∣∣hHk wk ∣∣2+ K

∑
i=1

∣∣hHk wi ∣∣2+σ2d ∣∣fHk AΘ∣∣2+σ2k ,∀k ∈ K. (7.16)

The parameter Bk accumulates the power of the signal intended for user k , the interference

from other users, and noise impacts, including the noise amplified through the IRS (σ2d) and

ambient noise at the user (σ2k).

To achieve the optimal reception quality, the MinimumMean Square Error (MMSE) equalizer

for user k , denoted as yMMSEk , is derived by minimizing the MSE with respect to the equalizer

setting. The optimal MMSE equalizer is given by:

yMMSEk =wHk hkB
−1
k , ∀k ∈ K, (7.17)

This expression is obtained by setting the derivative of ek with respect to yk to zero, i.e.,
∂ek
∂yk
=0, assuming that all transmit beamforming vectorsW are held fixed. This optimization

step ensures that the equalizer is tuned to minimize the impact of interference and noise,

thereby enhancing the accuracy of the signal estimation at each receiver.

Incorporating the optimal MMSE equalizer obtained earlier, (7.17), into the MSE formula,

(7.15), refines our understanding of the system’s performance. This insertion allows for the

derivation of the MMSE for user k , which is represented as follows:

eMMSEk =min
uk

ek = B
−1
k

(
Bk −

∣∣hHk wk ∣∣2) ,∀k ∈ K. (7.18)

This equation highlights the minimized error achievable through the application of the MMSE

equalizer, thereby optimizing the reception quality at each user’s receiver. Furthermore, this

minimized error directly relates to the SINR for user k , which is expressed as:

γk =
(
eMMSEk

)−1−1, ∀k ∈ K. (7.19)

Consequently, the rate of communication for the k-th user, denoted Rk , can be recalculated

as [242]:

Rk =− ln
(
eMMSEk

)
, ∀k ∈ K, (7.20)
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which illustrates the relationship between MMSE, SINR, and the achievable rate within this

communication system. Beyond this, the concept of an augmented Weighted Mean Square

Error (WMMSE) is introduced to further refine the system’s optimization process as follows:

Ek = ρkek − ln(ρk),∀k ∈ K, ∀k ∈ K. (7.21)

where ρk represents the weight assigned to the MSE of the k-th user. This weighted

formulation allows for an additional layer of optimization by adjusting ρk to balance the

emphasis on error minimization and rate maximization across users, ultimately enhancing

the overall system performance through a more nuanced optimization approach.

To find the optimal equalizer, which aligns with the MMSE equalizer, we begin by setting

the derivative of the augmented WMMSE with respect to the equalizer uk to zero, that is
∂Ek
∂uk
=0. This process yields the optimal augmented WMMSE value for the MMSE equalizer

as:

Ek
(
yMMSEk

)
= ρke

MMSE
k − ln(ρk) , (7.22)

Following this, to determine the optimal weighting factor for the MMSE, ρ∗k , we now take
the derivative of the augmented WMMSE with respect to the weight ρk and set it to zero.

The optimal weight of the MMSE is achieved as follows:

∂Ek
(
yMMSEk

)
∂ρk

= 0→ ρ∗k =
(
ln2.eMMSEk

)−1
,∀k ∈ K, (7.23)

Finally, motivated by the data rate WMMSE relationship in (7.23), the optimization problem

P2 is transformed into:

P3 : min
W ,ρ,u

K

∑
k=1

[
ρke

MMSE
k − ln(ρk)

]
(7.24a)

s.t. :
K

∑
k=1

||wk ||2 ≤ Pmax, (7.24b)

K

∑
k=1

|AΘGwk |2+σ2d |AΘ|2 ≤ PA. (7.24c)

The optimization problem involves determining the optimal transmit beamforming weights

and the set of equalizers and weights to minimize the WMMSE. Specifically, ρ= [ρ1, ...,ρK ]

represents the MSE weights for each user, and u= [u1, ...,uK ] is the equalizer coefficients.

It can be easily shown that when we minimize P3 with respect to ρ and u, respectively,

the MMSE solutions (ρMMSE, uMMSE) including the corresponding MMSE weights and

equalizers can be achieved. While fixing {ρ,u}, the optimization problem P3 is now changed
into a Quadratic Constrained Quadratic Programming (QCQP) problem at the point W .

Thus, a standard convex optimization package like CVX can be employed to solve the

optimization problem efficiently [174, 243, 129, 151, 1].
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7.3.2 Optimization with respect to the Active IRS Parameters

In this subsection, we focus on the optimization of the active IRS parameters, specifically

targeting the IRS’s reflection coefficients, i.e., the phase and the amplitude, with a given

transmit beamforming matrixW . When the transmit beamforming matrix is found from the

previous subproblem, P1, we adapt the initial optimization problem of P1, to address this

new focus of finding Θ and A with fixed W . The objective now shifts towards fine-tuning

the IRS’s reflection capabilities to further enhance the system’s performance. Thus, we

redefine P1 as:

P4 : max
θm,αm

K

∑
k=1

Rk (7.25a)

s.t. :
K

∑
k=1

|AΘGwk |2+σ2d |AΘ|2 ≤ PA (7.25b)

0≤ θm < 2π, ∀m ∈M, (7.25c)

0≤ αm ≤ αmax, ∀m ∈M. (7.25d)

To enhance clarity in mathematical expressions, let’s introduce a matrix Ξ that directly

represents the combined effects of amplitude adjustments and phase shifts applied by the

active IRS. Consequently, this matrix which is the product of A and Θ can be expressed as:

Ξ
∆
= diag(a1e

jθ1 , ...,αMe
jθM ). (7.26)

Furthermore, for each reflecting elementm, we define χm =αme
jθm ,∀m∈M, and aggregate

these individual element settings into a vector χ= [χ1, ...,χM ]
T . This vector χ represents

the configured state of the IRS in terms of both amplitude and phase adjustments for each of

its elements. With these definitions in place, we can now represent the interaction between

the transmitted signal, the IRS, and the receiving user k more compactly. Specifically, the

effective channel through the IRS for user k can be represented as:

fHk ΞGwk
∆
=ψHk χ, ∀k ∈ K, (7.27)

gHk wk
∆
= g̃k , ∀k ∈ K, (7.28)

where

ψk =
(
diag

(
fHk
)
Gwk

)H
, ∀k ∈ K. (7.29)

This is, (7.29), the effective channel from the AP through the IRS to user k , after being

reflected and phase-shifted. The optimization problem P4 incorporates these simplified

representations. By introducing a slack variable ζk , can be formulated as follows:
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P5 : max
χ, ζ

K

∑
k=1

log2(1+ζk) (7.30a)

s.t. :

∣∣ψHk χ+ g̃k ∣∣2
∑
i ̸=k

∣∣ψHk χ+ g̃i ∣∣2+σ2d |χ|2+σ2k ≥ ζk , ∀k ∈ K, (7.30b)

K

∑
k=1

|Ξwk |2+σ2d |Ξ|2 ≤ PA, (7.30c)

|χm| ≤ αm, ∀m ∈M, (7.30d)

0≤ θm < 2π, ∀m ∈M, (7.30e)

0≤ αm ≤ αmax, ∀m ∈M, (7.30f)

where ζ = [ζ1, ...,ζK ]
T . To tackle the non-convexity issue presented by constraint (7.30b),

we introduce a slack variable, denoted as Υk , into our optimization framework. This allows

us to reformulate (7.30b) into two separate inequalities, enhancing the tractability of the

problem. The redefined constraints leverage Υk and ζk to express the original non-convex

condition in a more manageable form. Specifically, we can represent the relationship between

Υk and ζk as follows:

∑
i ̸=k

∣∣ψHi χ+ g̃i ∣∣2+σ2d |χ|2+σ2k ≤Υk ,∀k ∈ K, (7.31)

∣∣ψHk χ+ g̃k ∣∣2 ≥Υkζk , ∀k ∈ K, (7.32)

where

Υkζk =
1

2
(Υk +ζk)

2−
1

2
(Υ2k +ζ

2
k ), ∀k ∈ K. (7.33)

This transformation results in two new constraints for the optimization problem, effectively

replacing the original non-convex constraint (7.30b). Among these two new constraints,

the first one, (7.31), is convex and straightforward to handle. However, the second con-

straint, (7.32), maintains a non-convex nature, posing a challenge for direct optimization.

To convert (7.32) into a form amenable to convex optimization techniques, we employ

the Successive Convex Approximation (SCA) algorithm. The SCA method based on the

difference of the two concave function approaches as follows [174, 129, 151]:

2ℜ
{
(ψHk χ

[t ′]+ g̃k)
HψHk χ

}
−
∣∣∣ψHk χ[t ′]+ g̃k ∣∣∣2 ≥ (7.34)

1

2
(Υk +ζk)

2−
1

2

(
(Υ2k)

[t ′]+(ζ2k )
[t ′]
)

− (Υk)[t
′](Υk − (Υk)[t

′])− (ζk)[t
′](ζk − (ζk)[t

′]),∀k ∈ K.

This method effectively addresses the non-convexity by approximating (7.32) as a difference

of two concave functions, a strategy that simplifies the optimization process. The adaptation

involves iterative updates, where χ[t
′], Υ

[t ′]
k , and ζ

[t ′]
k denote the solutions obtained in the
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[t ′]-th iteration of the algorithm. Through this iterative procedure, we are equipped to solve
the ensuing convex problem, progressively refining our estimates to converge towards an

optimal solution for P5.

This step-by-step approach, articulated within the framework of SCA and facilitated by

the introduction of slack variables, enables the effective solution of the original non-convex

optimization problem, paving the way for achieving optimal system performance through

strategic IRS parameter adjustment. Now, we solve the following convex problem:

P6 : max
χ, ζ, Υ

K

∑
k=1

log2(1+ζk) (7.35)

s.t. :
K

∑
k=1

|Ξwk |2+σ2d |Ξ|2 ≤ PA, (7.36)

|χm| ≤ αm, ∀m ∈M, (7.37)

0≤ θm < 2π, ∀m ∈M, (7.38)

0≤ αm ≤ αmax, ∀m ∈M, (7.39)

∑
i ̸=k

∣∣ψHi χ+ g̃i ∣∣2+σ2d |χ|2+σ2k ≤Υk , ∀k ∈ K, (7.40)

2ℜ
{
(ψHk χ

[t ′]+ g̃k)
HψHk χ

}
−
∣∣∣ψHk χ[t ′]+ g̃k ∣∣∣2 ≥

1

2
(Υk +ζk)

2−
1

2

(
(Υ2k)

[t ′]+(ζ2k )
[t ′]
)

− (Υk)[t
′](Υk − (Υk)[t

′])− (ζk)[t
′](ζk − (ζk)[t

′]), ∀k ∈ K.
(7.41)

It is important to highlight that the solution quality of the original optimization problem is

expected to improve or, at the very least, remain consistent (monotonically non-decreasing)

following the application of this iterative algorithm [2]. Consequently, this makes the problem

well-suited for standard convex optimization software packages, such as CVX [175]. This

approach ensures efficient computation and facilitates the practical implementation of the

optimization solution.

7.4 Simulation Results for the IRS-assisted mmWave Net-

work

In this section, we present the numerical results obtained from simulating an IRS-assisted

mmWave communication network. The simulation setup considers an AP located within a

rectangular area of dimensions 50× 50 meters. The AP is positioned at the origin (0,0)
meters, while the IRS is strategically placed at (30,0) meters. All mobile users are assumed

to be randomly distributed within this rectangular zone. The IRS under consideration is
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Figure 7.2: Average sum data rate versus the number of reflecting elements.

equipped with 60 reflecting elements to modulate the incident signal effectively. The simu-

lation scenario includes K = 6 users to evaluate the network’s performance comprehensively.

The maximum allowable transmit power from the AP is restricted to Pmax=30 dBm, whereas

the active IRS is constrained by a maximum power allowance of PA = 13 dBm.

The path loss model employed for the simulations follows the equation 35.3+37.6log10(dk)

dB, where dk denotes the distance between the AP and user k in meters. The channel’s

bandwidth is set to 500 MHz, with a system parameter for the number of paths ∆ = 5.

The transmit power antenna gain (ζt) is 9.82 deciBel-isotropic (dBi), and the receive power

antenna gain (ζr ) is 0 dBi. The interference power γi adheres to configurations detailed in

[86]. To ensure precise results, the convergence criterion for the iterative AO processes is

established at 10−2. Additionally, the static noise power observed at each user is set to σ2k =
−114 dBm, and the dynamic noise variance, accounting for the noise contributions from the
IRS’s electronics and processing, is σ2d =−110 dBm, as described in references [240, 239].
This setup aims to provide a realistic and comprehensive understanding of the potential

benefits and challenges associated with deploying IRS technology in mmWave networks.

Moreover, all statistical results were derived by aggregating data from a comprehensive

series of simulation trials, each producing numerous random realizations of the mmWave

channel gains.

Fig. 7.2 illustrates the relationship between the average weighted sum data rate and the

number of reflecting elements in the system. It is observed that the average sum rate exhibits

a positive correlation with the number of reflecting elements. This trend can be attributed
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Figure 7.3: Average sum data rate versus the number of iterations.

to the enhanced communication paths facilitated by a larger array of reflecting elements,

which, in turn, bolsters the system’s overall performance gain. However, a noteworthy ob-

servation is the relatively marginal performance improvement when utilizing random phase

shifts, especially in comparison to configurations with no IRS. This phenomenon underscores

the significance of optimizing the phase shift parameters at the IRS to harness its full poten-

tial in communication systems. Moreover, the comparison between active and passive IRS

implementations reveals the superior efficiency of active IRS in augmenting communication

performance. This advantage becomes particularly pronounced with an increase in the num-

ber of reflecting elements. Our proposed scheme distinguishes itself by not only optimizing

the phase shifts at the IRS but also by fine-tuning the amplitude reflections. The beneficial

impact of amplitude control becomes increasingly apparent with a higher number of users.

This is attributed to the exacerbation of multiuser interference within mmWave channels,

necessitating amplitude control as a means to mitigate such adverse effects. Furthermore,

the results indicate that an active IRS is capable of mitigating the ”multiplicative fading”

phenomenon, thereby achieving significant gains in the sum data rate. This analysis proves

the critical role of both phase and amplitude optimization in leveraging IRS technology to

enhance mmWave communication networks.

Figure 7.3 presents the convergence behavior of our proposed algorithm across various user

counts. The plot reveals that the algorithm typically converges within approximately 10

iterations. Furthermore, an interesting trend is observed where the sum data rate esca-

lates with an increase in the number of users. This finding suggests that our proposed

scheme efficiently scales with user count, enhancing network capacity and demonstrating
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the effectiveness of the algorithm in managing multiuser environments.

7.5 Insights and Practical Applications

So far, we introduced an optimization framework aimed at enhancing the performance of

mmWave wireless communication systems by strategically designing the reflection coeffi-

cients of an IRS in this chapter. Specifically, we considered a scenario involving an active

IRS-assisted MISO mmWave system, with the goal of maximizing the network’s data rate

through the dual approach of optimizing the AP’s beamforming strategy and the IRS’s reflec-

tion coefficients. The optimization problem was tackled through an iterative process, where

the first sub-problem pertaining to beamforming was addressed using the Weighted Minimum

Mean Square Error (WMMSE) technique. Subsequently, the second sub-problem related to

the IRS’s coefficients was approached with the Successive Convex Approximation (SCA)

method. The simulation results provided compelling evidence of the superiority of active

IRS over its passive counterpart, particularly in its ability to mitigate performance degra-

dations attributed to multiplicative fading phenomena. These results showed the potential

of active IRS technology to significantly improve the efficiency and reliability of mmWave

communication networks. Looking ahead, our future research will explore the implications

of active and passive IRS deployment in mmWave channels under conditions of imperfect

or full Channel State Information (CSI) knowledge. This endeavor could include the devel-

opment and analysis of codebook designs for AP beamforming, aiming to further refine the

performance enhancements achievable through sophisticated IRS configurations.

In the next section, we proceed by exploiting the insights gained from our study so far

towards a practical use case within IRS-supported networks, specifically focusing on IRS-

aided mmWave networks for Virtual Reality (VR).

7.5.1 Practical Use Case: IRS-aided mmWave Network for Virtual

Reality

Next-generation VR technology promises unprecedented levels of user immersion and support

for intricate multiuser Virtual Experiences (VEs). Given the cost-effective and passive nature

of IRSs, we study the optimal design of a multi-user IRS-assisted VR network in the remainder

of this chapter. Specifically, we explore the strategic deployment of an IRS within a confined

space as a function of the dynamic trajectories of fully immersed VR users. The core

objective will be to maximize the sum data rate across all VR users, enhancing the overall

quality and responsiveness of the VR environment.

To achieve this, we focus on optimizing several key components within the network:

• The active beamforming strategies at the AP efficiently direct the signal toward the
IRS and subsequently to the users.

• The precise placement of the IRS within the indoor environment to ensure optimal
signal reflection and coverage.
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• The adjustment of IRS phase shifts and radiation patterns to maximize signal reception
quality for VR users, accommodating their movement and interaction within the space.

Operating within mmWave frequencies, known for their high bandwidth and susceptibility

to blockages, presents unique challenges and opportunities for indoor VR applications. To

navigate the complexities of this multi-faceted optimization problem, we introduce an AO

algorithm. This algorithm decomposes the problem into manageable sub-problems, each

solvable in an optimal manner:

1. Active Beamforming at the AP: Utilizing Maximum Ratio Transmission (MRT)

techniques, we derive optimal beamforming vectors that maximize the signal power

directed toward each user through the IRS.

2. IRS Phase Shifts (Passive Beamforming): A quadratic transformation approach

is employed to calculate optimal closed-form solutions for IRS phase shifts, ensuring

efficient signal reflection towards users.

3. IRS Placement: We identify the most effective locations, globally optimal, for IRS

elements within the indoor space to enhance signal path and coverage.

4. Radiation Pattern Optimization: An analysis of monotonic optimal radiation pat-

terns is conducted to further refine the IRS’s ability to support dynamic user positions

and orientations.

We conclude this use case by providing simulation results to demonstrate the significant

impact of strategic IRS resource allocation and placement on enhancing signal stability and

maximizing throughput for each VR user. This comprehensive approach not only addresses

the inherent challenges of mmWave communication within indoor environments but also

unlocks new potentials for immersive and interactive VR experiences. Let’s dive into the VR

world!

7.6 Location Optimization and Resource Allocation of IRS

in a Multi-User Indoor mmWave VR Network

VR is anticipated to transform our digital interactions in various domains such as health-

care, tourism, education, entertainment, and occupational safety [244]. VR systems are

poised to accommodate multiple fully immersed users who can freely navigate their VE in

an indoor environment. To enable cost-effective indoor VE deployment, the deployment of

IRS on the walls as a function of users’ trajectory is a potential solution [245]. An IRS

comprises large arrays of passive reflecting elements on a reconfigurable planar surface, ca-

pable of independently modifying the phase of an incoming signal before reflecting it towards

its intended receiver. This capability of the IRS can significantly benefit VR users facing

considerable path loss or blockages in the direct link, a common challenge in environments

operating within the mmWave frequency band. The IRS introduces additional propagation

pathways — namely, reflected channels [10], enhancing signal reach and reliability for bet-

ter VE. Furthermore, the IRS offers added degrees of freedom through the phase shifts of
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its reflective elements, which can be strategically manipulated to minimize interference and

optimize signal quality [3]. Notably, IRSs are envisioned to be passive, cost-effective, and

flexible solutions, making them ideally suited for indoor VR streaming setups. They can

serve as ‘soft” environmental boundaries, seamlessly integrating into the indoor architecture

to support immersive VR experiences without intrusive hardware installations [246].

Prior research has illuminated the significant benefits that IRSs bring to multi-user wire-

less communication systems, notably enhancing data transfer rates and reliability — a

critical aspect for bandwidth-intensive and latency-sensitive applications like VR applica-

tions [3, 247, 248, 249]. Chaccour et al. demonstrated how IRS technology could sig-

nificantly boost the sum data rate and ensure the reliability of data transfers within VR

environments. This advancement is particularly crucial in VR contexts where immersive

experiences demand high data throughput and low latency to maintain user immersion and

interaction fidelity [247]. Jalali et al. explored the optimization of IRS design focusing on

energy efficiency and admission control maximization. Their work is particularly relevant for

Internet of Things (IoT) applications, which often involve transmitting short packets — a

scenario where IRS can play a vital role in ensuring efficient and reliable communication [3].

Besser et al. introduced an innovative phase hopping algorithm for IRS-supported systems

aimed at enhancing data transfer reliability. Their approach is notable for its operation with-

out the need for CSI, simplifying the implementation and reducing the overhead typically

associated with adapting to channel variations [248]. Zhou et al.’s investigation into a la-

tency minimization problem in a multi-user secure IRS-aided VR delivery network addresses

the challenge of imperfect CSI. Their work shows the importance of optimizing communi-

cation networks to support latency-sensitive applications like VR, ensuring that immersive

experiences are not degraded by delays or security concerns [249].

These studies collectively emphasize the revolutionary role of IRS in boosting the capabilities

of wireless networks for cutting-edge applications like VR. The subsequent sections of this

chapter aim to demonstrate how an IRS-aided mmWave network could be used for a VR

environment. The mmWave frequency band, known for its vast bandwidth, stands as an

excellent candidate for VR technologies, yet it faces challenges like severe path loss and

sensitivity to blockages. IRS technology emerges as a solution to these challenges, offering

a means to dynamically control the propagation environment and improve signal coverage

and fidelity. Through exploring this synergy, our goal is to navigate the complex challenges

inherent in mmWave transmissions, thereby laying the groundwork for future VR experiences

that are deeply engaging, immersive, interactive, fluid, and seamless. To the best of our

knowledge, this work represents a pioneering effort to have the design of an IRS-assisted

indoor VR network optimized; This optimization specifically considers the deployment of the

IRS within a constrained three-dimensional space directly influenced by the trajectories of

VR users.

The contributions of the subsequent sections (the VR use case) in this chapter, focusing on

an IRS-enabled multi-user mmWave VR environment, are summarized as follows:

• Introduction of an IRS-enabled multi-user mmWave VR environment setup, where the
IRS is strategically placed on a wall to enhance data transmission from a multi-antenna

Access Point (AP) to single-antenna HMDs.

• Aim to maximize the sum data rate of all HMDs by:
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– Optimizing the IRS’s location to facilitate communication in a confined indoor

environment.

– Optimizing active beamforming at the AP for efficient data transfer.

– Adjusting phase shifts and radiation patterns in response to VR users’ trajectories,

modeled using redirected walking techniques.

• Design of a resource allocation algorithm to maximize the system’s sum data rate,
adhering to peak transmit power feasibility and Quality of Service (QoS) constraints.

• Application of the AO algorithm to segment the non-convex main optimization problem
into four solvable sub-problems:

– Identification of MRT as the optimal beamforming strategy at the AP.

– Derivation of a closed-form optimal solution for IRS phase shifts using quadratic

transformation.

– Global optimization for the IRS’s placement based on the first-order derivative

of the objective function.

– Determination of the optimal radiation pattern in a closed-form format, using

the monotonicity of the transformed objective function.

• Simulation results underscore the effectiveness of combining passive beamforming at
the IRS with location-based IRS placement and optimal active beamforming at the

AP. This approach significantly enhances data rates over various baseline schemes,

highlighting the impact of IRS technology in improving mmWave VR networks.

The following sections delineate the focus on leveraging IRS technology to overcome mmWave

communication challenges for a VR use case through optimized IRS deployment and func-

tionality. Let’s begin.

7.7 VR IRS-assisted System Model and Problem Formu-

lation

As depicted in Fig. 7.4, we consider an IRS-assisted MISO communication system in which

IRS relays data to a single antenna HMD VR user. The direct LoS link between the transmit-

ter and receiver is considered to be blocked. Doppler effect caused by the HMD’s mobility

is presumed to be fully compensated. In this network, an AP with L antennas serves a

set of HMD represented as K = {1, ...,K} using an IRS whose elements are denoted by
M = {1, . . . ,M}. Our goal is to fine-tune the IRS’s resource allocation based on a place-
ment optimization problem to achieve maximum SNR over a fixed time span T > 0. The

time duration T is partitioned into N uniformly spaced time intervals, given by T = Nξt .

Specifically, ξt denotes the length of each individual time slot, and N is defined as the set
of all these time slots, represented by N = {1, ...,N}.

To accurately model the spatial dynamics of this system, we employ a 3D Cartesian coordi-

nate framework. The AP is stationed at a fixed point denoted by a= [ax ,ay ,az ]
T ∈ R3×1.
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Figure 7.4: A multi-user IRS-assisted full-immersive VR scenario. The IRS is deployed on one of

the walls, and a multi-antenna AP transmits data indirectly to a set of single-antenna HMD via the

IRS.

In contrast, the HMD users traverse a predefined path on the ground, their movements cap-

tured by the trajectory function u[n,k ] = [ux [n,k ],uy [n,k ],uz [n,k ]]
T ∈R3×1, which is guided

by redirected walking principles [250]. The potential locations for deploying IRS resources,

when visualized on a vertical plane, are encapsulated by s[n] = [sx [n], sy [n], sz [n]]
T ∈ R3×1.

Furthermore, we limit the spatial domain to four distinct vertical planes, labelled H1 through
H4, each representing a possible region for IRS resource allocation, with H1 to H4 being
specified as:

H1 : ymin < sy [n]< ymax ,zmin < sz [n]< zmax , sx [n] = xmix , ∀n ∈N , (7.42)

H2 : ymin < sy [n]< ymax ,zmin < sz [n]< zmax , sx [n] = xmax , ∀n ∈N , (7.43)

H3 : xmin < sx [n]< xmax ,zmin < sz [n]< zmax , sy [n] = ymin, ∀n ∈N , (7.44)

H4 : xmin < sx [n]< xmax ,zmin < sz [n]< zmax , sy [n] = ymax , ∀n ∈N . (7.45)

To provide a comprehensive understanding of the deployment strategy for IRS within an

indoor VR environment, we focus on positioning the IRS on the corner walls of a room.

This strategic placement is illustrated in Fig. 7.4, where we explore the optimal locations for

IRS installation to enhance communication between the AP and HMD. The chosen regions

allow the IRS to effectively manage and redirect signals across the entire room, thereby

mitigating potential signal obstructions and optimizing coverage. Moreover, we consider the

radiation pattern of the IRS in our analysis. The radiation pattern is critical as it determines

the directional distribution of the reflected signal strength, which in turn affects the overall

effectiveness of the IRS in enhancing communication. By analyzing and optimizing the

radiation pattern, we can ensure that the IRS not only boosts the signal strength but also

directs the signal in a manner that maximizes the SINR at the receiver’s end, particularly for

VR users who require high-bandwidth and low-latency connections for immersive experiences.

This consideration is crucial for realizing the full potential of IRS-assisted mmWave networks
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in providing robust and efficient communication pathways in complex indoor environments.

The radiation pattern of the IRS is given by:

F (ψk ,ϕ) =

{
cos3(ψk), ψk ∈ [0,π/2],ϕ ∈ [0,2π],
0, ψk ∈ (π/2,π],ϕ ∈ [0,2π],

(7.46)

where ψk ,∀k ∈ K∪{0}, and ϕ represent the elevation and azimuth angles, respectively,
from the IRS to the AP/HMD link [251]. The radiation pattern, as defined by F (ψk ,ϕ),

primarily focuses on the elevation angle ψk , indicating a strong directional preference of

the reflected signals when ψk lies within the range of [0,π/2]. Notably, this pattern is

maintained consistently across various azimuth angles ϕ, as evidenced by the function’s

independence from ϕ in the specified range of ψk [251]. For the sake of simplicity and

to maintain focus on the significant impact of the elevation angle on the IRS’s radiation

pattern, we will henceforth use F (ψk) in place of F (ψk ,ϕ) in subsequent discussions and

equations. This simplification allows for a clearer analysis, emphasizing the critical role of

elevation angle in optimizing the IRS’s contribution to the communication link’s quality and

reliability. Given these conditions, the dynamic channel between AP and IRS, and between

IRS and the k-th HMD adheres to the free-space path loss model, which can be detailed

as [252, 8]:

H̃n =H
√
β0,nF (ψ0), ∀n ∈N , (7.47)

g̃k,n =gk,n
√
βk,nF (ψk), ∀k ∈ K,∀n ∈N , (7.48)

βk ′,n =
√
c0∥dk ′,n∥−

α
k ′
2 , ∀k ′ ∈ K∪{0},∀n ∈N , (7.49)

where β0,n and βk,n symbolize the path loss with c0 being the reference channel power at a

distance of 1 meter, while α0 and αk ,∀k ∈ K are the path loss exponents of AP−IRS and
IRS−k-th HMD links, respectively. Moreover, the small-scale fading of the links between
AP and IRS, (7.47), and between IRS and the k-th HMD, (7.48), are denoted by H∈CM×L
and gk,n ∈CM×1, respectively 1. Besides, the distance vectors from the IRS to the AP and
k-th HMD, coming from (7.49), are respectively given by:

d0,n = s[n]−a=
= [sx [n]−ax , sy [n]−ay , sz [n]−az ]T ,
∀n ∈N , (7.50)

dk,n = s[n]−u[n,k ] =
= [sx [n]−ux [n,k ], sy [n]−uy [n,k ], sz [n]−uz [n,k ]]T ,
∀k ∈ K,∀n ∈N . (7.51)

Therefore, the received signal of k-th HMD becomes:

yk,n = g̃
H
k,nΘH̃wkbk,n+nk , ∀k ∈ K,∀n ∈N , (7.52)

where bn,k is the bearing-information transmitted symbol for the k-th HMD with normalized

power at n-th time slot, wk ∈CL×1 is the transmit beamforming vector, and nk is the AWGN
noise, which follows a complex normal distribution with zero mean and variance σ2k . The IRS

1By incorporating the IRS’s radiation pattern, F (ψk), into the path loss model, we refine our understand-

ing of how the IRS can manipulate signal paths to enhance link quality and system performance.
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phase shifts matrix is represented by Θ and is defined as Θ= diag (θ1,θ2, . . . ,θM) ∈CM×M ,
where θm = ϱme

jϑm ∈ C characterizes the reflection coefficient of the m-th IRS element, in
which ϱm ∈ [0,1] is the reflection amplitude2, and ϑm ∈ [0,2π] is the phase shifts. Ultimately,
by assuming there is no multi-user interference, we represent the SNR at k-th HMD in time

slot n as:

γk,n(W ,Θ,β,Ψ) =
β0,nF (ψ0)βk,nF (ψk)

∣∣gHk,nΘHwk ∣∣2
σ2k

,

∀k ∈ K,∀n ∈N , (7.53)

where W , β, and Ψ are the collection of w’s, β’s and ψ’s according to W ≜ [w1, ...,wK ],
β ≜ [β0,0, . . . ,β0,n, . . . ,βK,N ], and Ψ≜ [ψ0, ...,ψK ]. Consequently, the achievable data rate
of the k-th HMD during the n-th time slot, measured in [bit/s/Hz], can be expressed as:

R(W ,Θ,β,Ψ) = log2(1+γk,n(W ,Θ,β,Ψ)),

∀k ∈ K,∀n ∈N . (7.54)

Finally, the sum data rate for all HMD can be written as:

Rtot(W ,Θ,β,Ψ) = B ∑
∀k∈K

∑
∀n∈N

R(W ,Θ,β,Ψ), (7.55)

where B represents the bandwidth of the network.

In our pursuit, the primary objective is to elevate the system-level data rate within an IRS-

assisted single-cell multi-user indoor VR network. Achieving this goal necessitates a strategic

approach that leverages the unique capabilities of the IRS. This includes the judicious allo-

cation of IRS resources based on the spatial dynamics of the network environment, which

we refer to as location-based IRS resource allocation. Fine-tuning these parameters is the

aim of our system-level data rate optimization. By meticulously configuring the transmit

beamforming strategies employed at the AP, as well as carefully adjusting the IRS’s phase

shifts and radiation patterns, we can achieve this goal. Consequently, we can frame the sum

data rate optimization problem as:

P7 : max
W ,Θ,β,Ψ

Rtot(W ,Θ,β,Ψ), (7.56a)

s.t. : tr
(
WWH

)
≤ PmaxAP , (7.56b)

|θm| ≤ 1, ∀m ∈M, (7.56c)

s[n] ∈Hq, ∀q ∈ {1, . . . ,4}, (7.56d)

u[n,k ] ∈ Uk , ∀k ∈ K, (7.56e)

0≤ ψk ≤ π/2, ∀k ∈ K∪{0}. (7.56f)

Constraint (7.56b) guarantees that the total transmission power from the AP does not

exceed predefined maximum levels. This limitation is crucial for adhering to regulatory power

2To maximize reflection efficiency, we assume the amplitudes of all passive elements to be one [3, 12],

i.e., ϱm = 1,∀m ∈M.
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standards and for minimizing potential interference with other wireless systems. Constraint

(7.56c) specifies the bounds within which the reflection coefficient for every IRS element

must operate. By setting these bounds, the constraint ensures that the IRS operates within

its optimal reflection capabilities, thus maximizing the enhancement of signal strength and

coverage. Constraint (7.56d) ensures the IRS is positioned in one of the corner walls of

the room. Next, constraint (7.56f) confines the radiation pattern. This constraint is vital

for ensuring that the IRS’s signal reflection does not inadvertently increase interference or

degrade the network’s overall performance. Finally, constraint (7.56e) confirms that each

VR user follows a predefined redirected walking path denoted as Uk [253].

Given the presence of a non-concave objective function and the non-convex nature of con-

straint (7.56c), the optimization problem laid out in (7.56) is distinctly nonconvex [9]. This

inherent complexity makes it challenging to derive a straightforward solution for the problem.

As a result, AO methods or approximations are needed to address non-convexity effectively

for effectively tackling the non-convex aspects of the problem, paving the way towards iden-

tifying viable solutions for enhancing the VR network’s data rate and user experience..

7.8 Location Optimization and Resource Allocation of IRS

in a VR Network

Optimization problem (7.56) exhibits non-convexity primarily due to the highly interdepen-

dent nature of the optimization variables involved. Such non-convex problems typically chal-

lenge conventional solution strategies, often lacking a straightforward well-organized method

for resolution due to their complexity and the intricacies of the variable relationships.

Nonetheless, to navigate through these challenges, we introduce an AO strategy character-

ized by lower computational complexity, where a new objective function was proposed to

avoid the feasibility problem. This approach is designed to iteratively converge towards a sub-

optimal solution by decomposing the original problem into more manageable sub-problems,

each tailored to address specific facets of the optimization problem:

• Initially, we redefine the objective function within the AO framework to circumvent
potential issues related to solution feasibility. This redefinition ensures that the sub-

sequent optimization steps are grounded in a solvable context, enhancing the overall

strategy’s effectiveness.

• For the first and second sub-problems, we derive closed-form solutions for active beam-
forming at the AP and passive beamforming at the IRS, respectively. These solutions

provide precise configurations for both active and passive beamformers, optimizing

signal transmission and reflection to improve network performance.

• The third sub-problem focuses on global optimization concerning the IRS’s resource
allocation. This step critically evaluates and adjusts the IRS’s resource distribution to

ensure optimal network operation, particularly in terms of enhancing signal coverage

and quality.
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• In the final sub-problem, we examine the radiation pattern exhibited by the IRS. This
investigation aims to understand and optimize the way the IRS manipulates incoming

signals to maximize the system’s data rate and user experience.

By employing this AO approach, we effectively address the inherent non-convexity of the

original problem, facilitating the attainment of sub-optimal solutions that significantly im-

prove the IRS-aided mmWave VR network’s performance.

7.8.1 Step 1: AP Active (transmitter-side) Beamforming

In the first step of our optimization process, we concentrate on the aspect of active beam-

forming at the AP side. To approach this, we initially hold the IRS’s phase shift matrix

Θ, path loss coefficients β, and the set of elevation angles for IRS radiation pattern Ψ

constant. This simplification allows us to isolate the active beamforming component of the

system for targeted optimization. With these parameters fixed, we can then precisely focus

on the optimization of the AP’s active beamforming matrix. This is essential for efficiently

directing the transmitted signal towards the IRS, thereby ensuring that the reflected signals

are optimally relayed to the intended receivers, in this case, the HMDs of the VR users.

Given these considerations, the optimization problem dedicated to active beamforming is

redefined with a transformed objective function. This new formulation is designed to cap-

ture the essence of maximizing the received signal power, subject to power constraints. By

transforming the objective function, we adapt the problem to a more tractable form, facili-

tating the derivation of an optimal or near-optimal solution for the AP’s active beamforming

strategy. This step is crucial for laying the groundwork for subsequent optimization stages.

Thus, the corresponding optimization problem with a transformed objective function can

then be formulated:

P8 : max
W

∑
∀k∈K

∑
∀n∈N

A0n,k
∣∣gHk,nΘHwk ∣∣2, (7.57a)

s.t. : tr
(
WWH

)
≤ PmaxAP , (7.57b)

where

A0n,k =
β0,nF (ψ0)βk,nF (ψk)

σ2k
, ∀k ∈ K. (7.58)

One can readily prove that the optimization problem (7.57) is affine, thus convex. This

intrinsic characteristic of convexity paves the way for employing the well-established theo-

retical and practical tools of convex optimization to discern a closed-form solution that is

globally optimal.

When considering the specific task of optimizing AP active beamforming in the context of

our IRS-assisted mmWave VR network, it emerges that the Maximum Ratio Transmission

(MRT) strategy stands out as the optimal approach [11]. The MRT, renowned for its



184 CHAPTER 7. ACTIVE IRS FOR MMWAVE WIRELESS NETWORKS

efficiency in maximizing the power of the signal received at the target, aligns perfectly with

our objective to enhance the system’s overall performance. The essence of MRT lies in its

focus on aligning the transmit beamforming vector with the direction of the channel, thereby

amplifying the signal strength at the receiver’s end. This method is succinctly captured in

the formula: Therefore, the optimal transmit beamforming can be given by [11]:

w∗k =
√
PmaxAP

(
gHk,nΘH

)H/∣∣∣∣gHk,nΘH∣∣∣∣,∀k ∈ K. (7.59)

7.8.2 Step 2: IRS Passive (receiver-side) Beamforming

In the next step of our solution methodology, after establishing the optimal active beam-

forming strategy for AP, attention will be given to the passive beamforming executed by

IRS. This component is pivotal in sculpting the signal path from the AP to the end receivers,

in this case, the HMDs utilized in the VR network. With the active beamforming parameters

now set, along with fixed β and Ψ, we optimize the IRS’s passive beamforming. Given these

fixed parameters, the optimization sub-problem focusing on IRS passive beamforming can

be reformulated as:

P9 : max
Θ

∑
∀k∈K

∑
∀n∈N

A0n,k
∣∣vec(Θ)HΥn

∣∣2, (7.60a)

s.t. : |θm|= 1,∀m ∈M, (7.60b)

where we used the following change of variables:

gHk,nΘHwk = vec(Θ)
HΥk,n, ∀k ∈ K,∀n ∈N , (7.61)

in which

Υn = diag(gk,n)Hwk , ∀n ∈N . (7.62)

Despite the non-convex nature of the problem (7.60) due to the unit modulus constraints,

a closed-form solution can be derived based on the quadratic transform method. To do so,

we rewrite the problem into its equivalent form as:

P10 : max
Θ

∑
∀k∈K

∑
∀n∈N

A0n,k

(
− vec(Θ)HUvec(Θ)+2ℜ{vec(Θ)HΥn}

)
, (7.63a)

s.t. : |θm|= 1,∀m ∈M, (7.63b)

where U= vec(Θ)ΥH
n . Now, we obtain the following simpler upper bound to the quadratic
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term vec(Θ)HUvec(Θ):

vec(Θ)HUvec(Θ)≤ vec(Θ)HQvec(Θ)

−2ℜ
{
vec(Θ)H (Q−U)vec(Θt)

H
}

+vec(Θt)H (Q−U)vec(Θt), (7.64)

where Q = λmax(U)IM and λmax(U) corresponds to the maximum eigenvalue of the semi-

positive definite matrix U. Additionally, the superscript t indicates the feasible solution

achieved during the t-th iteration. Thus, the objective function of (7.63) can be lower

bounded by:(
− vec(Θ)HUvec(Θ)+2ℜ{vec(Θ)HΥn}

)
≥−λmax(U)||vec(Θ||2

+2ℜ
{
vec(Θ)H

(
(Q−U)vec(Θt)+Υn

)}
− vec(Θt)H (Q−U)vec(Θt), ∀n ∈N .

(7.65)

Then, we can reformulate the IRS passive beamforming sub-problem in the following manner:

P11 : max
Θ

∑
∀k∈K

∑
∀n∈N

A0n,kℜ
{
vec(Θ)HΓn

}
, (7.66a)

s.t. : |θm|= 1,∀m ∈M, (7.66b)

where

Γn = (Q−U)vec(Θt)+Υn,∀n ∈N . (7.67)

Ultimately, it can be verified that the optimal solution to (7.66) is expressible in closed-form,

as presented:

θm = e
jarg(Γm),∀m ∈M. (7.68)

7.8.3 Step 3: IRS Placement at Optimal Locations

In this subsection, we formulate the subproblem wherein the IRS’s placement is optimized

with fixed active beamforming and fixed IRS’s phase shifts and radiation pattern, i.e., W ,

Ψ, Θ are known. The goal here is to determine the most effective positions for the IRS to

maximize the network’s overall SNR efficiency. This involves a careful consideration of how

the IRS’s location influences the path loss and signal quality between the AP and the end

users, as well as between the IRS and the end users. Therefore, the optimization problem

for the IRS’s location-based resource allocation can be written as:
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P12 : max
s[n]

∑
∀k∈K

c20F (ψ0)F (ψk)
∣∣gHk,nΘH∣∣2

σ2k∥s[n]−a∥α0∥s[n]−u[n,k ]∥αk
, (7.69a)

s.t. : s[n] ∈Hq, ∀q ∈ {1, . . . ,4}, (7.69b)

u[n,k ] ∈ Uk , ∀k ∈ K,∀n ∈N , (7.69c)

where β’s are replaced by the IRS’ location decision variables, s[n]. It can be seen that

(7.69) is convex. Thus, an optimal solution for the IRS’ placement can be found. Assuming

αk = 2 and by setting the first-order derivative of the objective function with respect to s[n]

to zero, we obtain the following equalities:

(ax − sx [n])
(ax − sx [n])2+(ay − sy [n])2+(az − sz [n])2

=
(sx [n]−uy [n,k ])

(sx [n]−uy [n,k ])2+(sy [n]−uy [n,k ])2+(sz [n]−uz [n,k ])2
,∀k ∈ K,∀n ∈N ,

(7.70)

(ay − sy [n])
(ax − sx [n])2+(ay − sy [n])2+(az − sz [n])2

=
(sy [n]−uy [n,k ])

(sx [n]−uy [n,k ])2+(sy [n]−uy [n,k ])2+(sz [n]−uz [n,k ])2
,∀k ∈ K,∀n ∈N ,

(7.71)

(az − sz [n])
(ax − sx [n])2+(ay − sy [n])2+(az − sz [n])2

=
(sz [n]−uz [n,k ])

(sx [n]−uy [n,k ])2+(sy [n]−uy [n,k ])2+(sz [n]−uz [n,k ])2
,∀k ∈ K,∀n ∈N ,

(7.72)

where an iterative approach could be employed to determine the optimal locations for IRS.

With the knowledge of the AP location and the HMDs’ trajectory [254], we initialize with

predefined values for sx [n], sy [n], and sz [n]. From these, we deduce the optimal IRS coor-

dinates iteratively, based on equations (7.70)− (7.72), while simultaneously satisfying the
constraint (7.56d) and (7.56e).

7.8.4 Step 4: IRS Radiation Pattern Optimization

In the final phase of our optimization process, we now consider the last subproblem of opti-

mizing the IRS the radiation pattern. This step ensures that the reflective capabilities of the

IRS are maximally utilized, directing the reflected signals in a manner that optimally sup-

ports the network’s operational requirements and enhances the end-user experience. This can
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significantly impact the network’s overall performance, particularly in environments where

obstacles or physical layout may impede direct signal paths. By fine-tuning the radiation

pattern, we aim to maximize the effective use of the IRS in steering signals toward desired

directions, thereby optimizing the network’s data rate and reliability. Thus, the IRS radiation

pattern Ψ optimization sub-problem with fixed W , Θ, and β can be recast as:

P13 : max
Ψ

∑
∀k∈K

∑
∀n∈N

A1n,k cos
3(ψ0)cos

3(ψk), (7.73a)

s.t. : 0≤ ψk ≤ π/2, ∀k ∈ K∪{0}, (7.73b)

where

A1n,k =
β0,nβk,n

∣∣gHk,nΘHwk ∣∣2
σ2k

, ∀k ∈ K,∀n ∈N . (7.74)

Unlike the preceding sub-problems, where we had to work out how to get to the closed-form

solutions algebraically, obtaining a closed-form solution is markedly more straightforward.

This simplification arises from the inherent monotonic properties of the cosine function that

dominate the objective function in this particular scenario.

The key to this simplification lies in recognizing that the function cos3(ψk), for all k in

the combined set of users and the IRS itself K∪{0}, exhibits a monotonically decreasing
behavior within the interval 0 ≤ ψk ≤ π

2 . This monotonicity facilitates the identification of

the global maximum of the objective function directly by examining the endpoints of the

specified interval in (7.56f). This implies that an optimal elevation angle can be found

that results in the most favorable IRS radiation patterns. The final iterative-based AO

approach is provided in Algorithm 8. This algorithm incorporates the solution from each

sub-problem’s optimization, iteratively refining the system’s configuration to achieve the best

possible network performance within the constraints of the given IRS-assisted communication

scenario.

7.9 Analyzing Resource Allocation Complexity in IRS-aided

VR Networks

In this section, we conduct an analysis of the computational complexity of our proposed

algorithm. The AO algorithm iteratively tackles the four subproblems related to W , Θ,

β, and Ψ until convergence is reached. We obtain efficient closed-form solutions for the

first two subproblems, as in (7.59) and (7.68), respectively. The last two subproblems

have been convexified and can be efficiently solved in polynomial time using CVX [3]. The

computational complexities associated withW , Θ, β, and Ψ are as follows: O1 =O(KL3),
O2 = O(K2LNM +K2M2+M3), O3 = O((3N)(12N +3NK)3), and O4 = O((K +1)3).
Hence, the proposed AO algorithm’s computational complexity can be approximated as

O(KL3+K2LNM+K2M2+M3+N4K3).
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Algorithm 8 Iterative AO algorithm for a Multi-User Indoor mmWave VR Network

Input: Set the iteration index i = 0, set maximum number of iteration Imax, and initialize

W =W 0, Θ=Θ0, β = β0, and Ψ=Ψ0.

1: Repeat

2: Solve problem P8 (7.57) for given {Θi−1,βi−1,Ψi−1} and use (7.59) to obtain
the optimal solution W i .

3: Solve problem P11 (7.66) for given {W i−1,βi−1,Ψi−1} and use (7.68) to obtain the
optimal solution Θi .

4: Solve problem P12 (7.69) for given {W i−1,Θi−1,Ψi−1} and use (7.70)−(7.72) to
obtain the optimal solution βi .

5: Solve feasibility problem P13 (7.73) for given {W i−1,Θi−1,βi−1} to obtain the
optimal solution Ψi .

6: until i = Imax
7: Return {W ∗,Θ∗,β∗,Ψ∗}= {W i ,Θi ,βi ,Ψi}.

7.10 Evaluation Setup and Simulations Results for the IRS-

assisted VR Use Case

We deploy a comprehensive simulation framework to evaluate the AO algorithm’s efficacy

in enhancing network performance for an IRS-assisted, full-immersive VR environment oper-

ating in the mmWave spectrum. This evaluation considers the spatial arrangement of HMD

used by VR users, the Wireless Fidelity (Wi-Fi) AP, and the IRS within a 3D space. The

strategic deployment of IRS resources plays a pivotal role in our simulation, focusing on the

utilization of the environment’s peripheral boundaries — namely, the four outer walls —

while intentionally excluding the floor and ceiling from the IRS’s operational domain. The

AP is centrally placed on the ceiling at a height of 3 meters, ensuring a dominant vantage

point for broadcasting signals to the HMD users below. The virtual environments navigated

by the HMDs are varied in size, encompassing dimensions of 10×10, 15×15, and 20×20
squared meters, to evaluate the system’s adaptability and performance across different spa-

tial scales [254]. This varied environmental setup allows us to assess the AO algorithm’s

effectiveness in optimizing the IRS’s influence on the network, ensuring the delivery of high-

quality, immersive VR experiences under diverse spatial configurations.

The proposed AO algorithm is designed to be flexible, catering to a generic number of

IRS elements. This flexibility allows for the allocation of IRS resources to be dynamically

adjusted based on the evolving data rate requirements of future VR systems. Initially, our

simulations consider the deployment of 200 IRS elements, with each element being sized

at λ/5, a dimension that is optimal for enhancing the system’s performance [255, 65]. To

rigorously evaluate the performance of our AO algorithm within an IRS-assisted mmWave

network, we utilize discrete-event Network Simulator version-3 (ns-3), specifically its 60

GHz Wi-Fi (WiGig) module. This module is used to facilitate analyzing the performance of

the IEEE 802.11ad/ay protocols, providing a robust framework for assessing high-frequency

mmWave communications [256]. Furthermore, we enhance the ns-3 simulator by integrating

a mmWave propagation model that accounts for the influence of IRS (with its location

dependability) on signal propagation. This model is critical for understanding how the IRS

can modify the signal environment to meet the stringent requirements of high-fidelity VR
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Table 7.1: Overview of Baseline Simulation Parameters for the IRS-assisted mmWave VR Network.

Parameter Name Parameter Value

Application Type OnOffApplication

Data Rate 150 Mbps

Flow Direction DL

Payload Size 1448 Bytes

Transport Protocol User Datagram Protocol (UDP)

MAC Queue Size 4000 Packets

Aggregation Type Aggregated MAC Service Data Unit (A-MSDU) and

Aggregated MAC Protocol Data Unit (A-MPDU)
MAC/PHY CSMA/CA/SC DMG MCS-10

Transmit Power / Sectors 10 mW / 8

Receiver Noise Figure 10 dB

Operating Frequency 60.48 GHz

applications [252, 8]. A comprehensive summary of the simulation parameters used in our

study, including the specifics of the IRS elements, the ns-3 configurations, and the mmWave

operational frequency, is detailed in Table 7.1. This table serves as a reference for the

simulation settings of our analysis, ensuring transparency and reproducibility in our findings3.

The “Optimal” approach follows Algorithm 8 for dynamically adjusting the IRS configura-

tion and resource allocation, taking into account the locations of the HMD, AP, and IRS, as

well as the IRS radiation patterns. This method optimizes the IRS’s influence on the com-

3The terms “CSMA/CA/SC DMG MCS” refer to a combination of protocols and modulation/coding

schemes used in wireless network technologies, particularly in the context of IEEE 802.11 standards, which

include Wi-Fi technologies. Let’s break down each part:

1. CSMA/CA: This stands for Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). It

is a MAC protocol used in many wireless networking standards, including Wi-Fi. Its primary function

is to minimize the risk of collisions by ensuring that a transmitting station listens to the medium

before starting a transmission and by using various mechanisms to avoid simultaneous transmissions

by multiple stations.

2. SC: This typically stands for Single Carrier (SC). In the context of wireless communication, especially

in standards like IEEE 802.11ad (which uses mmWave frequencies), SC refers to a type of transmission

where the data is sent using a single carrier frequency as opposed to multiple carriers (OFDM). It is

often used for simpler, potentially more robust transmissions over certain types of channels.

3. DMG: Directional Multi-Gigabit (DMG). This is a term often associated with the IEEE 802.11ad

amendment, which is part of the broader IEEE 802.11 standard focused on very high-throughput

wireless networks operating in the 60 GHz spectrum. The “directional” part of DMG refers to the

use of directional antennas that focus the energy in specified directions to enhance signal strength

and range, crucial in high-frequency bands like 60 GHz where signal attenuation is significant.

4. MCS-10: Modulation and Coding Scheme (MCS), level 10. MCS levels define the specific modulation

type and coding rate used to transmit data. Each level is a combination that provides a specific data

rate and robustness to signal interference and noise. In the context of IEEE 802.11 standards, MCS-

10 would specify a particular modulation type (e.g., Quadrature Amplitude Modulatiom (QAM)) and

a coding rate, which together determine the transmission speed and reliability. MCS levels can vary

across different amendments of the 802.11 standards (e.g., 802.11n, 802.11ac, 802.11ad).

These technologies collectively describe a communication setup that is capable of supporting very high-speed

data transmission, particularly suited for environments where rapid data transfer is required over relatively

short distances, such as in indoor scenarios or for applications like VR, where latency and throughput are

critical.
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Table 7.2: Summary of Achieved Results: Comparison of Different Approaches Based on Room

Sizes, Average (Avg) Throughput, and Standard Deviation (SD).

Approach Room size [m2] Avg [Mbps] SD [Mbps]

10×10 124,08 68,4051

No IRS 15×15 112,25 74,7407

20×20 98,063 79,2939

10×10 131,97 60,4667

Random 15×15 117,58 62,8617

20×20 109,40 67,1633

10×10 144,97 50,5537

Optimal 15×15 125,10 68,5524

20×20 115,87 72,2035

10×10 147,89 40,4191

Oracle 15×15 129,34 47,5146

20×20 118,74 49,0862

10×10 148,90 39,1131

Best Path 15×15 131,34 46,5221

20×20 120,73 48,9770

munication network, aiming to meet the high data-rate demands of future VR systems. In

contrast, we explore the IRS’s placement in a “Random” location to understand the impact

of non-strategic IRS positioning. Additionally, an “Oracle” scenario is investigated, which

entails determining the IRS’s placement across all potential locations along the room walls

on a 0.1 meter-sized grid. This exhaustive search is conducted for every conceivable HMD

location, providing insights into the optimal positioning of the IRS without the constraints of

real-time adaptability. Furthermore, the “Best path” metric evaluates the combined perfor-

mance of direct AP-HMD and AP-IRS-HMD links. Here, the IRS’s placement is determined

using the “Optimal” approach, showcasing the effectiveness of strategic IRS configuration in

enhancing the overall network performance. This comprehensive analysis enables a detailed

understanding of the various factors that influence the efficiency of IRS-assisted networks,

particularly in the context of supporting immersive VR applications.

To evaluate the effectiveness of various IRS configuration strategies, we conduct a detailed

analysis, contrasting average throughput and its Standard Deviation (SD) against a bench-

mark throughput of 150 Mbps per HMD. This evaluation spans scenarios featuring both

single and multiple HMD users navigating through a variety of environments, as outlined in

Table 7.2 and shown in Fig. 7.5. The focal point of this analysis is to discover the impact

of IRS placement and resource allocation on network performance.

Our analysis reveals that the throughput reaches its peak in scenarios where the IRS is

optimally positioned for each HMD, significantly surpassing setups that either lack an IRS

or feature IRS resource allocation at random locations. Interestingly, while an IRS placed

at an oracle-determined location occasionally achieves higher throughput, the AO algorithm

demonstrates a remarkable ability to closely match this performance across the majority of
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(a) 2 HMD users with no IRS in a mmWave VR network.

(b) 2 HMD users with IRS at an optimal location in a mmWave VR network.

Figure 7.5: SNR variability enhancements due to the utilization of IRS resources at locations

optimized by the proposed AO approach.

HMD locations, despite operating in real-time. Furthermore, the combined average through-

put from the optimal IRS path and the direct AP-HMD link exhibits a performance closely

comparable to that achieved by the oracle, highlighting the effectiveness of strategic IRS

placement and resource allocation (cf., Table 7.2). When analyzing SD, we observe that

the performance variability of the network without IRS support is more pronounced across

different environments, in contrast to scenarios with IRS assistance, where even randomly

allocated IRS resources lead to more consistent throughput levels. The ”Optimal” location-

based IRS resource allocation determined through the AO approach, especially when com-

bined with LoS communications, consistently offers stable throughput and minimizes SNR

variability. This robust performance is maintained even in multi-user scenarios, as illustrated

in Fig. 7.5. These findings underscore the critical importance of meticulously strategized IRS

deployment and resource allocation in enhancing network throughput and stability, thereby

enriching the immersive quality of VR experiences in diverse spatial configurations.
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7.11 Conclusion

This chapter embarked on an exploratory journey beginning with a question of whether

active Intelligent Reflecting Surfaces (IRS) are useful within millimeter-Wave (mmWave)

frequencies, a frequency spectrum domain critical for high data-rate applications. Answer-

ing affirmatively, we established that IRS technology, irrespective of being passive or active,

improves mmWave communication frameworks, with active IRS configurations offering su-

perior performance enhancements. Following this initial finding, we ventured into a detailed

examination of a use case involving passive IRS deployment within mmWave frequencies,

specifically in the Virtual Reality (VR) domain. This shift in focus was motivated by the

intent to fully understand the IRS applicability in overcoming the inherent challenges of

mmWave technology, such as its sensitivity to environmental obstructions and the need

for high data transmission capabilities. Our study conclusively found that IRS technology,

in its versatile forms, holds significant promise for advancing the capabilities and reach of

mmWave networks, particularly in enriching VR experiences.

To navigate the complexities of integrating IRS technology into mmWave-supported VR

environments, we developed and implemented an Alternative Optimization (AO) algorithm.

This algorithm was designed to dynamically allocate IRS resources, factoring in the spatial

relationships between Head-Mounted Devices (HMDs), the Access Point (AP), and the IRS.

The primary goal of our algorithm was to augment the immersive quality of VR applications

by capitalizing on the IRS to improve communication coverage and enhance the fidelity

of Virtual Experiences (VEs). The empirical evaluation of our approach demonstrated the

significant impact of IRS-aided networks on expanding signal coverage and enriching the

network’s quality of service and user’s quality of experiences, particularly in VR scenarios.

These findings affirm the proposed algorithm’s effectiveness and highlight the transformative

role of IRS technology in advancing the capabilities of mmWave networks.

As we concluded our exploration of IRS applications in mmWave frequencies in this chapter,

we also set the stage for future investigations into the realm of even higher frequencies,

that is the TeraHertz (THz) frequencies. The next chapter is poised to study this advanced

frequency band, exploring its potential to further elevate the performance and adaptability

of IRS-assisted wireless networks. By venturing into THz frequencies, we aim to uncover

innovative solutions for overcoming the limitations of current technologies and unlocking new

possibilities for new types of applications other than immersive VR experiences and beyond.

This forward-looking perspective emphasizes our commitment to pushing the boundaries of

what’s possible in the intersection of IRS technology, mmWave and THz frequencies, and

immersive digital world.
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Energy Efficient THz Miniature UAV

Networks

TERAHERTZ (THz) band communication, a key technology for sixth-Generation (6G)

and beyond mobile networks, has the potential to enhance a wide range of promising

applications. This chapter delves into the optimization of Energy Efficiency (EE) in minia-

ture Unmanned Aerial Vehicle (UAV)-assisted Non-Orthogonal Multiple Access (NOMA)

networks operating within the THz band. Specifically, it explores the deployment of UAVs in

a cooperative THz NOMA network where the UAV, apart from receiving information, also

harvests energy through Simultaneous Wireless Information and Power Transfer (SWIPT)

mechanisms. This dual capability allows the UAV to relay data to a targeted destination

node efficiently using the energy accumulated from the harvesting process. The inherent

uncertainty of the THz channel necessitates a novel framework for UAV deployment and

network resource allocation policy design. Addressing the inherent uncertainty of the THz

channel, the study introduces an innovative framework tailored for the strategic deployment

of miniature UAVs and the formulation of effective network resource allocation policies.

A novel optimization challenge is presented, focusing on maximizing EE by fine-tuning the

NOMA power allocation coefficients, the SWIPT Power-Splitting (PS) ratio, and the trajec-

tory of the UAV. This complex problem is deconstructed into three manageable subproblems,

and each is addressed through an alternating optimization strategy to find a solution. This

study highlights the critical role of various parameters, including UAV mobility, NOMA power

allocation strategies, and SWIPT PS ratios, and their impact on system performance as-

pects such as energy harvesting and service quality at the destination. The findings reveal

the intertwined effects of these factors on the overall EE of the system. The proposed

methodology underscores the significance of meticulous power management, the potential

for energy harvesting, and the optimization of UAV mobility in enhancing the efficiency and

sustainability of future wireless communication infrastructures.
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8.1 Introduction

M INIATURIZED Unmanned Aerial Vehicles (UAVs) have become a focal point of re-

search and application due to their unparalleled ability to navigate through unexplored

or complex terrains and their agility in tight spaces [257, 258]. These UAVs, with their com-

pact form factor, can act as airborne Base Stations (BSs) or relays, significantly enhancing

wireless network coverage. The predominance of Line of Sight (LoS) links between UAVs

and ground users is a critical factor that facilitates high data rate transmissions, marking a

significant advantage in utilizing UAVs for communication purposes [259].

However, the smaller scale of these UAVs introduces substantial challenges, particularly in

terms of energy constraints. Unlike their larger counterparts, which can house more exten-

sive battery systems and more sophisticated energy solutions, miniature UAVs must adopt

exceedingly efficient energy management strategies to sustain operational viability. This

necessity propels the relevance of Simultaneous Wireless Information and Power Transfer

(SWIPT) in the realm of miniature UAV operations. SWIPT emerges as a pivotal innova-

tion, not only elevating the rate of information exchange but also prolonging the operational

lifespan of these UAVs through enhanced energy transfer efficiencies. The integration of

SWIPT into the UAV network fabric significantly marks a significant leap forward in the

Energy Efficiency (EE) frontier, offering a promising avenue to tackle the energy limitations

inherent to miniature UAVs [260, 261].

The integration of SWIPT into UAV networks, despite facing challenges like the low energy

conversion efficiency of contemporary energy harvesting technologies, offers targeted advan-

tages in several key areas. These applications leverage the unique capabilities of miniature

UAV, enhanced by SWIPT, to fulfill specific needs that outweigh the limitations imposed by

energy conversion inefficiencies. The relevance and value of these applications are particu-

larly pronounced in scenarios where traditional approaches may fall short. Here are some of

the notable application contexts:

1. Small-Scale and Short-Range Operations: The compact nature and agility of minia-

ture UAVs, combined with the capabilities of SWIPT, make them ideal for operations

that require detailed attention within limited geographical extents. Tasks such as

surveillance of critical infrastructure, environmental monitoring in sensitive or inacces-

sible regions, and providing communication links in complex urban or indoor environ-

ments are where these systems shine. Their ability to operate in confined or chal-

lenging areas, where larger UAVs or traditional infrastructure cannot reach, presents

a significant advantage.

2. Research and Experimental Applications: In scenarios where the establishment of

permanent infrastructure is impractical, economically unfeasible, or where existing

networks have been compromised due to natural disasters or human-induced events,

miniature UAV networks equipped with SWIPT technology offer a rapid, flexible so-

lution. They can swiftly provide essential communication and monitoring capabilities,

facilitating disaster response efforts, or extending services to remote and underserved

populations temporarily.
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3. Research and Experimental Applications: Miniature UAVs equipped with SWIPT

technology offer significant potential for research and experimental applications. They

provide a flexible and cost-effective platform for testing new technologies, sensors,

and communication protocols in real-world scenarios. These systems can be used to

gather data, validate theoretical models, and explore innovative uses in various fields,

such as environmental science, urban planning, and emergency management, making

them invaluable tools for scientific advancement and technological innovation.

While acknowledging the limitations imposed by the current state of energy harvesting tech-

nology, it is important to recognize that these limitations also drive innovation. The develop-

ment of more efficient energy harvesting circuits and the integration of emerging technologies

can gradually expand the scope of application for such systems. In the following paragraphs,

we explore the possible synergy between miniature UAVs and emerging technologies.

Non-Orthogonal Multiple Access (NOMA) has emerged as a transformative approach to

significantly enhance Spectral Efficiency (SE) within UAV networks. By allowing multi-

ple user signals to occupy the same resource block simultaneously, NOMA ensures a more

effective utilization of available network resources. This capability is particularly benefi-

cial in UAV-assisted communications, where the dynamic nature of UAVs and the varying

demands of users necessitate efficient resource management. The authors in [262] ex-

plored the effect of NOMA in a multiuser UAV network context, focusing on addressing

the max-min fairness problem. This problem is analyzed taking into account various con-

straints, including the UAV’s flight trajectory, total power and bandwidth limitations, as

well as antenna beamwidth considerations, contributing valuable insights into achieving eq-

uitable resource distribution among users under the operational constraints inherent to UAV

networks. Another innovative approach in resource allocation policy design is presented in

[263], where a hybrid UAV-assisted network framework is proposed. This model uniquely

combines Time Division Multiple Access (TDMA) utilized by the UAV with a terrestrial

BS employing NOMA to serve ground users. The study emphasizes optimizing the sum

data rate by carefully managing user scheduling, the UAV’s flight trajectory, and precoding

strategies at the BS, demonstrating the potential of hybrid access schemes in maximizing

network throughput. Further extending the applicability of NOMA in UAV networks, the

research outlined in [264] positions the UAV as a NOMA relay. This strategic deployment

aims to extend the coverage area of the UAV network, confirming NOMA’s ability to en-

hance connectivity and service reach in UAV-assisted communication systems. Moreover,

the work presented in [265] addresses the challenge of minimizing delay in the context of

millimeter-Wave (mmWave) and Multiple-Input Multiple-Output (MIMO)-NOMA resource

allocation within UAV-assisted caching networks, indicating the critical importance of effi-

cient resource allocation in reducing latency, particularly in networks where high data rate

transmissions and caching capabilities are paramount.

Beyond the pursuit of high SE, EE has emerged as an equally crucial performance metric

for the evolution of sixth-Generation (6G) mobile networks. The limited energy resources

of UAVs and the ground users they serve necessitate innovative solutions like SWIPT to en-

hance network sustainability. As discussed earlier, SWIPT technology not only promises to

extend the operational lifespan of these devices by improving battery life but also contributes

significantly to the overall EE of the network [266, 9]. Research such as the study in [267]

has highlighted the potential of UAV-SWIPT in Internet of Things (IoT) scenarios, focusing
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on maximizing the minimum harvested energy of IoT devices through the joint optimization

of UAV’s transmission power and flight trajectory. The realm of secure transmission within

UAV-assisted SWIPT systems has also been explored, as evidenced by [268], which aimed to

maximize the secrecy rate for the intended Information Decoding (ID) receiver despite the

presence of multiple eavesdroppers. Additionally, the application of SWIPT in UAV networks

extends to enhancing network throughput, where UAVs harvest power wirelessly and utilize

this power for retransmitting information to destination nodes, thereby creating an efficient

cooperative link between the source and destination [269]. Such strategies underscore the

dual role of UAVs in these networks, where they not only act as relay points but also as

dynamic power sources. Further studies have delved into the integration of UAV-assisted

cooperative communication with SWIPT, where the maximization of cooperative through-

put was achieved by leveraging UAV’s mobility and the power harvested [270]. Moreover,

the intricate performance dynamics of downlink mmWave NOMA in UAV-assisted SWIPT

systems have been analyzed, focusing on critical aspects such as security, reliability, and

coverage [271]. This comprehensive examination reveals the multifaceted benefits of incor-

porating SWIPT in UAV networks, including enhanced EE, extended device lifespans, and

improved network performance across various dimensions.

Furthermore, the exploration into the TeraHertz (THz) frequency band communication,

ranging from 0.1 to 10 THz, underscores its potential to revolutionize future wireless com-

munications. This band’s capability for providing extensive bandwidth and supporting data

transmission rates of Tbps, coupled with minimal latency, positions it as a decisive technol-

ogy for the next generation of high-speed wireless networks [272]. Despite its promise, the

application of THz technology within UAV communications remains a relatively untapped

area, with a limited number of studies charting this novel territory [273, 274, 275].

Research endeavors have begun to shed light on the possibilities and challenges associated

with incorporating THz frequencies in UAV-assisted wireless systems. For instance, the study

in [273] outlines a framework for optimizing UAVs deployment strategies, power assignments,

and bandwidth allocations within THz frequency bands. Concurrently, the investigation de-

tailed in [274] presents a novel approach for enhancing THz downlink networks through a

cooperative recharging-transmission strategy facilitated by wirelessly powered UAVs. Fur-

thermore, the exploration in [275] ventures into the realm of NOMA-based UAV integration

within THz networks, highlighting the potential synergies and performance enhancements

that could be realized. Despite these advancements, a comprehensive analysis of NOMA’s

application in THz-enabled UAV networks is conspicuously absent. The alliance of NOMA

principles with THz UAV communications could unlock new dimensions of spectral and en-

ergy efficiency, exploiting the vast bandwidths available in the THz band to accommodate a

higher number of users and simultaneously transmit multiple signals more effectively. This

gap in research presents a significant opportunity for further study, particularly in understand-

ing how NOMA techniques can be tailored to leverage the unique properties of the THz band,

thereby enhancing UAV network capabilities, improving throughput, and reducing latency in

ultra-high-speed wireless communications.

Inspired by the aforementioned studies, we contemplate the use of a UAV-assisted coopera-

tive system within the THz frequency band, aiming to improve the reliability of communica-

tion. In particular, a UAV-assisted cooperative network establishes a direct link between the

source and destination nodes. This chapter focuses on the integration of SWIPT in minia-
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ture UAV-assisted networks, addressing the unique challenges posed by their size and energy

constraints. By optimizing energy use through SWIPT, we aim to maximize the operational

capabilities of miniature UAVs, which is a significant departure from the strategies typically

employed in larger UAV networks. The main contributions of this chapter are as follows:

• We study the EE performance analysis of UAV-assisted SWIPT-enabled cooperative
NOMA network in the THz frequency band. The system architecture is carefully

designed, wherein the source node transmits a composite signal that encapsulates data

intended for both the UAV and the destination node, each differentiated by distinct

NOMA power allocation coefficients. The signal received at the UAV is then split into

two components using a Power-Splitting (PS) SWIPT mechanism. One portion of the

signal is dedicated to Energy Harvesting (EH), while the other is used for Information

Decoding (ID). The goal of maximizing EE in this framework encompasses a broad

spectrum of considerations including the UAV’s flight dynamics, the Quality of Service

(QoS) requirements of the destination node, the PS ratio, and the distribution of

NOMA power allocation coefficients.

• Subsequently, we introduce and formulate the problem of maximizing the network’s
EE. To navigate through the complexities of this optimization problem, we conceive

an iterative algorithm specifically designed to deconstruct the primary problem into

three more manageable sub-problems, each focusing on a distinct aspect: the PS

ratio, UAV’s flight trajectory, and NOMA power management strategies.

• These sub-problems are rigorously analyzed and proven to possess convex properties,
enabling their resolution through established optimization techniques. The empiri-

cal results from this methodological approach underscore a substantial performance

enhancement, revealing up to a 30.3% increase in EE. These findings eloquently em-

phasize the critical role of adept power management, efficient energy harvesting, and

the adaptive mobility of the UAV in significantly elevating the cooperative EE perfor-

mance of the NOMA-SWIPT network in the THz band.

Through this comprehensive analysis in this chapter, we not only elucidate the technical

feasibility and efficiency gains achievable with such an integrated system but also lay the

groundwork for future research directions. By highlighting the nuanced interplay between

NOMA power allocation, SWIPT mechanisms, and UAV trajectory optimization, this study

provides valuable insights into the design and operation of future high-frequency miniature

UAV-assisted communication networks, aiming for unparalleled energy efficiency and service

quality.

This chapter is organized as follows: Section 8.2 introduces the system model for a UAV-

aided SWIPT-NOMA network and defines its performance metric. In Section 8.3, we for-

mulate the EE maximization problem. Section 8.4 presents a two-stage solution to the

EE problem in a miniature UAV network, with a discussion of computational complexity in

Section 8.5. Section 8.6 contains the simulation results, and Section 8.7 outlines the appli-

cability of our design in an IRS-aided network. Finally, Section 8.8 concludes the chapter.

Notations: Matrices and column vectors are denoted by boldface uppercase and lowercase

letters, such as A and a. The Euclidean norm of vector a is expressed as |a|, while the
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Figure 8.1: Miniature UAV-assisted cooperative THz NOMA-SWIPT network. The channel power

gain between source-to-UAV and UAV-to-destination is denoted as hsr (t) and hrd (t), respectively.

The miniature UAV acts as an energy-harvesting user in the first phase. In the second phase, the

miniature UAV is a relay that uses the harvested energy from the previous phase.

magnitude of a complex number a is denoted by |a|. The transpose and Hermitian of
a matrix are represented as (·)T and (·)H, respectively. Additionally, Tr(A) and rank(A)
define the trace and rank of matrix A, respectively. The notation diag(A) denotes a vector

whose elements consist of the main diagonal elements of the matrix A. If A⪰ 0, then A is
a positive semidefinite matrix. CN×M refers to the space of N×M matrices with complex
entries. The set containing elements a and b is represented as {a,b}. Matrix IM denotes
an M×M identity matrix. CN (µ,Σ) describes the distribution of a CSCG random vector
with mean µ and covariance matrix Σ, where ∼ indicates ”with the distribution of.”

8.2 System Model and Performance Metric

We consider a downlink transmission UAV-aided SWIPT-NOMA system, as shown in Fig. 8.1.

The source node transmits information to two nodes, i.e., a UAV and a destination node.

It is assumed that the UAV node has a better channel condition since it is closer to the

source than the destination node. Hence, the UAV can act as an EH aerial relay to ensure

the high targeted rate of the destination node. Frequency Division Duplex (FDD) mode

with equal bandwidth of B and a 3D Cartesian coordinate system are considered where

the source and destination nodes are placed at s(t) = [sx(t), sy (t),H1]
T ∈R3×1 and d(t) =

[dx(t),dy (t),0]
T ∈R3×1, respectively, where [·]T is the transpose operation. The destination

node is static on the ground, while the UAV and source are at a fixed height above the ground.

The instantaneous coordinates of the UAV are given by q(t) = [x(t),y(t),H2]
T ∈ R3×1 at

time 0 < t < T . The first and final positions of the miniature UAV are represented by qs
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and qe , respectively. We assume that the UAV’s trajectory regularly varies over time, so the

time range T is divided into N evenly separated time slots, i.e., T = Nϖ. In particular, ϖ

represents the duration of each time slot and N ∆
= {1, ...,N} is the set of time slots, where

q[n] is the sampled trajectory. The constraints related to the position of the miniature UAV

and its maximum speed can be written as:

q[1] = qs , (8.1a)

q[N+1] = qe , (8.1b)

∥q[n+1]−q[n]∥ ≤ϖVmax, ∀n ∈N , (8.1c)

where Vmax is the maximum flying speed of the miniature UAV. The channel power gain be-

tween source-to-UAV and UAV-to-destination are denoted by hsr [n] and hrd [n], respectively,

which are assumed to follow the free-space path loss model and given by:

hsr [n] =
β0

∥q[n]−s[n]∥e
− ξ(f )2 ∥q[n]−s[n]∥,∀n ∈N , (8.2)

hrd [n] =
β0

∥q[n]−d[n]∥e
− ξ(f )2 ∥q[n]−d[n]∥,∀n ∈N , (8.3)

where the exponential term is the path loss caused by molecular absorption, in which ξ(f )

is a molecular absorption coefficient that is influenced by the operating frequency f and the

concentration of water vapor and oxygen molecules [276]. To simplify the notation, we will

henceforth denote ξ(f ) as ξ. Moreover, β0 denotes the reference power gain and is equal

to c/4πf , where c is the speed of light [274]. Finally, the channel power gain between the

source-to-destination follows the same structure, as in (8.2) and (8.3), and is denoted by

hsd [n]
1.

Our cooperative system is studied in two phases. In the first phase, the UAV employs SWIPT

to harvest energy and decode information from the source node while the destination node

receives its respective data. In the second phase, the UAV acts as a decode-and-forward

(DF) aerial relay to re-transmit the destination node’s data by utilizing the harvested power

of the first phase.

8.2.1 Phase One(1): Direct Transmission

In this phase, the source transmits the information to both the miniature UAV and destination

node by exploiting power-domain NOMA, as shown in Fig. 8.2. Hence, the transmit signal

is given by:

s[n] =
√
α1[n]s1[n]+

√
α2[n]s2[n],∀n ∈N , (8.4)

where s1[n] and s2[n] are transmit symbols during each time slot and assumed to be indepen-

dently Circularly Symmetric Complex Gaussian (CSCG) distributed with zero mean and unit

variance. Moreover,
√
α1[n] and

√
α2[n] represent the NOMA power allocation coefficients

1The instantaneous channel power gain between source-to-UAV and UAV-to-destination, denoted by

hsr (t) and hrd (t),0 < t < T , are sampled at the rate δt to generate the discrete instantaneous channel

power gain hsr [n] and hrd [n],∀n ∈N .
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Figure 8.2: Phase One: Miniature UAV-assisted cooperative THz NOMA-SWIPT network. The

gray link means an inactive link. The source transmits the information to both the miniature UAV

and destination node by exploiting power-domain NOMA. The miniature UAV has not only its own

data in this phase but also the destination node’s data. The miniature UAV decodes the data

intended for the destination node but relays it in the next phase.

in the n-th time slot, which need to satisfy the two following constraints:

α1[n]+α2[n]≤ Ppeak,∀n ∈N , (8.5a)

1

N

N

∑
n=1

α1[n]+α2[n]≤ Pmax. (8.5b)

Here Ppeak refers to the peak power that can be transmitted by the source node. It denotes

the maximum instantaneous power output that the source is capable of delivering at any

given moment. On the other hand, Pmax represents the maximum power constraint of the

source node over a longer period, which could be a limitation of the total energy consumption

of the source. This parameter is crucial in energy-efficient network designs as it ensures that

the power usage by the source does not exceed a certain threshold, thereby optimizing the

energy consumption over time. The received signal at the UAV can be expressed as:

y
(1)
r [n] = hsr [n]s[n]+ z

(1)
1 [n],∀n ∈N , (8.6)

where z
(1)
1 [n] ∼ N (0, σ21) is the received CSCG noise at the UAV node. By adopting a

PS-SWIPT architecture, the received signal for ID and EH from the Radio Frequency (RF)

source can be expressed as:

y
(1)
EH [n] =

√
ρ[n]

(
y
(1)
r [n]

)
, ∀n ∈N , (8.7)

y
(1)
ID [n] =

√
1−ρ[n]

(
y
(1)
r [n]

)
+ z
(1)
2 [n],∀n ∈N , (8.8)

where 0 < ρ[n] < 1 is the PS ratio, and z2[n] ∼N (0, σ22) is the additional noise caused by
the ID receiver. The UAV node employs a successive interference cancellation (SIC) receiver
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to decode the signals. In fact, the UAV first decodes the data of the destination node and

then removes it from its received signal to obtain its own data in a successive manner. The

received Signal-to-Interference-plus-Noise Ratio (SINR) at the UAV to detect s2[n] can be

stated as:

γ
(1)
d←r [n] =

(1−ρ[n])α2[n]|hsr [n]|2

(1−ρ[n])α1[n]|hsr [n]|2+N
,∀n ∈N , (8.9)

where N = (1− ρ[n])σ21[n] +σ22[n] is the equivalent total noise. Then, the corresponding
SINR to decode UAV’s data can be described as:

γ
(1)
r [n] =

(1−ρ[n])α1[n]|hsr [n]|2

N
,∀n ∈N . (8.10)

In our novel approach, the UAV is not just a relay in the communication system; it also acts

as an independent user in Phase One. This means that, unlike typical systems where the

UAV only relays data, in our model, the UAV has its own data to be processed during the

first phase while simultaneously harvesting energy. In the next phase, this harvested energy

is then used to retransmit data in a cooperative fation.

According to (8.6) and (8.7), the RF harvested power at the UAV by ignoring the noise

power can be expressed as:

E[n] = ηρ[n]|hsr [n]|2τ [n],∀n ∈N , (8.11)

where η ∈ (0,1] is the energy conversion efficiency and τ [n] is the transmission time fraction
for the first phase during the n-th time slot. Besides, it is assumed that the transmission

duration is the same for two phases, i.e., τ [n] = 12 . Consequently, the transmit power at the

UAV can be described by [270]:

Pt [n] =
E[n]

1−τ [n] , ∀n ∈N . (8.12)

The received signal at the destination can be stated as:

y
(1)
d [n] = hsd [n]s[n]+ν1

(1)[n], ∀n ∈N , (8.13)

where ν1
(1)[n]∼N (0, δ1[n]) is the received noise at the destination node in the first phase.

The SINR at the destination node to decode its own data can be written as:

γ
(1)
d [n] =

α2[n] |hsd [n]|2

α1[n] |hsd [n]|2+ δ21[n]
,∀n ∈N . (8.14)

8.2.2 Phase Two(2): Cooperative Transmission

In the first phase, the UAV harvests energy and decodes information from the source node,

while the destination node simultaneously receives its data. This phase employs power-

domain NOMA, where the source transmits the information to both the miniature UAV and

the destination node. The transmitted signal, s[n], is a combination of two symbols, s1[n]

and s2[n], using power allocation coefficients α1[n] and α2[n].

The second phase is distinct in its purpose and functionality. Here, the miniature UAV acts

as an aerial relay to re-transmit the destination node’s data using the power harvested in
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Figure 8.3: Phase Two: Miniature UAV-assisted cooperative THz NOMA-SWIPT network. The

gray links mean inactive links. The miniature UAV relays the data intended to the destination node

in this phase, using the harvested energy from the previous phase.

the first phase. This phase is designed to enhance the efficiency and reliability of the data

transmission to the destination node, particularly in scenarios where the direct link from the

source to the destination might be weak or unreliable. The reason the source does not

continue transmitting signals directly to the destination in Phase Two is to capitalize on

the enhanced transmission capabilities of the miniature UAV as a relay. Using the UAV as

a relay in Phase Two allows for more efficient use of the harvested energy and a potentially

stronger and more reliable link to the destination2.

Beyond the power consumption associated with source node transmission, if the source node

were to continue transmitting (using NOMA) in the second phase, it would inadvertently

introduce interference, detracting from the network’s overall performance due to the simul-

taneous transmissions from both the miniature UAV and the source node. Consequently, it

is strategically advantageous to forego transmission from the source node in Phase Two,

as the UAV already possesses the data intended for the destination node. This approach

mitigates potential interference, thereby enhancing network efficiency and performance.

In this part of the process, which is illustrated in Figure 8.3, the miniature UAV makes use of

the energy it has harvested to send the data to the intended recipient, the destination node.

As a result, the formula for the signal that the destination node receives can be written as

follows:

y
(2)
d [n] =

√
Pt [n]hrd [n]s2[n]+ν2

(2)[n], ∀n ∈N , (8.15)

where ν2
(2)[n]∼N (0, δ22[n]) is the received noise at the destination node. The corresponding

2In summary, the design choice in Phase Two of our protocol is based on the strategic use of the miniature

UAV’s capabilities as a relay to enhance data transmission to the destination node, making full use of the

energy harvested in Phase One. This approach is tailored to maximize the efficiency and reliability of the

network under the constraints and objectives of our proposed system model.
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SINR reads as:

γ
(2)
d [n] =

ηρ[n]|hsr [n]|2|hrd [n]|2

δ22[n]
, ∀n ∈N . (8.16)

In the final step of the process, the destination node employs a technique known as Maximal

Ratio Combining (MRC) to merge the signals transmitted during the two phases. This

method optimizes the signal quality by (weighting and) summing multiple received signals

based on their SINR. As a result of this integration, the combined corresponding SINR can

be mathematically represented as follows:

γMRCd [n] = γ
(1)
d [n]+γ

(2)
d [n], ∀n ∈N . (8.17)

In the context of our study, the miniature UAV is assigned a dual function that is quite

distinctive. During the initial phase, it operates as a conventional user, involved in processing

its own data. In the subsequent phase, it transitions into a relay, tasked with forwarding the

data intended for the destination user. This dual functionality necessitates a unique approach

to calculating the overall data transmission rate. We take into account not only the miniature

UAV’s personal data handling in the first phase but also its special role in transmitting the

destination user’s data during the second phase. To achieve this comprehensive evaluation,

we incorporated the MRC technique. MRC is utilized to aggregate the data directed towards

the destination user from both phases along with the UAV’s own data from the initial phase.

This method of data integration is crucial for our calculation of the total data rate, as detailed

in the equation presented in (8.17). This approach allows for a more accurate representation

of the system’s performance, accounting for the UAV’s multifaceted contribution to the

network’s data throughput.

8.2.3 Energy Efficiency Metric in a Cooperative Network

This concept of EE is particularly valuable for our miniature UAVs network for several reasons.

Firstly, these UAV often operate on limited power resources; thus, optimizing energy usage

extends their operational time and ensures they can cover more area or transmit more data

before needing a recharge. Secondly, by maximizing the amount of data transmitted per

unit of power consumed, we can achieve more efficient communication, which is crucial

for applications requiring real-time or near-real-time data exchange. Finally, focusing on

energy efficiency encourages the development of more sustainable UAV networks, reducing

the environmental impact associated with their power consumption. We now define the

network’s EE as the ratio of the sum data rate to the total network’s power consumption.

That is:

ηEE [n] =
Rsum[n]

Psum[n]
,∀n ∈N , (8.18)

where the sum data rate and total consumed power of the network are given as follows:

Rsum[n] =log2(1+γ
1
r [n])+ log2(1+γ

MRC
d [n]),∀n ∈N , (8.19)

Psum[n] =α1[n]+α2[n]+Pc −Pt [n], ∀n ∈N . (8.20)

In the total power consumption formula, (8.20) Pc represents the constant power consump-

tion at the source, and Pt [n] represents the power used by the miniature UAV in Phase
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Two, the cooperative transmission phase, which is indeed derived from the energy harvested

in Phase One. Please note Pt [n] reduces the source’s energy consumption. The energy

used in Phase Two by the UAV is the energy harvested from the source in Phase One, and

therefore, it does not constitute an additional energy expenditure by the source. That is

why we are subtracting it from the consumed power.

8.3 EE Maximization Problem Formulation

So far, we have studied how the two-phase system works. We explained the source node

transmits data in Phase One to both the destination node and the miniature UAV. We

learned although the miniature UAV has its own data in Phase One, it receives and decodes

the data of the destination node while also harvesting energy. The miniature UAV then

uses the harvested energy in Phase Two to re-transmit data to the destination node. In

this section, we aim to maximize the EE of the miniature UAV network by optimizing the

NOMA power allocation coefficients, PS ratio, and miniature UAV trajectory. Therefore,

the EE optimization problem is formulated as:

P1 : max
ρ[n],α1[n],α2[n],q[n]

N

∑
n=1

ηEE [n] (8.21a)

s.t. :
1

N

N

∑
n=1

Pt [n]≥
1

N

N

∑
n=1

P [n], (8.21b)

γ
(1)
d←r [n]≥ γmin[n], ∀n ∈N , (8.21c)

γMRCd [n]≥ Γmin[n], ∀n ∈N , (8.21d)

0< ρ[n]< 1, ∀n ∈N , (8.21e)

P [n]≥ 0, ∀n ∈N , (8.21f)

α1[n]+α2[n]≤ Ppeak, ∀n ∈N , (8.21g)

1

N

N

∑
n=1

α1[n]+α2[n]≤ Pmax, (8.21h)

q[1] = qs , (8.21i)

q[N+1] = qe , (8.21j)

∥q[n+1]−q[n]∥ ≤ Vmaxδ, ∀n ∈N . (8.21k)

To ensure the effectiveness and reliability of the miniature UAV network, several constraints

are put in place in the EE optimization problem (P1) to manage power consumption, signal

decoding, and SINR, alongside managing the UAV’s position and power allocation strategy.

Constraint (8.21b) stipulates that the power harvested by the UAV across all time slots

must exceed a predetermined minimum level, denoted as P [n] = PEH. This is crucial to

guarantee that the UAV has sufficient power to operate effectively throughout its mission.

Constraint (8.21c) requires that the UAV must be capable of decoding the destination node’s
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data with a signal quality of at least γmin[n]. This ensures the reliability of the data relay

process from the UAV to the destination node. Constraint (8.21d) demands that the SINR

at the destination node must surpass a specific threshold, Γmin[n]. This criterion is vital

for ensuring that the destination node can accurately receive and interpret the signals sent

from the UAV, maintaining the integrity of the communication link. Constraint (8.21e)

and (8.21f) illustrate the control over the PS ratio and validate the transmitted power’s

feasibility from the miniature UAV. These constraints help optimize the UAV’s energy use

and ensure its transmissions are within operational limits. Constraints (8.21g) and (8.21h)

regulate the NOMA power allocation coefficients. This is key for managing how power is

distributed among different communications to maximize efficiency and reduce interference.

Finally, constraints (8.21i), (8.21j), and (8.21k) govern the UAV’s positioning and mobility,

ensuring it operates within a designated area and adheres to flight dynamics and safety

regulations.

The observation that a UAV cannot transmit more data to its destination than it has previ-

ously received, can be captured by the relationship γ
(1)
d←r [n] ≤ γ

(2)
d [n]. This principle forms

what is known as the relay constraint. Addressing this constraint directly within our pri-

mary optimization problem, denoted as P1, significantly complicates the solution process.

This complexity arises from the involvement of product terms of two THz channel gains,

which are influenced by the UAV’s trajectory and the NOMA coefficients. To circumvent

this issue, we employ the following approach. The optimization problem P1 integrates two

distinct constraints aimed at ensuring QoS of the miniature UAV cooperative network:

γ
(1)
d←r [n]≥γmin[n], ∀n ∈N , (8.22)

γMRCd [n]≥Γmin[n], ∀n ∈N . (8.23)

Through a mathematical manipulation, we implicitly account for the relationship γ
(1)
d←r [n]≤

γ
(2)
d [n] by ensuring that Γmin[n]≥ γmin[n]. This approach allows us to navigate the complex-
ities associated with directly addressing the relay constraint in our optimization framework.

8.4 A Two-Stage Solution to EE Problem

The difficulty with problem (P1) stems from its non-convex nature, which arises from the

coupling interactions between the variables to be optimized. This complexity poses signif-

icant challenges to the straightforward application of traditional optimization techniques.

In particular, the objective function of (P1) is characterized by a sum of ratios, a format

that complicates the use of the Dinkelbach method. This method is commonly employed

for solving problems involving ratios but struggles with scenarios involving sum-of-ratios, as

highlighted in the referenced literature [3, 209].

To overcome these hurdles, a two-stage algorithm is proposed. This algorithm is designed to

decouple the intertwined optimization variables, allowing for their independent optimization.

The key innovation here is the introduction of a new strategy aimed at transforming the sum-

of-ratios problem into a subtractive form. By doing so, the complex fractional non-linear

problems are broken down into more manageable parts. Specifically, this involves separating
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the numerators and denominators of these fractions, thereby simplifying the optimization

process.

The motivation behind the two-stage optimization approach in this chapter is primarily due

to the nature of the EE problem we are addressing. The problem (P1) is non-convex and

NP-hard due to the coupling of optimization variables, rendering conventional solutions

like the Dinkelbach method ineffective. Thus, the proposed two-stage solution facilitates

the independent optimization of each variable, offering a pragmatic pathway to tackle the

intricacies of (P1). In the first stage of our two-stage approach, we focus on optimizing the

PS ratio and the UAV’s trajectory, keeping the NOMA power allocation coefficients fixed.

In the second stage, we then optimize the NOMA power allocation coefficients.

One might ask the question of whether a two-stage optimization causes performance degra-

dation. While it is true that a two-stage optimization might lead to certain performance

losses compared to a holistic approach, it is necessary in this context due to the complexity

and non-convexity of the problem. The decoupling of variables in this manner simplifies

the optimization process and makes it more tractable. There certainly are various methods,

such as other convex optimization algorithms or AI algorithms, that could potentially address

this problem. However, these methods might also face challenges with the complexity and

non-convex nature of the problem. AI algorithms, like deep learning models or reinforce-

ment learning strategies, could provide alternative solutions, but they often require extensive

training data and computational resources. Moreover, the integration of non-convex and

non-linear constraints within AI models presents another layer of complexity. The compu-

tational cost required for training sophisticated AI models is another critical consideration.

AI-based approaches may not always guarantee convergence to the optimal solution, espe-

cially in non-convex settings. Deep learning models, for instance, often require substantial

computational power and storage, necessitating access to high-performance computing sys-

tems — resources that are usually scarce or entirely unavailable. This can further make

AI-driven solutions less accessible, especially in scenarios where no training data is initially

available. Therefore, optimization-driven solutions can be preferred depending on the appli-

cation at hand.

Our two-stage solution is a deliberate effort to balance the need for effective problem res-

olution with the practical limitations of miniature UAV resources. This strategic approach

enables us to manage the complexity of the optimization problem effectively while achieving

a balance between performance and computational tractability.

8.4.1 Stage-one: Optimizing PS ratio and Miniature UAV trajectory

In this phase of the optimization process, we focus on iteratively designing the PS ratio and

the trajectory of the miniature UAV, while keeping the NOMA power allocation coefficients

constant. However, the challenge arises from the sum data rate function’s non-convex

nature, attributed to the interaction between the PS ratio and the UAV’s trajectory variables.

This coupling complicates direct optimization.

To address this, the optimization problem is approached in an iterative manner. This method

allows for a step-by-step refinement of both the PS ratio and the UAV’s trajectory, gradually
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moving towards an optimal solution despite the initial complexity.

However, before iterative optimization can effectively begin, a critical step must be under-

taken: transforming the non-linear fractional objective function into a more manageable

subtractive form. This transformation is crucial as it simplifies the problem, making the

subsequent iterative optimization process feasible. The method for this transformation is

grounded in a theorem from the study by Jong et al. [154]. This theorem provides a mathe-

matical basis for decomposing the fractional objective function into a difference of two terms,

thereby detangling the complex relationship between the numerator and the denominator of

the fractions involved. This approach of transforming and then iteratively optimizing repre-

sents a workaround to the non-convexity and coupling issues, enabling the efficient tackling

of what would otherwise be an intractable optimization problem.

Theorem: Let suppose that ρ∗[n] and q∗[n] are the optimal solutions to the problem (P1).
Then, the following optimization problem can provide an optimal solution in the existence

of two vectors, namely, λ= [λ∗1, ...,λ
∗
N ]
T and ψ = [ψ∗1, ...,ψ

∗
N ]
T as follows:

max
ρ[n],q[n]

N

∑
n=1

λ∗n
[
Rsum[n]−ψ∗n(Psum[n])

]
. (8.24)

Furthermore, ρ∗[n] and q∗[n] meet these two following equations:

R∗sum[n]−ψ∗n(Psum[n]) = 0,∀n ∈N , (8.25)

1−λ∗n(Psum[n]) = 0, ∀n ∈N . (8.26)

Proof 8 Please refer to [154]. ■

Specifically, the equivalent subtractive form in (8.24) with the additional parameters {λ∗,ψ∗}
has the same optimal solution as (P1) for given α1[n] and α2[n]. In particular, the problem

(8.24) can be solved iteratively with a two-layer approach, i.e., inner and outer layers. In

the inner layer, (8.24) is solved under given λ and ψ. Then, the two equations (8.25) and

(8.26) are updated in the outer layer to obtain {λ∗,ψ∗}.

8.4.1.1 Inner-layer Problem

In the inner layer of our optimization strategy, addressing the non-convex nature of the

problem requires a segmented approach to manage its complexity effectively. Initially, the

focus is on optimizing the PS ratio, under the assumption that the trajectory of the miniature

UAV and the NOMA power allocation coefficients are predetermined and fixed. This step

involves formulating a specific optimization problem for the PS ratio, carefully designed to

explore the best possible settings for energy harvesting and data transmission efficiency,

given the constraints of the UAV’s current flight path and the allocated power coefficients

for NOMA communications. The formulation of the optimization problem for the PS ratio

can be given as follows:
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P2 : max
ρ[n]

N

∑
n=1

λ∗n
[
Rsum[n]−ψ∗n(Psum[n])

]
(8.27a)

s.t. : (8.21b)− (8.21e).

Upon focusing on the PS ratio, ρ[n], within the optimization framework, problem (P2)

is revealed to possess a convex structure with respect to this variable. This characteris-

tic significantly simplifies the problem, making it amenable to efficient solution techniques

commonly used in convex optimization. Such efficiency arises from the convex problem’s

property, where any local minimum is also a global minimum, ensuring that optimal solutions

for ρ[n] can be determined straightforwardly and reliably.

Following the determination of the optimal PS ratio, attention shifts to the miniature UAV’s

trajectory optimization. This subsequent step maintains the previously optimized PS ratio

settings, integrating them into the conditions under which the UAV’s flight path is refined.

By doing so, the approach systematically decouples the coupling between the PS ratio and

the UAV’s trajectory, allowing for an iterative optimization process that sequentially finds the

best configuration for each set of variables under the framework of the given optimization

problem. This methodical procedure ensures that both energy efficiency and communication

Therefore, we optimize the trajectory under the optimal PS ratio as follows:

P3 :max
q[n]

N

∑
n=1

λ∗n
[
Rsum[n]−ψ∗n(Psum[n])

]
(8.28a)

s.t. :
N

∑
n=1

ηρ[n]β20e
−ξ(∥q[n]−s[n]∥)

∥q[n]−s[n]∥2
≥

N

∑
n=1

P [n], (8.28b)

α2[n]

α1[n]+ x∥q[n]− s[n]∥2eξ(∥q[n]−s[n]∥)
≥ γmin[n], ∀n ∈N , (8.28c)

α2[n] |hsd [n]|2

α1[n] |hsd [n]|2+ δ21[n]

+
ηρ[n]β40
δ22[n]

·
e−ξ(∥q[n]−s[n]∥+∥q[n]−d[n]∥)

∥q[n]−s[n]∥2 ∥q[n]−d[n]∥2
≥ Γmin[n], ∀n ∈N , (8.28d)

(8.21f),(8.21i)− (8.21k),

where

x =
N

1−ρ[n]β20
. (8.29)

When addressing the trajectory optimization in problem (P3), it is acknowledged that this

problem maintains a non-convex nature, which poses significant challenges for direct opti-

mization techniques. To navigate this issue, a strategic transformation of problem (P3) is

employed, focusing on reformulating it into an equivalent form that is more tractable for
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optimization. This involves the introduction of slack optimization variables.

These slack variables act as a mathematical tool that simplifies the problem by breaking

down complex non-linear relationships into more manageable components. By doing so,

constraints and objectives that were previously non-convex can often be redefined in ways

that align better with convex optimization methods, or at least become amenable to efficient

approximation techniques. This transformation does not alter the essence of the problem

but reshapes it into a form where advanced optimization algorithms can be applied more

effectively, enhancing the feasibility of finding an optimal or near-optimal solution to the

UAV’s trajectory optimization challenge under the given constraints. Hence, we transform

the problem (P3) into its equivalent form by introducing slack optimization variables as

follows:

P4 : max
q[n],v [n],t[n],a[n],b[n]

N

∑
n=1

λ∗n
[
Rsum[n]−ψ∗n(Psum[n])

]
(8.30a)

s.t. :
N

∑
n=1

ηρ[n]β20
ea[n]

≥
N

∑
n=1

P [n], (8.30b)

α2[n]

α1[n]+ xea[n]
≥ γmin[n], ∀n ∈N , (8.30c)

α2[n] |hsd [n]|2

α1[n] |hsd [n]|2+ δ21[n]

+
ηρ[n]β40

δ22[n]e
a[n]+b[n]

≥ Γmin[n],∀n ∈N , (8.30d)

v [n]≤
∥q[n]−s[n]∥2

e−ξ∥q[n]−s[n]|
, ∀n ∈N , (8.30e)

t[n]≤
∥q[n]−d[n]∥2

e−ξ∥q[n]−d[n]∥
, ∀n ∈N , (8.30f)

v [n]≤ ea[n], ∀n ∈N , (8.30g)

t[n]≤ eb[n], ∀n ∈N , (8.30h)

(8.21i)− (8.21k),(8.21f),

where

Rsum[n] = log2

(
1+

(
(1−ρ[n])α1[n]β20

N
·
1

ea[n]

))
+ log2

(
1+γ

(1)
d [n]+

(
ηρ[n]β40
δ22[n]

·
1

ea[n]+b[n]

))
, ∀n ∈N . (8.31)

With the transformation of problem (P3) through the introduction of slack optimization

variables, the resulting objective function and constraints are recast as convex functions.

However, despite this transformation into convexity, the problem, now referred to as (P4),

remains intractable due to its complexity and the computational difficulty in directly solving
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it. To effectively approach this challenge, the method of Successive Convex Approximation

(SCA) is employed, which is particularly adept at handling such scenarios.

SCA is a powerful technique that iteratively refines approximations of the original problem

by employing convex over- or under-estimations of the non-convex parts, allowing for the

application of convex optimization methods at each step. Specifically, for (P4), SCA-based

first-order Taylor expansions are utilized to create these approximations. These expansions

provide a way to linearize the non-linear parts of the objective function and constraints,

essentially converting them into a series of linear problems that can be more easily solved3.

The first-order lower bounds are given by:

ea[n] ≥ ea(k)[n]
(
1+ea[n]−ea(k)[n]

)
∆
= ẽa[n],∀n ∈N , (8.32)

eb[n] ≥ eb(k)[n]
(
1+eb[n]−eb(k)[n]

)
∆
= ẽb[n],∀n ∈N , (8.33)

∥q[n]−s[n]∥2

e−ξ∥q[n]−s[n]∥
≥
∥∥q(k)[n]−s[n]∥∥2
e−ξ∥q(k)[n]−s[n]∥

+2
(q(k)[n]−s[n])T

e−ξ∥q(k)[n]−s[n]∥
·

(q[n]−q(k)[n])
e−ξ∥q(k)[n]−s[n]∥

∆
=
∥q̃[n]−s[n]∥2

e−ξ∥q[n]−q(k)[n]∥
, ∀n ∈N , (8.34)

∥q[n]−d[n]∥2

e−ξ∥q[n]−d[n]∥
2 ≥

∥∥q(k)[n]−d[n]∥∥2
e−ξ∥q(k)[n]−d[n]∥

+2
(q(k)[n]−d[n])T

e−ξ∥q(k)[n]−d[n]∥
·

(q[n]−q(k)[n])
e−ξ∥q(k)[n]−d[n]∥

∆
=
∥q̃[n]−d[n]∥2

e−ξ∥q̃[n]−d[n]∥
2 , ∀n ∈N , (8.35)

where

ea
(k)[n] =

∥∥∥q(k)[n]−s[n]∥∥∥2 ·eξ∥q(k)[n]−d[n]∥, (8.36)

eb
(k)[n] =

∥∥∥q(k)[n]−d[n]∥∥∥2 ·eξ∥q(k)[n]−d[n]∥. (8.37)

ea
(k)[n] and eb

(k)[n] express the Taylor points at iteration k . According to the above trans-

formation, the problem (P4) can be approximated as:

3By using the first-order Taylor expansions, first-order lower bounds for the non-convex parts are gener-

ated. These bounds are crucial as they provide a convex underestimation of the original functions, maintaining

the feasibility and optimality conditions within a controlled approximation error. Through iterative updates

based on these linear approximations, the algorithm converges towards the optimal solution of (P4) by solving

a sequence of convex optimization problems, each drawing the solution closer to the optimal point of the

original non-convex problem. This method ensures a pragmatic and efficient pathway to optimize the UAV’s

trajectory and other related variables within the complex operational constraints of the network.
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P5 : max
q[n],v [n],t[n],a[n],b[n]

N

∑
n=1

λ∗n
[
R̃sum[n]−ψ∗n(Psum[n])

]
(8.38a)

s.t. :
N

∑
n=1

ηρ[n]β20
ẽa[n]

≥
N

∑
n=1

P [n], (8.38b)

α2[n]

α1[n]+ xẽa[n]
≥ γmin[n], ∀n ∈N , (8.38c)

α2[n] |hsd [n]|2

α1[n]|hsd [n]|2+ δ21[n]

+
ηρ[n]β40

δ22[n]ẽ
a[n]+b[n]

≥ γmin[n], ∀n ∈N , (8.38d)

v [n]≤
∥q̃[n]−s[n]∥2

e−ξ∥q̃[n]−s[n]∥
, ∀n ∈N , (8.38e)

t[n]≤
∥q̃[n]−d[n]∥2

e−ξ∥q̃[n]−d[n]∥
2 , ∀n ∈N , (8.38f)

v [n]≤ ẽa[n], ∀n ∈N , (8.38g)

t[n]≤ ẽb[n], ∀n ∈N , (8.38h)

(8.21f),(8.21i)− (8.21k),

where

R̃sum[n] = Rsum[n]

∣∣∣∣∣
ea[n]=ẽa[n],eb[n]=ẽb[n]

,∀n ∈N . (8.39)

The problem (P5) can be solved at iteration k by employing convex optimization solvers,

e.g., CVX [3], a widely recognized tool for solving convex problems. We denote each solution

at k-th iteration as F (k). The proposed SCA iterative methodology is incorporated into the

principal architectural design of our algorithm, as will become evident later.

8.4.1.2 Outer-layer Problem

In this phase of the optimization process, the damped Newton method comes into play

as a sophisticated technique to find the optimal values of {λ,ψ}. This method is well-
regarded for its efficiency in handling non-linear equations by iteratively refining guesses

until convergence to the solution. To facilitate this, two functions φn(ψn) and φN+j(λj) are

defined as follows:

φn(ψn) = R
∗
sum[n]−ψ∗n(Psum[n]), (8.40)

φN+j(λj) = 1−λ∗j (Psum[j ]), j ∈ {1, ...,N}, (8.41)

where φn(ψn) represents the difference between the optimal sum data rate R
∗
sum[n] and

activated total power consumption Psum[n] whereas φN+j(λj) quantifies how far total power

consumption Psum[j ] is from unity. It is demonstrated in [9] that the optimal solution
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{λ∗,ψ∗} is found if and only if φ(λ,ψ) = [φ1,φ2, ...,φ2N ]T = 0. This condition effectively
means that the optimal solutions {λ∗,ψ∗} are those that equilibrate the specified functions,
indicating a balance between the sum data rate and power consumption across the system.

Accordingly, the updated value of the λi+1 and ψi+1 in the iteration i can be obtained by:

λi+1 = λi +ζiwiN+1:2N , (8.42)

ψi+1 =ψi +ζiwi1:N , (8.43)

wherew= [φ́(λ,ψ)]−1φ(λ,ψ), and φ́(λ,ψ) is the Jacobian matrix of φ(λ,ψ). This iterative
procedure for updating λ and ψ at each iteration is meticulously crafted to edge closer to

this equilibrium.

Moreover, ζi is the largest value of Ξm satisfying∥∥φ(λi +ΞmwiN+1:2N ,ψi +Ξmwi1:N)∥∥≤ (1−εΞm)∥φ(λ,ψ)∥ , (8.44)

where m ∈ {1,2, ...}, Ξm ∈ (0,1), and ε∈ (0,1). By employing the damped Newton method,
adjustments are made based on the current estimates and the method’s insights into the

problem’s curvature, gradually refining these parameters. This iterative adjustment ensures

a precise and convergent path towards identifying the optimal set of {λ∗,ψ∗}, marking a
critical step in optimizing the network’s overall efficiency and effectiveness.

8.4.2 Stage-two: Optimizing power coefficients

In the second stage of the optimization process, attention shifts towards the design of

power allocation coefficients, the last component for enhancing the network’s performance,

particularly in terms of EE in this study. The groundwork for this new framework is laid by

formulating the problem as a sum-fraction problem, which will be adopted later to design

power allocation coefficients. Consider the sum-fraction problem formulated as follows:

min
Ω∈C

J

∑
j=1

Bj(Ω)

Aj(Ω)
, (8.45)

where J is the maximum number of fractional terms, and Ω is the optimization variable

vector with the domain of C. Aj(Ω) and Bj(Ω) are nominator and denominator of the n-th

fractional term with positive values. The optimization problem (8.45), initially presented as

a sum-fraction problem, is ingeniously restructured into an equivalent form that facilitates

a more straightforward approach to finding the optimal solution. In the following, it is

demonstrated that (8.45) has an equivalent form, which is:

min
Ω∈C,ιj>0

J

∑
j=1

ιjB
2
j (Ω)+

J

∑
j=1

1

4ιj

1

A2j (Ω)
. (8.46)

In fact, the solution to both (8.45) and (8.46) is the same. The equivalent form transforms

the problem into minimizing the sum of two distinct series. The first series scales the square

of the denominator, B2j (Ω), by a factor ιj , while the second series inversely scales the

reciprocal of the squared inverse of the numerator, A2j (Ω), by (4ιj)
−1. This transformation

introduces an auxiliary variable, ιj > 0, for each fractional term, which plays a critical role in
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bridging the original sum-fraction formulation to this new convex format. It is noteworthy

that if Aj(Ω) is a concave function and Bj(Ω) is a convex one, then the problem (8.46) is

convex for the given ιj . Based on the above analysis, the convex problem (8.46) is solved

for a given ιj =
1

2Aj (Ω)Bj (Ω)
, and then the value of ιj will be updated in the next iteration.

Consequently, with a specified PS ratio and predefined miniature UAV trajectory, problem

(P1) can be represented in the following equivalent manner:

P6 : min
α1[n],α2[n],ι[n]>0

N

∑
n=1

ι[n]P 2sum[n]+
N

∑
n=1

1

4ι[n]

1

R2sum[n]
(8.47a)

s.t. :
α2[n]|hsr [n]|2

γmin[n]
−α1[n]|hsr [n]|2 ≥

N

(1−ρ[n]) , ∀n ∈N , (8.47b)

α2[n]|hsd [n]|2−α1[n]|hsd [n]|2χ[n]≥ δ21[n]χ[n], ∀n ∈N , (8.47c)

(8.21f),(8.21g),(8.21h),

where χ[n] and ι[n] are given as follows:

χ[n] = Γmin[n]−
ηρ[n]|hsr [n]|2|hrd [n]|2

δ22[n]
, ∀n ∈N , (8.48)

ι[n] =
1

2P 2sum[n]R
2
sum[n]

, ∀n ∈N . (8.49)

It can be observed that all constraints are linear and convex. Nevertheless, the objective

function is non-convex due to the non-concavity of the sum data rate function. To deal

with this issue, we utilize the result of the following corollary [3].

Corollary 2 Consider F as a decreasing function, then

min
Υ∈C

J

∑
j=1

Fj
(
Aj(Υ)
Bj(Υ)

)
, (8.50)

is equivalent to the following problem:

min
Υ∈C,ϱj

J

∑
j=1

Fj
(
2ϱj

√
Aj(Υ)−ϱ2j Bj(Υ)

)
, (8.51)

with the updated value of ϱj =

√
Aj (Υ)
Bj (Υ)

.

Proof 9 Please refer to [3]. ■

Adopting the results of Corollary 1 allows for the transformation of the non-convex terms

within the objective function of problem (P6), specifically addressing the complexities in-

troduced by the second term. Corollary 1 suggests a methodology for handling non-convex
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functions within an optimization problem, making it possible to recast them in a manner that

retains the problem’s original intent while rendering it more amenable to solution through

convex optimization techniques. The transformation typically involves introducing auxiliary

variables or applying mathematical operations that expose the underlying convex structure,

allowing for the application of convex optimization solvers. By adopting the result of Corol-

lary 1, the second term of the objective function in (P6) can be equivalently written as:

min
α1[n],α2[n],ϱ[n]

N

∑
n=1

1

4ι[n]

1

R̂2sum[n]
(8.52)

where

R̂sum[n] = log2(1+γ
1
r [n])

+ log2

(
1+γ2d [n]+2ϱ[n]

√
α2[n] |hsd [n]|2−ϱ2[n](α1[n] |hsd [n]|2+ δ21[n])

)
,

(8.53)

where

ϱ[n] =

√
α2[n] |hsd [n]|2

α1[n] |hsd [n]|2+ δ21[n]
,∀n ∈N . (8.54)

The modified sum data rate R̂sum[n] is now biconcave with respect to the power allocation

coefficients and ϱ[n]. Accordingly, the multi-convex optimization problem can be formulated

as:

P7 : min
α[n],ϱ[n]

N

∑
n=1

ι[n]P 2sum[n]+
N

∑
n=1

1

4ι[n]

1

R̂2sum[n]
(8.55a)

s.t. : (8.21f),(8.21g),(8.21h),(8.47b),(8.47c),

where α[n] = [α1[n],α2[n]] ∈ R2×1.

It is worth noting that Psum[n] is a function of power allocation coefficients, and every

coefficient has its own constraint. Hence, the terms of Psum[n] and R̂sum[n] are decoupled

to optimize Psum[n] distributively. As a result, the Augmented Lagrangian Method (ALM)

is adopted where a penalty term is added to the Lagrange function of the problem (P7) as
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follows:

Lκ (α1[n],α2[n],℘,θ,Θ,µ,ϑ) =
N

∑
n=1

ι[n]P 2sum[n]+
N

∑
n=1

1

4ι[n]

1

R̂2sum[n]

+
1

2κ

[([ N

∑
n=1

℘n+κ(
N

(1−ρ[n]) −
α2[n]|hsr [n]|2

γmin[n]
+α1[n]|hsr [n]|2)

]+)2
+

([ N

∑
n=1

θn+κ(δ21[n]χ[n]−α2[n]|hsd [n]|2+α1[n]|hsd [n]|2χ[n])
]+)2

+

([ N

∑
n=1

Θn+κ(α1[n]+α2[n]−Ppeak)
]+)2

+

([
µn+κ(

1

N

N

∑
n=1

α1[n]+α2[n]−Pmax)
]+)2

+

([ N

∑
n=1

ϑn−κP [n]
]+)2

−
N

∑
n=1

℘2n−
N

∑
n=1

θ2n−
N

∑
n=1

Θ2n−µ2n−
N

∑
n=1

ϑn

]
, (8.56)

Note that it has been determined that the ALM performs better than the traditional sub-

gradient or dual-descent method, as highlighted by Bertsekas [277]. A key advantage of

ALM is its superior performance in navigating the complex landscape of optimization prob-

lems, such as (P7), where it not only facilitates a more efficient search for optimal solutions

but also ensures robust adherence to constraints. One of the significant merits of ALM

is its convergence properties. Unlike some methods that require a large penalty term to

ensure convergence towards an optimal or near-optimal solution, ALM guarantees conver-

gence without necessitating such conditions. This makes ALM particularly appealing for a

wide array of optimization problems where the balance between objective optimization and

constraint satisfaction is delicate and complex.

In the context of (P7), the augmented Lagrangian incorporates a penalty factor, κ , along-
side Lagrange multipliers {℘,θ,Θ,µ,ϑ}. These components work together to steer the
optimization process towards solutions that are feasible within the problem’s constraints

while penalizing deviations from these constraints to maintain a strict adherence to them.

Each iteration of the optimization, denoted as l , yields a solution G(l), progressively refining

the approach towards an optimal or sub-optimal solution. Finally, our proposed efficient low

complexity sub-optimal algorithm is sketched in Algorithm 9.

8.5 Complexity Analysis

The overall complexity of the proposed two-stage solution is determined by the complexities

of solving three optimization problems: P2, P5, and P7, associated with finding the optimal

Power-Splitting factor, the miniature UAV trajectory, and the NOMA power coefficients,

respectively. For P2, involving 3N constraints and N decision variables, the complexity

aligns with that of an Interior Point Method for convex optimization, expressed as O1 =
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Algorithm 9 Iterative Resource Allocation Algorithm for EE maximization of THz-NOMA

SWIPT-aided Miniature UAV Networks

Input: Set iteration indices i = 0,k = 0, l = 0,

Set the maximum convergence iteration index Imax,

Set the tolerance to ϵ1 = ϵ2 = 10
−3,

Initialize λ, ψ, a(k)[n],b(k)[n],v (k)[n], t(k)[n], ρ, q(k), α,

Set Lagrange multipliers ℘l ,θl ,Θl ,µl ,ϑl , and the penalty factor κ l .
1: repeat

2: Given {λ,ψ,α[n],q[n]}, solve (P2) to obtain ρ[n].
3: while |F (k)−F (k−1)| ≥ ϵ1 do
4: Given {α[n],ρ[n]}, solve (P5) to obtain q(k)[n].
5: Update b(k) = ln(v (k)[n]), a(k) = ln(t(k)[n]) according to (8.34) and (8.35).

6: Set k = k+1.

7: end while

8: if (8.44) is satisfied then return (ρ∗[n],q∗[n]).
9: else Update λ and ψ according to (8.42) and (8.43).

10: Set i = i +1.

11: until (8.25) and (8.26) are satisfied or i = Imax.

12: while |G(l)−G(l−1)| ≥ ϵ2 do
13: Given {q[n],ρ[n]}, solve (P7) to obtain α[n].
14: Update the Lagrange multipliers ℘l+1n ,θl+1n ,Θl+1n ,µl+1n , and ϑ

l+1
n .

15: Update the penalty factor κ l+1 = 2κ l .
16: Set l = l +1.

17: end while

18: return (ρ∗[n],q∗[n],α∗[n]).

O(N(3N)2). P5 has (8N+3) constraints and 5N decision variables. Its complexity, based
on the Successive Convex Approximation methodology, is O2 = O((8N +3)(5N)3). The
complexity of P7, following the Augmented Lagrangian Method, is O3 =O(N2). Hence, the
total complexity of the proposed solution is the sum of the individual complexities: Ototal =

O1+O2+O3 =O(9N3+(8N+3)(5N)3+N2), indicating a polynomial time complexity of
degree four.

8.6 Simulation Results and Discussions

In the context of our simulation framework, we consider a scenario within a defined square

area, each side measuring 30 meters, designed to contain a single user and one miniature

UAV, both of which are positioned in a random manner within this space. To mitigate

the occurrence of peaks in path loss, the selection of the carrier frequency was carefully

made at f = 1.2 THz, coupled with a chosen transmission bandwidth of 10 GHz. Ac-

knowledging the critical role that water vapor plays in influencing molecular absorption loss

in THz channels, our model accounts for the frequency-dependent absorption coefficient,

ξ(f ), by attributing it exclusively to the presence of water vapor molecules, as referenced

in the literature [274, 278, 279]. Furthermore, Vmax = 1 m/s, ϖ = 0.1 Sec, T = 45 Sec,

σ22 = δ
2
1[n] = δ

2
2[n] =−174 dBm/Hz, H1 =2,H2 =3 meters, Ppeak = Pmax =1,Pc =0.52 W ,
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Table 8.1: Simulation Parameters for EE maximization of THz-NOMA SWIPT-aided Miniature

UAV Networks.

Parameter Value

Area side length 30 meters

Carrier frequency 1.2 THz

Transmission bandwidth 10 GHz

Absorption coefficient, ξ(f ) Frequency-dependent

Maximum flying speed of the miniature UAV, Vmax 1 meter/Sec

Duration of each time slot, ϖ 0.1 Sec

Miniature UAV Operation time, T 45 Sec

Noise power spectral density −174 dBm/Hz
Source Node altitude, H1 2 meters

Miniature UAV altitude, H2 3 meters

Peak power, Ppeak 1 W

Circuit power, Pc 0.52 W

following the guidelines set forth in referenced studies[270, 274].

We have derived all statistical results based on the aggregation of data obtained from

an extensive series of simulation trials, generating numerous random realizations of the

channel gains. This methodical approach allows for a comprehensive understanding of the

dynamics involved in the deployment and operation of the miniature UAV within the specified

environmental conditions, offering valuable insights into the optimization of UAV-assisted

communication networks. All simulation parameters are also summarized in Table 8.1.

To rigorously evaluate the effectiveness of our proposed resource allocation algorithm, we

conducted a comparative analysis against a set of benchmark methods, each designed to

highlight different aspects of system performance under varied conditions:

• Method A: Evaluates the proposed algorithm under a NOMA framework with a static
NOMA power coefficient.

• Method B: Compares the system’s performance under dual access mechanisms (NOMA
vs. Orthogonal Multiple Access (OMA)) to determine which is superior.

• Method C: Analyzes the proposed algorithm assuming a pre-defined UAV flight course.

• Method D: Considers a scenario with uniform PS factors (ρ[n] = 0.5,∀n ∈N ).

• Method E: Utilizes a fractional programming approach from [280] without optimizing
PS factors.
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Figure 8.4: The effect of average network transmit power, p̄sum, on EE of THz-NOMA SWIPT-

aided miniature UAV networks.

Fig. 8.4 presents the EE dynamics as influenced by the average network transmission power,

denoted by p̄sum = Pmax+Ppeak+Pc −PEH. Within this representation, the curve labeled
’Initial’ sketches out the EE performance following an initial, non-optimized (random) setting

of the miniature UAV flight path. A noteworthy observation from our investigation is the

consistent outperformance of our proposed algorithm over various benchmark algorithms.

This superiority becomes even more pronounced with an increase in p̄sum, indicating a relative

expansion in performance disparity.

In a parallel comparison depicted in Fig. 8.4, we examined the average EE performance

across these five distinct methodologies. The results demonstrated the superiority of our

proposed strategy, showing performance enhancements of:

• 30.3% compared to Method A (static NOMA power coefficient)

• 23.0% compared to Method B (NOMA vs. OMA)

• 21.2% compared to Method C (pre-defined UAV flight course)

• 18.1% compared to Method D (uniform PS factors)

• 7.26% compared to Method E (fractional programming without PS optimization).

This empirical evidence firmly establishes the proposed algorithm’s capability to significantly
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Figure 8.5: The trajectory of miniature UAV in the cooperative THz NOMA-SWIPT network.

enhance EE, highlighting its utility and effectiveness within miniature UAV-assisted commu-

nication frameworks.

Fig. 8.5 presents the results of trajectory optimization for the miniature UAV, showcas-

ing the paths that have been refined for enhanced operational efficiency. Moving forward,

Fig. 8.6 embarks on a detailed analysis of how the duration of the mission, i.e., the miniature

UAV’s operational time, denoted by the parameter T , impacts the EE of various benchmark

schemes. An interesting pattern emerges from this examination: as mission time extends,

there’s a notable improvement in EE for schemes operating under fixed trajectories (Method

D) and those initiated with non-optimal, feasible configurations (labelled ’Initial’). This up-

ward trend in EE, attributable to prolonged communication opportunities and the flexibility

to adjust flight parameters over time, is not uniformly observed across all methods. Specif-

ically, Methods A, B, and C do not exhibit this consistent rise in EE with an increase in

T . Quantitatively, the extension of mission time is associated with significant boosts in EE
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Figure 8.6: The EE vs. the miniature UAV’s operational time in the THz-enabled SWIPT network.

performance, enhancing it by at least 37.1%,26.8%,22.8%, and 16.5%,12.8% respectively.

This enhancement suggests that longer mission times offer a strategic advantage by allow-

ing for more optimal communication strategies and flight parameters’ adjustment, thereby

improving overall efficiency. However, the relationship between mission time and EE is nu-

anced. The interaction among optimization variables results in a non-linear, albeit generally

increasing, trend in EE as mission time is extended. This phenomenon indicates the complex

dynamics at play when optimizing for EE, where certain adjustments can lead to significant

gains in efficiency. The observation that mission time can have such a profound impact

on EE underscores an intriguing challenge: minimizing the task completion time for UAV

relay systems to meet specific EE criteria. This challenge points towards a delicate balance

that must be struck between operational efficiency and the urgency of mission completion,

highlighting a fertile ground for further research and exploration in optimizing UAV-based

communication networks.

Figure 8.7 demonstrates the intricacies of how the molecular absorption coefficient — a

fundamental factor in THz communication systems — affects EE under a variety of environ-

mental conditions. A salient observation from this figure is the evident inverse relationship

between the molecular absorption coefficient and the EE across different communication

schemes. Specifically, as the absorption coefficient increases, signifying higher propaga-

tion losses, there is a noticeable decrement in EE for all analyzed methods. This trend is

primarily ascribed to the aggravated signal attenuation caused by environmental variables

such as humidity and temperature, which intensify molecular absorption. This increase in

molecular absorption, while potentially minimizing information leakage from the miniature
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Figure 8.7: The EE vs. molecular absorption in the THz-enabled miniature UAV network.

UAV, simultaneously impairs the quality of signal reception at the intended destination node.

Such a degradation has a direct adverse impact on the overall EE. Remarkably, even under

these challenging environmental conditions, the proposed solution distinctly surpasses the

performance of baseline methods. This underscores the resilience and effectiveness of our

proposed algorithm, adeptly counteracting the detrimental effects of increased molecular

absorption to sustain higher EE levels in networks that are empowered by THz technology

and UAV integration. This consistency in outperforming baseline approaches underlines the

adaptability and superiority of the proposed solution in maintaining optimal communication

efficiency, regardless of the environmental constraints encountered.

8.7 IRS-based UAV with Underlaid D2D Users in THz

Networks

Throughout our journey in this chapter, we have pioneered a groundbreaking concept, the

’miniature’ UAV, envisioned as a mobile relay akin to an IRS with the unique ability to change

its location dynamically. Recognizing that an IRS fundamentally acts as a relay by reflecting

and manipulating signal paths, the miniature UAV (as a relay but not generally) takes this

concept airborne, offering a new dimension of flexibility and adaptability in network topology.

This dissertation has been devoted to a deep dive into IRS technology, probing its capabilities,
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Figure 8.8: Model of the UAV with underlaid device-to-device (D2D) communications network.

The system model of an uplink single macro cell OFDMA-based cellular network with one base

station to serve M CUs and K DUs. In this figure, the green arrow shows the cellular transmission

link between the base station and the CUs, while the dotted line indicates the D2D links.

limitations, and applications. Hence, a natural progression for our work involves examining

the practical integration of such miniature UAVs into IRS-aided networks. The intriguing

question we pose is: How can we leverage the agility and dynamism of miniature UAVs to

enhance IRS functionality within complex network environments?

To avoid redundancy, we have deliberately chosen not to repeat system models previously

discussed. Instead, we propose that future studies should build upon the established sys-

tem model, extending it to incorporate the unique characteristics of miniature UAVs. This

innovative approach opens up a plethora of opportunities for improving network coverage,

optimizing signal quality in real-time, and delivering robust wireless communication in sce-

narios where fixed IRS installations might fall short.

In essence, the inclusion of miniature UAVs into our system model ushers in a novel era

of dynamic, aerial IRS solutions that could transform the infrastructure of modern wireless

networks. It invites a fascinating research avenue that promises to push the boundaries of

current wireless communication technologies and pave the way for unprecedented advance-

ments in the field.

Taking Device-to-Device (D2D) communication as an example to explore the possible inte-

gration of miniature UAVs, its integration with UAVs can redefine the operational efficiency

of wireless communication systems, particularly in regions where conventional communica-

tion infrastructure is sparse or non-existent for D2D services [1]. UAVs serve not only as agile



224 CHAPTER 8. ENERGY EFFICIENT THZ MINIATURE UAV NETWORKS

aerial platforms enhancing coverage but also as spectrum-sharing facilitators that can signif-

icantly boost network throughput. This innovative model allows for a dual-communication

modality where some users can establish direct D2D links while others are served through

the UAV, resulting in a versatile and high-performing network.

Recent research has studied the optimization of UAV-D2D integrated networks [281, 282,

283, 284, 125, 285, 286, 287, 288, 289]. Studies have highlighted the delicate balance

between leveraging UAVs for extended coverage and the efficient use of D2D communica-

tion for localized data exchange. These investigations consider crucial parameters such as

data rate, coverage, power control, and the strategic deployment of UAVs to augment the

network’s capabilities [281, 284]. For example, one study examined the pivotal interplay be-

tween the altitude of UAV and the density of D2D pairs, unpacking their collective influence

on network coverage and data-rate performance [282]. Another research effort provided

insights into the multi-hop capabilities of D2D pairs under the watchful guidance of a UAV,

particularly within the context of IoT networks [289]. Further research optimized the power

control in UAV-aided D2D communications, focusing on maximizing throughput while adher-

ing to interference constraints [283]. Additionally, the efficacy of employing NOMA within

UAV-aided networks was scrutinized, revealing the potential for power control optimization

to mitigate outage probabilities for both cellular users and D2D pairs, thus enhancing overall

communication reliability [283].

These pioneering studies underscore the potential of integrating UAVs with D2D commu-

nication,a synergy that not only extends the reach of networks but also fine-tunes their

performance across diverse scenarios. This research trajectory is especially pertinent as we

steer towards a future where the harmonization of aerial and ground-level communication

frameworks will be paramount. The continued exploration and advancement in this domain

promise to fortify the robustness of wireless systems, ensuring connectivity resilience even

in the most challenging environments.

We propose an innovative approach that leverages miniature UAVs operating in the THz

frequency network as transmitters (the miniature UAV we developed earlier is not a relay

anymore but rather an aerial base station). In this scheme, the IRS is employed as a strategic

enhancer of signal coverage. This proposition stands at the confluence of advanced aerial

mobility and cutting-edge reflective technology, potentially ushering in an era of communi-

cation networks characterized by expanded reach and improved signal fidelity. To explore

further, we consider a downlink UAV-NOMA system with an underlying D2D communication

network, as shown in Fig 8.8. As seen, the operational region is a circular domain of radius

R. The network hosts single-antenna CUs and DU pairs, succinctly represented by sets

K = {U1, ...,UK} = {1, ...,K} and M = {D1, ...,DM} = {1, ...,M}, respectively. The users
are randomly placed within the circular region, with CU users engaged in communication

with a THz-enabled UAV. This UAV, pivotal in our system model, is complemented by an

IRS to enhance its communication capabilities. Ensuring unobstructed interaction between

the IRS, the UAV, and the terrestrial CUs, the IRS is strategically positioned at the service

area’s periphery, enabling an omnidirectional perspective over the ground users. The IRS

is constructed from L= Lx × Ly Passive Reflection Units (PRUs), which collectively form
a Uniform Linear Array (ULA). The ensemble of IRS elements is encapsulated by the set

L= {1, ...,L}.

The architecture of our system further entails an underlay strategy for D2D communications,
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where each D2D receiver is subject to interference originating not only from the UAV but

also from other D2D transmitters. Conversely, CU must contend with interference from

all D2D transmitters. A three-dimensional Cartesian coordinate framework serves as our

mathematical canvas, allowing for precise representation of the nodes’ positions without

sacrificing generality. The UAV’s trajectory in this spatial tapestry is articulated as q(t) =

[x(t),y(t),z(t)]T ∈ R3×1, while the coordinates of CUs and DUs are defined by ck(t) =
[cx,k(t),cy,k(t),0]

T ∈R3×1, ∀k ∈K and vm(t) = [vx,m(t),vy,m(t),0]T ∈R3×1, ∀m ∈M for
the duration 0< t < T , respectively. The IRS location is denoted by s= [sx , sy , sz ]

T ∈R3×1.

We postulate that the incorporation of IRS into the miniature UAV THz network infrastruc-

ture will significantly enhance network performance, benefiting both DUs and CUs in terms

of spectral efficiency. This improvement is not limited to data transmission rates alone; we

also anticipate a notable boost in the overall energy efficiency of the network. The IRS

achieves this by smartly redirecting and focusing the signal energy, which otherwise might

dissipate or not reach the intended users effectively, thereby optimizing the use of available

spectral resources and reducing the energy required for transmissions.

This hypothesis rests on the ability of the IRS to manipulate electromagnetic waves in a

controlled manner, thus enabling a more directed and efficient signal propagation. For DUs,

this means an enhanced user experience with faster data rates and reduced latency. For

CUs, the benefits include improved coverage and reliability, even at the network’s edge or in

traditionally challenging environments for signal penetration. The cumulative effect of these

enhancements is a network that not only performs better in delivering services to its users

but does so with greater energy parsimony.

The anticipated improvements in spectral and energy efficiency underscore the transforma-

tive potential of IRS technology. By bridging the gap between the increasing demand for

high-quality wireless communication services and the imperative for energy conservation,

the IRS emerges as a pivotal technology in the sustainable evolution of wireless network

infrastructures. This is also expected in a miniature UAV THz network.

8.8 Conclusion

In this chapter, we have tackled the intricacies of enhancing the efficiency of a cooperative

TeraHertz (THz) Non-Orthogonal Multiple Access (NOMA) supported miniature Unmanned

Aerial Vehicle (UAV) network integrated with Simultaneous Wireless Information and Power

Transfer (SWIPT). This work commenced with the formulation of an Energy Efficiency (EE)

optimization problem aimed at refining the network’s resource allocation scheme. A novel

deployment strategy for the miniature UAV was introduced, tailored to augment wireless

THz connectivity. This strategy is distinctive in its meticulous consideration of the molecular

absorption phenomenon, a critical factor in the THz-enabled UAV path loss channel gain

model.

Building upon this foundation, we crafted an optimization problem with the goal of im-

proving EE within a NOMA-SWIPT cooperative UAV framework, ensuring compliance with

stringent Quality of Service (QoS) benchmarks. The crux of this optimization problem was

the strategic modulation of decision variables, including the UAV’s positioning, the Power-
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Splitting (PS)-SWIPT ratio, and the NOMA power allocation coefficients, all of which play

pivotal roles in the network’s operational efficiency.

To navigate the complexities of the EE optimization, we devised an iterative solution method-

ology. This method decomposes the problem into three more manageable sub-problems,

solved using a two-stage framework. This procedural innovation not only facilitated a more

streamlined solution process but also showcased its effectiveness through compelling numer-

ical outcomes. These results proved the resource allocation algorithm’s superiority by com-

paring it against baseline scenarios that did not incorporate optimizations related to minia-

ture UAV trajectory, NOMA power, or SWIPT PS. Such comparative analysis illuminated

our proposed strategy’s significant contributions to enhancing the network’s performance

efficiency. It underscored notable advancements in miniature UAV endurance and battery

longevity, marking a substantial leap forward in the operational capabilities of THz-NOMA-

enabled miniature UAV networks with SWIPT. This work not only expands the frontier of

(miniature) UAV network optimization but also sets a precedent for future research in the

domain, promising more resilient, efficient, and sustainable aerial communication networks.
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Conclusion

IN this dissertation, we embarked on an in-depth exploration of Intelligent Reflecting Sur-faces (IRSs) and their transformative impact on the enhancement of wireless network

capabilities. Our examination of IRS technology proved its revolutionary role in enhancing

networks’ key performance indicators (KPIs) (such as data rate, power, spectral, and energy

efficiencies) and optimizing resource allocation, thereby illuminating its substantial influence

on the evolving landscape of wireless communications. Our analytical (sometimes math-

ematically involved) approach revealed the unique benefits that laser-aided systems offer,

notably through the advanced beamforming capabilities for amplifying desired signals and

the dynamic suppression of co-channel interference. This is achieved by the IRS’s ability to

sense the surrounding wireless environment and adjust its reflection coefficients in real time

to optimize signal quality.

Throughout this research, we ventured into the integration of IRS with a variety of ser-

vice types, including Machine Type Communications (MTC), Ultra-Reliable Low-Latency

Communication (URLLC), Internet of Things (IoT) deployments, and Mobile Edge Com-

puting (MEC). This exploration demonstrated IRS setups could open up new perspectives

to enhance the efficiency and reliability of these services. We introduced and developed

several innovative, low-complexity algorithms designed to establish (sub-)optimal resource

allocation policies in GLSS-aided networks. Our analytical insights were validated through

extensive simulations, providing a strong foundation for the practical implementation of IRS

in real-world scenarios.

As we conclude this dissertation, we present a comprehensive summary of our findings, re-

flections on the journey undertaken, and the broader conclusions drawn from our research.

Moreover, we offer a few potential future directions for IRS-aided wireless communication

networks, highlighting the untapped possibilities and emerging challenges that await. Our

discussion extends to envisage the integration of IRS with emerging technologies, anticipat-

ing the innovative applications and solutions that IRS technology could unlock in the quest

for more efficient, reliable, and versatile wireless communication systems. This final chapter

serves not only as a closure to our current research endeavors but also as a beacon guiding

future explorations in the ever-evolving domain of IRS-enhanced wireless networks.
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9.1 Main findings

Now we can look at an Intelligent Reflecting Surface (IRS) as an innovative technology de-

signed to enhance wireless network performance by smartly manipulating the propagation of

ElectroMagnetic (EM) waves. Comprising numerous passive or active reflecting elements,

an IRS can adjust the phase shifts of incoming signals, thereby directing them toward specific

receivers to improve signal strength, coverage, and overall network efficiency. This disser-

tation has delved deeply into the exploration, analysis, and application of IRS technology,

recognizing its potential to revolutionize the field of wireless communications. Focusing on

the myriad ways IRS can be integrated into existing or future networks to address current

challenges and optimize performance, the study has unfolded various dimensions of this

cutting-edge technology.

In the following paragraphs, we will outline the key contributions of this study, highlighting

the significant strides made in advancing our understanding and application of IRS within

wireless communication systems.

Contribution 1

Optimizing Power Efficiency in SWIPT Networks through Advanced Beamforming and

Antenna Selection

The initial contribution of this dissertation sets the stage for subsequent explorations by

focusing on the optimization of power efficiency within single-cell networks that incorpo-

rate multi-antenna and multi-user configurations, specifically focusing on the integration of

Simultaneous Wireless Information and Power Transfer (SWIPT). By tackling the dual objec-

tives of maximizing energy harvested and minimizing power consumption, we introduced an

optimization strategy that navigates the complexities of beamforming and antenna selection.

This foundational contribution not only establishes the theoretical background necessary for

optimizing SWIPT-enabled networks but also demonstrates, through extensive simulations,

the potential enhancements in power and energy efficiencies. The development and vali-

dation of low-complexity, locally optimal solutions signify a major step towards balancing

energy conservation and operational efficiency in future wireless communication networks,

serving as the baseline upon which further IRS-related investigations are based.

Contribution 2

Enhancing URLLC with IRS: A Leap Towards Ultra-Reliable Communications

The second major contribution is the utilization of IRS within multi-user Multiple-Input

Single-Output (MISO) systems to significantly enhance Ultra-Reliable Low-Latency Com-

munication (URLLC) services. By aiming to reduce total transmission power through the

simultaneous optimization of active and passive beamformers, we designed an advanced Al-

ternating Optimization (AO) algorithm. Our approach not only illuminates the intricate rela-
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tionship between active and passive beamforming but also highlights the substantial promise

the IRS holds for refining URLLC systems. Supported by simulation studies, this contribu-

tion underscores the efficiency and effectiveness of the proposed solutions, marking a pivotal

step towards harnessing the full capabilities of the IRS in future wireless communications.

Contribution 3

IRS-Assisted MTC Systems: Bridging IoT Connectivity with Energy Efficiency

We explored the dynamics of integrating Machine Type Communication (MTC) technol-

ogy within a multi-user MISO system, enhanced through the deployment of an IRS. We

optimized the system’s total Energy Efficiency (EE) while maximizing the serviceability of

IoT users through a strategic joint optimization of active and passive beamformers. The

introduction of another AO algorithm highlighted the IRS’s significant impact on improv-

ing system efficiency and its ability to accommodate a larger number of users within IoT

frameworks. Through this exploration, a delicate balance emerges between EE and Spectral

Efficiency (SE), revealing the potential of IRS technology in optimizing the performance of

MISO MTC-enabled networks.

Contribution 4

Leveraging IRS for Computational Offloading in MEC-Enabled Multiuser MTC Net-

works

The next contribution of this dissertation delved into the synergy between MEC and multiuser

MTC scenarios. We underlined the pivotal role of the IRS in facilitating computational

offloading to improve latency and reliability for MTC devices. By optimizing the joint radio

resource allocation and edge offloading decisions within an IRS-aided network, we presented a

novel approach toward enhancing the efficiency of edge computing for MTC environments.

Through the development of an efficient iterative algorithm and supported by simulation

results, we extended the utility of IRS beyond signal enhancement, illustrating its capacity

to significantly impact the computational aspects of wireless networks.

Contribution 5

Active IRS in mmWave Networks: Pushing the Boundaries of High-Frequency Wireless

Communication

While the previous contributions primarily focused on Frequency Range 1 (FR1), delving

into the potentials and challenges within sub-6 GHz bands, we ventured into uncharted ter-

ritory with our fifth contribution. Our next contribution marks our inaugural exploration

into Frequency Range 2 (FR2), specifically within the high-frequency spectrum of mmWave
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wireless networks. To this end, we investigated an active IRS-assisted MISO system operat-

ing in mmWave frequencies. We addressed the challenge of optimizing the system sum rate

by exploring the unique advantages offered by active IRS configurations. By formulating

a comprehensive optimization problem and introducing two low-complexity algorithms, we

showcased the potential of active IRS in enhancing network performance and also set a new

benchmark for the application of IRS technology in mmWave spectra, opening new avenues

for research and development.

Contribution 6

UAV-Assisted NOMA Networks in the THz Band: Maximizing Energy Efficiency

through Strategic Deployment

Pushing the boundaries even further in the frequency spectrum, this contribution explores the

realm of Unmanned Aerial Vehicle (UAV)-assisted Non-Orthogonal Multiple Access (NOMA)

networks that operate in the TeraHertz (THz) band, a domain known for its potential to

revolutionize high-speed wireless communication. We introduced a novel framework de-

signed to optimize energy efficiency through meticulously planned miniature UAV trajectory

deployment and the formulation of an effective network resource allocation strategy. We

studied the critical role of miniature UAV mobility, NOMA power allocation strategies, and

SWIPT Power-Splitting (PS) ratios in influencing the overall system performance. By in-

troducing an innovative optimization approach and demonstrating the intertwined effects of

these parameters on energy efficiency, this contribution advances the understanding of THz

band communication and its implications for future wireless networks.

Each of these contributions represents a significant advancement in the field of wireless

communications, reflecting four years of dedicated research, continuous effort, and fruitful

collaboration with globally recognized scientists. Together, they encapsulate a comprehen-

sive exploration of IRS technology and its potential to redefine the landscape of wireless

network capabilities.

9.2 Future Research Directions

In this final section, we discuss potential directions for future research based on the results

obtained in this dissertation.

• Frequency-Dependent Response Model for IRSs: The assumption of a uniform re-
sponse from IRS elements across the spectrum is increasingly untenable as we extend

the frequency range of next-generation wireless networks. Beginning in the sub-6 GHz

range, where IRS technology has traditionally proposed, the expansion into mmWave,

terahertz, and even higher frequency domains, 430 THz to 790 THz, such as Optical

Wireless Communications (OWC) and Visible Light Communication (VLC) presents

new challenges and opportunities. The interaction between electromagnetic waves and
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Figure 9.1: Illustration of the Optical IRS (OIRS)-supported OWC network, where the l-th LED

and its reflection are symmetrically positioned across the x ′y ′z ′ plane. We consider the downlink of
an OIRS-aided cell-free OWC system, where L LEDs serve K PD users (or photodetectors), with

an OIRS with N units enhancing communication.

IRS elements in these higher frequencies is vastly different, necessitating sophisticated,

empirically informed IRS models that can accurately reflect frequency-dependent be-

haviors. Such advanced modeling is essential for fine-tuning the IRS’s phase shift ca-

pabilities across these diverse frequency bands, optimizing performance from the well-

established sub-6 GHz spectrum to the frontier territories of OWC and VLC. In these

higher bands, the potential of IRS to reshape wireless communications is particularly

pronounced, with applications ranging from enhancing indoor penetrations to providing

high-capacity, low-latency communications in densely populated urban centers. Fig 9.1

shows a generic optical IRS setup, where the LEDs transmits information symbols both

directly and indirectly through the IRS to PDs. Research in this area must continue

to push the boundaries of frequency utilization, ensuring that the deployment of IRS

technology keeps pace with the rapid evolution of wireless standards and the growing

demand for bandwidth and connectivity. By addressing the unique propagation char-

acteristics and interaction mechanisms of each frequency band, IRS technology can be

harnessed to its full potential, facilitating a seamless wireless future that spans across

a wide spectrum of frequencies [290, 291, 292, 293, 294, 295, 296, 297, 298, 299].

• Near-Field Modeling for IRS: As the deployment scenarios for the IRS become more
varied, including close proximity indoor environments like manufacturing plants or of-

fices, the traditional far-field models become less applicable. Near-field effects, char-

acterized by spherical wavefronts rather than planar ones, significantly impact the

performance of the IRS. Future investigations should delve into analyzing IRS’ aper-

ture at high frequencies and creating accurate near-field models for IRS, focusing on

the distinct propagation characteristics and their implications on IRS-assisted com-

munication. Understanding near-field interactions is crucial for accurately configuring
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IRS in environments where users are within a few wavelengths of the surface, ensuring

optimal signal enhancement or suppression as required [300, 301, 302, 303, 304, 305,

306, 307, 308].

• Low-Complexity Optimization Techniques for IRS: Current optimization algorithms
for configuring IRS elements often come with high computational complexity, making

them less viable for dynamic or real-time applications with user mobility. The next

leap in IRS research should involve the development and integration of low-complexity,

possibly machine learning-driven, optimization techniques. These algorithms should

aim at real-time adaptability, enabling the IRS to adjust dynamically to changing envi-

ronmental conditions and user demands with minimal computational overhead. Such

advancements are essential for the seamless integration of the IRS into future net-

works, where flexibility and responsiveness are key [309, 310, 311, 312, 313, 314, 315,

316, 317, 318, 319].

• Leveraging Statistical CSI in IRS-Enhanced Networks: In dynamic wireless envi-
ronments, acquiring instantaneous Channel State Information (CSI) can be challenging

and resource-intensive, particularly for the IRS, which has a large number of elements.

A promising research direction involves leveraging statistical CSI to guide the configu-

ration of the IRS. This approach can mitigate the need for constant channel updates,

reduce overhead, and enable more efficient IRS operations. Developing frameworks

and algorithms that can effectively utilize statistical CSI to optimize IRS settings will

be crucial. This strategy not only enhances network performance under practical con-

straints but also aligns with the envisioned 6-th Generation (6G) networks’ emphasis

on intelligence and efficiency [170, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329,

330, 331, 332, 333].

• Advanced Material Science for IRS Enhancement — Expanding the Boundaries
of Wireless Communication: The exploration of novel materials and metamaterials

presents an exciting frontier in enhancing the efficiency and responsiveness of IRS.

By delving into materials boasting superior refractive indices, minimal loss factors,

and the ability to dynamically alter electromagnetic properties in response to external

stimuli, such as electrical or thermal changes, we stand on the verge of revolutioniz-

ing IRS technology. The key lies in understanding the intricate interactions of these

advanced materials across diverse frequency spectra, particularly in the mmWave and

terahertz domains. This endeavor could usher in a new era of IRS designs, offering

unparalleled precision and control over the behavior of electromagnetic waves. As

we envision the future integration of IRS technology into the very fabric of our built

environment, one transformative application emerges: the incorporation of IRS into

the facades of bundling or skyscrapers, as shown in Fig 9.2. Consider the glass in-

dustry, a sector that has seen minimal innovation over decades. The potential for

IRS to become an integral component of high-rise building glass represents a pro-

found shift, not just for wireless communications but also for architectural design and

functionality. Such integration would not only enhance the aesthetic appeal of these

structures but also turn them into active participants in the wireless ecosystem, signif-

icantly boosting signal quality and network coverage in urban landscapes. This vision

for IRS-embedded building facades invites us to reimagine the possibilities for urban
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Figure 9.2: Envisioning the Future of Connectivity: A cityscape where skyscrapers are embedded

with Intelligent Reflecting Surfaces (IRS), enhancing the coverage and the boundaries of next-

generation wireless networks. — Generated by OpenAI.

development and connectivity. By transforming skyscrapers into giant, interactive

nodes within the wireless network, we could effectively eliminate coverage dead zones

and dramatically improve the efficiency of urban communications infrastructure. This

is the future we should strive for, a world where advanced material science and IRS

technology converge to redefine the boundaries of wireless communication and urban

living [334, 335, 336, 337, 338, 339, 340, 341].

• Integration of IRS with Non-Terrestrial Networks (NTNs): Exploring the poten-
tial of IRS to enhance Non-Terrestrial Networks (NTNs), including satellite and UAV

communication systems. IRS could be used to improve ground-satellite or UAV com-

munication links by mitigating signal attenuation and interference, thus enabling more

robust and extensive coverage. Research could focus on the design and placement of

IRS on terrestrial structures or directly on airborne/spaceborne platforms to optimize

the link quality in NTNs [342, 343, 344].
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• Energy Harvesting and Self-Sustaining IRS Systems: Developing self-sustaining
IRS panels through the integration of energy-harvesting technologies. This includes

leveraging solar panels, piezoelectric materials, or RF energy harvesting to power the

IRS’s active components, such as tunable elements and sensors. Research in this area

would contribute to deploying IRS in remote or power-constrained environments, ex-

panding their applicability and sustainability. Enhancing WPT and energy harvesting

techniques with IRS technology could significantly improve wireless networks’ sustain-

ability and autonomy. Research could focus on developing IRS-assisted WPT systems

that maximize energy transfer efficiency across various environments and distances.

Additionally, investigating the IRS’s role in ambient energy harvesting from diverse

sources (e.g., solar, electromagnetic) could further augment the energy efficiency of

wireless devices, extending their operational lifespan and reducing their environmental

impact. This could include reinforcement learning algorithms that continuously learn

and improve IRS settings for optimal performance, predictive modeling to anticipate

network demands and unsupervised learning techniques for clustering and anomaly de-

tection within IRS-enhanced networks [345, 346, 347, 348, 349, 350, 351, 352, 353,

354, 355, 356, 357].

• Advanced Optimization Techniques for IRS Placement and Configuration —
Polyhedron Approach and AI-Driven Solutions: In our pursuit to further refine and

enhance the operational efficiency of IRS within wireless networks, we have identified

and are exploring several cutting-edge optimization techniques. Beyond the tradi-

tional methods, the authors have envisioned the use of the Polyhedron technique as

a particularly intriguing approach for determining optimal IRS placements. This novel

Polyhedron approach, as shown in Fig. 9.3, which has not been studied in the realm of

IRS optimization, is currently under rigorous investigation in our team. Its potential

extends beyond merely strategic IRS placements; it could revolutionize the planning

and deployment of other network infrastructures, such as access points, base stations,

UAVs, and drones. By employing this method, we anticipate uncovering new dimen-

sions of network optimization that have remained undeveloped, thereby enhancing

overall network performance and efficiency.

Furthermore, we recognize the power of Artificial Intelligence (AI) and Machine Learn-

ing (ML) in optimizing IRS configurations. AI and ML algorithms are at the forefront

of enabling intelligent, dynamic, and autonomous optimization of IRS configurations.

The development of AI-driven predictive models is central to our approach, allowing

for the accurate anticipation of optimal IRS settings in response to fluctuating environ-

mental conditions, user movements, and varying network demands. By leveraging AI

and ML, we aim to substantially reduce the complexity and computational demands

traditionally associated with managing and optimizing large-scale IRS deployments.

These AI-driven optimization strategies are not only fascinating for their ability to

adapt and learn but also for their potential to offer innovative solutions for resource

allocation decision policies across the network. Combining the exploratory potential

of the Polyhedron approach with the dynamic adaptability of AI and ML methods

opens up a broad spectrum of possibilities for IRS optimization. These advancements

promise to elevate the capabilities of wireless networks, ensuring that they are more
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Figure 9.3: Illustration of a polyhedron P as the intersection of five half-spaces, with outward
normal vectors ȧ1, ..., ȧ5. The red segments are the possible locations of IRSs in each half-space.

efficient, responsive, and capable of meeting the ever-growing demands of modern

communication systems. As we delve deeper into these optimization techniques, our

goal is to pave the way for a future where wireless networks are not only more inter-

connected but also significantly more intelligent and adaptable to the needs of their

users [358, 359, 360, 361, 362, 363, 364, 364, 365, 366, 367, 368, 369, 370, 371,

372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383].

• Integration of IRS with Quantum Communication: Investigating the potential
integration of IRS with quantum communication technologies presents a novel re-

search avenue. Quantum communication promises unparalleled security and data

transmission capabilities. Exploring how IRS can be optimized to improve quan-

tum signal fidelity and extend quantum communication range could potentially en-

able secure and efficient wireless networks that are resistant to eavesdropping and

offer high data integrity. This integration could involve studying the effects of IRS

on quantum entanglement distribution and Quantum Key Distribution (QKD) proto-

cols [384, 377, 385, 386, 387, 388, 389, 390].

These research directions are a short list of possible continuations or improvements with

respect to the contribution of this dissertation. They highlight the importance of advancing

IRS technology to meet the evolving demands of future wireless networks. By addressing

the unique challenges associated with high-frequency operation, near-field interactions, opti-

mization complexity, and CSI utilization, the research community can pave the way for more

sophisticated, efficient, and adaptable IRS solutions. These advancements will undoubtedly

contribute to the broader goal of creating more robust, high-performing wireless ecosystems

that leverage the full potential of IRS technology.
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Optimization Techniques

In this appendix, we introduce the foundational principles of convex functions, which are

central to the thematic exploration of this thesis. Convex functions are distinguished by a

defining characteristic: any line segment joining two points on the graph of the function

remains either above or precisely on the graph, a property that significantly influences their

application in optimization and mathematical modeling. These functions are integral in

various fields, including economics, engineering, and machine learning, due to their desirable

properties that facilitate problem-solving and analysis.

Understanding the basic properties of convex functions, such as the non-negativity of the

second derivative (in the one-dimensional case or positive semi-definiteness of the Hessian

in the high-dimensional cases), Jensen’s inequality, and the Duality theorem, equips us with

the analytical tools needed to approach complex optimization problems with greater effi-

cacy. These properties ensure that local minima are also global minima, simplifying the

optimization process and making it more predictable and efficient.

The exploration of convex optimizations in this context is inspired by the seminal work of

Boyd and Vandenberghe (2004) in their comprehensive guide on convex optimization [197].

Their work provides a solid foundation for appreciating the importance of convexity in opti-

mization theory and its applications across various disciplines.

A.1 Convex Analysis

Convex analysis is a branch of mathematics that studies convex sets and convex functions.

At its core, convex analysis focuses on the properties and behaviors of convex functions,

which are functions where the line segment between any two points on the graph of the

function lies above or on the graph itself. This characteristic leads to numerous useful

properties, such as the existence of unique global minima for optimization problems under

certain conditions [391, 197].
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A.1.1 Definitions

Let f (·) :Rn→R be a convex function. Then, f (·) is convex, if for each λ ∈ [0,1], we have:

f (λx1+(1−λ)x2)≤ λf (x1)+(1−λ)f (x2), (A.1)

for all x1, x2 ∈Rn. Geometrically speaking, the above inequality states that the line segment
between (x1, f (x1)) and (x2, f (x2)), which is the chord from x1 to x2, lies on top of the

graph of f (·). A function f (·) is said to be strictly convex if (A.1) holds with strict inequal-
ity. Moreover, supposing that f (·) is differentiable, i.e., its gradient exists, then each convex
function satisfies the following inequality:

f (x)≥ f (x̃)+∇xf (x̃)T (x− x̃), (A.2)

where ∇x is the gradient vector with respect to x at x̃, and □T is the transpose operation
on □. The inequality (A.2), known as the first-order condition for convexity, asserts that for
a convex function, a global underestimator of the function can be easily derived via its first-

order Taylor approximation. Consequently, the first-order Taylor approximation of a convex

function is always a global underestimator of the function. This inequality additionally

confirms that global information of a convex function can be obtained through its local

information, i.e., its value and derivative at a point.

A.2 Duality Theorem

Duality is a powerful concept in mathematical optimization that provides a framework for

understanding and solving optimization problems from a different perspective. The theory of

duality involves the formulation of a secondary problem, known as the dual problem, which

is intrinsically linked to the original optimization problem, referred to as the primal problem.

The relationships between the solutions of these two problems offer deep insights into the

nature of the optimization problem in question.

The duality theorem, a cornerstone of this theory, states that under certain conditions, the

solution to the dual problem provides bounds on the solution to the primal problem. For

convex optimization problems, these conditions are often satisfied, and the duality theorem

assures that the optimal value of the primal problem is equal to the optimal value of the

dual problem. This equivalence is known as strong duality. Let’s now mathematically define

this theorem.

We consider the following optimization problem, also known as the primal problem, written

in its general form as:

min
x∈X

f (x) (A.3)

s.t. : gi(x)≤ 0, ∀i = 1, ..., I,
hl(x) = 0, ∀l = 1, ...,L,

where f (·) : Rn → R is the objective function, and x ∈ Rn is the vector of optimization
variables inside the feasible set X . This optimization problem has I inequality constraints
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and L equality constraints. Furthermore, we also refer to p∗ as the optimal value of the
optimization problem in (A.3).

The Lagrangian duality of the objective function of (A.3) is given by:

L(x,µ,ν) = f (x)+
I

∑
i=1

µigi(x)+
L

∑
l=1

νlhl(x), (A.4)

where µ and ν are called the vector of Lagrangian multiplier or the dual variables with respect

to inequality and equality constraints associated with the problem (A.3) that have µi ’s and

νl ’s as the elements of the corresponding vectors. The essential purpose of Lagrangian

duality is to get somehow rid of the constraints in (A.3) by adding a weighted sum of

the constraint functions to the objective function. We can now define the corresponding

Lagrange dual function (or just dual function), which is formally stated as:

D(µ,ν) = inf
x
L(x,µ,ν). (A.5)

Note that even though the primal problem could be non-convex, the dual problem is always a

convex optimization problem since the dual function is a point-wise infimum. This infimum

can be seen as the greatest lower bound of a family of affine functions with respect to µ

and ν.

The Lagrange dual function in (A.5) gives us a lower bound on the optimal value p∗ of the
primal problem (A.3). In order to find the best lower bound for the primal problem, the

following optimization problem can be defined from the Lagrange dual function:

max
µ,ν
D(µ,ν). (A.6)

This problem is known as the Lagrange dual problem corresponding to the primal problem.

Moreover, if µ∗ and ν∗ are the optimal values for the Lagrange dual problem in (A.6),
they are traditionally called dual optimal or optimal Lagrange. It should also be noted since

the objective to be maximized is concave in (A.6), the Lagrange dual problem is a convex

optimization problem no matter the primal problem in (A.3) is convex or not.

A.2.1 Weak Duality and Duality Gap

Weak duality refers to the relationship between the optimal solutions of the primal and dual

problems. Specifically, in the context of a minimization problem, it states that the objective

function value of any feasible solution to the dual problem provides an upper bound on the

objective function value of any feasible solution to the primal problem. For maximization

problems, this relationship is reversed, and the dual provides a lower bound on the primal.

Mathematically, let x∗ be a feasible solution for the primal problem, i.e., p∗ and (µ∗,ν∗) are
a feasible solution to the dual problem, that is, d∗. According to weak duality, we have the
following inequality for a general (possibly non-convex) problem:

d∗ ≤ p∗. (A.7)

It must be noted that the weak duality inequality also holds when d∗ and p∗ are infinite. On
the other hand, the difference between the primal optimal value and dual primal value, i.e.,
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p∗−d∗ is called the optimal duality gap. It should be stated that the optimal duality gap
is always non-negative. Since the dual problem is always convex, and often can be solved

efficiently to determine d∗, the inequality in (A.7) is quite useful in finding a lower bound
on the optimal value of a problem that is difficult to solve1.

A.2.2 Strong Duality and Slater condition

The significance of strong duality and the Slater condition lies in their ability to guarantee

that the optimal value of a primal optimization problem is equal to the optimal value of its

dual problem. This equivalence facilitates the solution of the primal problem by solving its

dual, which can be computationally more efficient or analytically more tractable in certain

cases. Furthermore, strong duality provides a powerful framework for sensitivity analysis and

for deriving optimality conditions, which are pivotal for designing and analyzing algorithms

for solving optimization problems. Let us now define them formally.

If the duality gap is zero, i.e., p∗ = d∗, the strong duality holds. The strong duality indicates
that the best bound that can be achieved from the Lagrange dual function is tight. Moreover,

in strong duality, since the gap between primal and dual is zero, solving the dual problem is

equivalent to solving the primal problem.

A sufficient condition for strong duality to hold for a convex optimization problem is the

Slater condition or Slater’s condition. In particular, if the Slater condition holds for the primal

problem, then the duality gap is zero, which implies strong duality for convex problems. And

if the dual optimal value is finite, then it is attained, i.e., a dual feasible (µ∗,ν∗) exists that
satisfies D(µ∗,ν∗) = d∗ = p∗. In general, there exist many results that establish conditions
on the optimization problem that yield strong duality. These conditions are coined constraint

qualifications, where the Slater condition is only a simple specific example of many.

A.3 Lagrangian

In order to study duality in optimization models, two approaches exist historically, and the

duality results are manifested as referred to as: i) Classical Lagrangian and ii) Abstract

Lagrangian.

Classical Lagrangian: In classical optimization, particularly in the context of calculus of

variations and classical mechanics, the Lagrangian refers to a function that describes the

dynamics of a system. It is defined as the difference between the kinetic and potential

energies of the system. In optimization, the classical Lagrangian L(x,λ) for a problem is

constructed by adding the product of Lagrange multipliers (λ) and the constraint functions

1In an ideal scenario, especially for convex optimization problems, this gap is zero, indicating that the

solutions to the primal and dual problems coincide (this is known as strong duality). However, in non-convex

problems or in instances where certain regularity conditions are not met, there may be a positive duality gap.

This means that the best solutions to the primal and dual problems do not achieve the same objective value,

and the gap quantifies the difference between these two values. A nonzero duality gap indicates a lack of

optimality or a limitation in the tightness of the dual problem as a bound on the primal problem.
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to the objective function. This approach is used to find the stationary points of L under the

constraints, which correspond to the optimal solutions of the original problem.

Abstract Lagrangian: The concept of an abstract Lagrangian extends the classical idea

to a broader set of problems, including those in convex analysis and functional analysis. It

involves constructing a Lagrangian function that incorporates both the objective function

and the constraints in a more general form, allowing for the analysis and solution of more

complex or abstract optimization problems.

Among these two forms, the classical Lagrangian form is more extensively used in the lit-

erature. What we have discussed so far is indeed the classical Lagrangian form of duality.

As seen, classical Lagrangian typically starts from a primal problem while the Lagrangian

and the Dual Lagrangian problems are established. However, at a more abstract level, an

abstract Lagrangian function is used to derive the primal and dual optimization problems.

Here, we briefly discuss an abstract version of Lagrangian duality that is elaborated in more

significant detail in [392]. In this version, through a certain real-valued abstract Lagrangian

function, the primal and dual costs are taken into account, such that:

(Primalproblem) min
x∈X
F(x) where F(x) = sup

y∈Y
L(x,y),

(Dualproblem) max
y∈Y

G(y) where G(y) = inf
x∈X
L(x,y),

where L :X ×Y −→R is the abstract Lagrangian function pertaining to X and Y as appropri-
ate domains defined in some primal and dual spaces, respectively. Moreover, the supremum

can be seen as the least upper bound of a family of affine functions with respect to x and

y. This approach to duality is based on conjugate duality, where a convexity assumption is

always made [393]. This approach also puts a strong emphasis on the minimax and saddle

point theorems, which are given below.

• Minimax Theorem: This theorem provides the condition that guarantees the strong
max-min property or the saddle point as follows:

supy∈Y infx∈X H(x,y) = infx∈X supy∈YH(x,y). (A.8)

It should be noted that the above equality, strong max-min property, holds only in special

cases. This is, in particular, true, when for example, H : X ×Y −→ R is the Lagrangian of

a problem where the strong duality holds.

• Saddle Point Theorem: Under suitable conditions, there exists a saddle point for S(·)
referred to as a pair (x∗,y∗) ∈ X ×Y such that for all (x,y) ∈ X ×Y:

S(x∗,y)≤ S(x∗,y∗)≤ S(x,y∗). (A.9)

In (A.9), S :X ×Y −→R is the Lagrangian of a problem where the strong duality holds. In

other words, S(x∗,y∗) = supy∈Y S(x,y∗), and S(x∗,y∗) = infx∈X S(x∗,y). This indicates
that the strong max-min property (A.8) holds with the common value of S(x∗,y∗).

A.3.1 Augmented Lagrangian Method

The augmented Lagrangian method is an extension of the classical Lagrangian technique,

designed to improve the convergence properties when solving constrained optimization prob-
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lems, especially those with equality and inequality constraints. The augmented Lagrangian

function includes an additional term that penalizes violations of the constraints, effectively

augmenting the original Lagrangian with a quadratic penalty term. This method works

by iteratively solving an unconstrained optimization problem for the augmented Lagrangian

and updating the Lagrange multipliers and penalty parameters until convergence to an op-

timal solution of the original constrained problem is achieved [394]. Consider a constrained

optimization problem of the form:

min
x∈X

f (x)

s.t. : gi(x)≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . ,p,

(A.10)

where f (x) is the objective function to be minimized over the variable X ∈ Rn, gi(x)
are inequality constraints, and hj(x) are equality constraints. The Augmented Lagrangian

LA(x,λ,µ,r) for this problem is given by:

LA(x,λ,µ, r) = f (x)

+
m

∑
i=1

λigi(x)+
p

∑
j=1

µjhj(x)

+
r

2

m

∑
i=1

max(0,gi(x))
2+

r

2

p

∑
j=1

hj(x)
2, (A.11)

where λ = (λ1, . . . ,λm) and µ = (µ1, . . . ,µp) are vectors of Lagrange multipliers for the

inequality and equality constraints, respectively, and r > 0 is a penalty parameter. The key

features of the Augmented Lagrangian method include:

Penalty for Constraint Violation: The addition of r2max(0,gi(x))
2, the quadratic penalty

terms, for inequality constraints and r
2hj(x)

2 for equality constraints. These terms impose

a penalty on the violation of constraints, which becomes more severe as the value of r

increases.

Adaptive Penalty Parameter: The penalty parameter r is typically updated (usually in-

creased) iteratively, which helps in driving the solution towards feasibility with respect to the

constraints.

Dual Update: The Lagrange multipliers λ and µ are updated at each iteration based on

the degree of violation of the constraints, facilitating the convergence towards the optimal

dual variables.

The Augmented Lagrangian method iteratively solves a sequence of unconstrained or easier-

to-handle constrained optimization problems, adjusting the penalty parameter r and updating

the Lagrange multipliers as it progresses. This approach effectively bridges the gap between

feasibility and optimality, ensuring that the solution satisfies both the objective function

minimization and the constraints. The augmented Lagrangian method is particularly useful

for problems where direct application of the classical Lagrangian method is difficult due

to the nature of the constraints or where the convergence of classical methods is slow.

By penalizing constraint violations more strongly, the augmented Lagrangian method often

leads to faster convergence and more robust solutions, making it a powerful tool in the

optimization toolkit.
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A.4 Complementary Slackness and KKT Optimality Con-

ditions

Complementary Slackness and the Karush-Kuhn-Tucker (KKT) are integral to both the

theoretical understanding of optimization and its practical applications. Complementary

Slackness provides a direct link between the primal and dual formulations of an optimization

problem. It defines that for every constraint in the problem, the product of the constraint’s

Lagrange multiplier and the slack in the constraint must equal zero. This implies that if

a constraint is not active (meaning it does not directly influence the optimal solution), its

corresponding Lagrange multiplier is zero, highlighting which constraints are critical at the

optimum.

Mathematically, suppose that both the primal and dual optimal values exist and are equal.

This means the strong duality holds. We further assume that x∗ and (µ∗,ν∗) to be a primal
optimal and a dual optimal point, respectively. Therefore, we have

f (x∗) =D(µ∗,ν∗)≤ f (x∗)+
I

∑
i=1

µ∗i gi(x
∗)+

L

∑
l=1

ν∗l hl(x
∗)≤ f (x∗). (A.12)

The first inequality in (A.12) holds since the infimum of the Lagrangian over x is less than

or equal to its value at x = x∗. However, the last inequality follows from µ∗i ≥ 0, gi(x∗) ≤
0, ∀i = {1, ..., I}, and hl(x∗)≤ 0, ∀l = 1, ...,L. An important conclusion that one can make
from (A.12) is that

µ∗i gi(x
∗) = 0, ∀i = 1, ..., I. (A.13)

This condition is called the complementary slackness. It confirms that one can go from the

optimal primal solution to the optimal dual solution, and vice versa, if the strong duality

holds. Moreover, the complementary slackness verifies that a solution is optimal, by checking

if there is a dual solution [395, 396].

The KKT conditions extend the idea of Lagrange multipliers to include inequality constraints,

offering a comprehensive set of criteria that must be met for a solution to be deemed optimal.

These conditions encapsulate stationarity, primal and dual feasibility, and complementary

slackness. In essence, the KKT conditions ensure that the gradient of the objective function,

adjusted for the weighted gradients of the constraints, vanishes at the optimum, affirming

that no feasible direction can lead to improvement. They also ensure that all constraints are

satisfied (primal feasibility), the multipliers for inequality constraints are non-negative (dual

feasibility), and complementary slackness holds.

Mathematically, suppose that all the functions both in the objective and the constraints in

(A.3) are differentiable. Just the same as was assumed in (A.12), let’s also suppose the

primal and dual variables at the optimum point, for which strong duality obtains, are x∗ and

Appendix A. Optimization Techniques J. Jalali



244 Appendix A. Optimization Techniques

(µ∗,ν∗), respectively. The KKT conditions have the following properties

gi(x
∗)≤ 0, ∀i = 1, ..., I, (A.14a)

hl(x
∗) = 0, ∀l = 1, ...,L, (A.14b)

µ∗i ≥ 0, ∀i = 1, ..., I, (A.14c)

µ∗i gi(x
∗) = 0, ∀i = 1, ..., I, (A.14d)

∇xf (x∗)+
I

∑
i=1

µ∗i ∇xgi(x∗)+
L

∑
l=1

ν∗l ∇xhl(x∗) = 0, (A.14e)

where µ∗i and ν
∗
l are the elements of Lagrangian vectors µ

∗ and ν∗, respectively. Also, ∇x
denotes the gradient of a function with respect to x in (A.14e). Note that the KKT con-

ditions are necessary and sufficient conditions for the optimality of the convex optimization

problem with differentiable objective and constraint functions. However, if the problem is

non-convex, the KKT conditions would only provide the necessary conditions for optimality,

given that the objective and constraints are differentiable.

In practice, the KKT conditions and complementary slackness are used to identify optimal

solutions to constrained optimization problems. By examining these conditions, one can de-

termine whether a candidate solution is truly optimal. In algorithm design, for instance, these

conditions guide the iterative steps towards an optimal solution, ensuring that adjustments

to the variables respect the constraints and move towards satisfying the KKT conditions.

Moreover, in sensitivity analysis, they provide insights into how changes in the problem’s

parameters might affect the solution, based on the relationship between the primal and dual

problems elucidated by complementary slackness. The KKT conditions and complementary

slackness not only facilitate the identification and verification of optimal solutions but also

enrich the understanding of the problem’s structure and the interplay between its constraints

and objectives [397].

A.5 Interior-Point Methods

Interior-Point Methods are a class of algorithms designed to solve linear and nonlinear opti-

mization problems, particularly those involving constraints. These methods are distinguished

from other optimization techniques, like simplex methods for linear programming, by their

approach of traversing the interior of the feasible region to reach an optimal solution, rather

than moving along the boundary.

The term “interior-point” refers to the strategy of these methods to start from a point

within the interior of the feasible region of the optimization problem and iteratively move

towards the optimal solution, while staying within the feasible region. This is in contrast to

methods that operate on the boundary of the feasible region or explore the vertices of the

feasible region, such as the simplex method in linear programming.

Developed in the mid-1980s, Interior-Point Methods gained prominence through Karmarkar’s

algorithm for linear programming. They have since been extended to various types of opti-

mization problems, including nonlinear programming, semidefinite programming, and convex

optimization. The key idea behind these methods is to solve a sequence of approximations of
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the original problem that makes the barrier to leaving the feasible region infinite, effectively

“pushing” the solution towards optimality while remaining in the interior [398].

To understand this approach, let’s consider a basic form of an optimization problem and how

Interior-Point Methods are applied, especially focusing on linear optimization for clarity. A

typical linear optimization (Linear Programming (LP)) problem can be formulated as follows:

min
x∈X
cT x

s.t. : Ax= b,

x≥ 0,

(A.15)

where x ∈ Rn is the vector of decision variables, c ∈ Rn is the coefficient vector for the
objective function, A is a m× n matrix representing the linear constraints, and b ∈ Rm is
the right-hand side vector. The goal is to find the vector x that minimizes the objective

function while satisfying the constraints.

Interior-Point Methods solve such a problem by starting from a point within the feasible

region (hence ”interior”) and iteratively moving towards the optimum. One key concept

used in these methods is the logarithmic barrier function, which allows the method to handle

the non-negativity constraints x≥ 0 by incorporating them into the objective function. An
example of a barrier function that might be added to the objective is:

−µ
n

∑
i=1

ln(xi), (A.16)

where xi are the components of the decision variable vector x. The modified objective

function becomes:

min cT x−µ
n

∑
i=1

ln(xi), (A.17)

where µ is a positive parameter controlling the influence of the barrier. As the algorithm

progresses, µ is gradually reduced, steering the solution toward the boundary of the feasible

region and the optimal solution. At each iteration, the method solves a system of equations

derived from the KKT conditions, adjusting the variables and µ to move closer to the

optimum. The KKT conditions for the modified problem incorporate both the gradient of

the objective function (including the barrier term) and the feasibility conditions. The central

path, which is a trajectory that the solutions follow as µ decreases, leads to the optimal

solution as µ→ 0, ensuring that the iterates remain in the interior of the feasible region.

This mathematical framework allows Interior-Point Methods to efficiently navigate the fea-

sible space, exploiting the curvature of the barrier function to avoid the pitfalls of boundary

navigation and to leverage more direct paths toward the optimum. This approach is not

only applicable to linear programming but also extends to nonlinear and convex optimization

problems, where similar barrier methods are utilized to handle constraints and guide the

solution process.
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Algorithm 10 Interior-Point Method Algorithm with Barrier Function for LP

1: Initialize

Choose an initial feasible point x0 such that Ax0 = b and x0 > 0.

Set an initial barrier parameter µ0 > 0 and a parameter θ ∈ (0,1) to reduce µ in each
iteration.

2: while not converged do

3: For the current value of µ, solve (A.17).

4: Reduce the barrier parameter for the next iteration, typically using µ← θµ.

5: until some convergence criterion is met

6: return optimal x

A.6 MM Approach and DC Programming

MM algorithms are an appropriate tool to reduce a given optimization problem into a series

of simpler problems. In this sense, an MM algorithm is not an algorithm, but rather an appro-

priate principal way of designing optimization algorithms for high dimensional settings, where

the classical methods of optimization do not work well. MM algorithms are not new. The

celebrated Expectation Maximization algorithm is a particular case of MM algorithms that is

extensively used in electrical engineering applications and in other fields. The reason for se-

lecting the MM acronym is two-fold. An MM algorithm operates on a more straightforward

and simpler surrogate function that majorizes/minorizes (the first M of MM) the objec-

tive function in a minimization/maximization (the second M of MM) optimization problem.

Thus, the MM stands for either Majorization Minimization or Minorization Maximization,

depending on the application. In the next few paragraphs, we consider a majorization mini-

mization problem to explain how the algorithm works. The process involves two steps:

Majorization: Given the current estimate, find a surrogate function that is easier to optimize

and that upper bounds the original objective function while being tangent to it at the current

estimate.

Minimization: Minimize this surrogate function to obtain a new estimate. This sequence of

majorization and minimization is repeated until convergence. The MM algorithm is particu-

larly useful because it can convert non-convex problems into convex optimization problems

at each iteration, making it easier to find global or local optima.

Consider the following optimization problem

min
x∈X

f (x), (A.18)

where x is the optimization variable vector belonging to the feasible set X . In order to
majorize the function f (x) at xn, there exists a surrogate function g(x|xn) that satisfies two
conditions

f (xn) = g(xn|xn), (A.19)

f (x)≤ g(x|xn), x ̸= xn. (A.20)

The first condition (A.19) is called the tangency condition at the current iteration step.

This condition grantees g(xn|xn) is tangent to f (x) at xn. The second condition, on the
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other hand, (A.20) makes sure the g(x|xn) is dominant in a sense that it always lies above
the surface of f (x) except at xn. Besides, if a function g(x|xn) majorizes the function f (x)
at xn, it can be easily perceived that -g(x|xn) minorizes -f (x).

Another very important result of the MM algorithms is the descent property. Starting from

x0 ∈ X as an initial point for the feasible set X , an MM algorithm generates a sequence of
feasible point xn. At point xn in the majorization step, a continuous surrogate function is

constructed that satisfies the domination condition in (A.20)

g(x|xn)≥ f (x)+g(xn|xn)− f (xn), x ̸= xn. (A.21)

Hence, in the minimization step, the following update rule can be applied

xn+1 ∈min
x∈X

g(x|xn). (A.22)

It is easy to show that the generated sequence f (xn) is non-increasing. Thus, we have

f (xn+1)≤ g(xn+1|xn)−g(xn|xn)+ f (xn)≤ g(xn|xn)−g(xn|xn)+ f (xn) = f (xn), (A.23)

where the first inequality comes from (A.21), and the second inequality is the direct conse-

quence of (A.22). The property in (A.23), the descent property, gives a remarkable numerical

stability to MM algorithms. Hence, instead of minimizing the cost function f (x) directly,

the MM algorithms stably optimize a sequence of tractable approximate surrogate objective

functions g(x|xn) that minorize f (x) as tightly as possible.

The MM algorithms can easily be connected to other algorithmic frameworks [207, 399, 400].

One of the application areas of the MM algorithms is in Difference of Convex functions (DC)

programming problems. The general form of DC functions is

min
x
f0(x)−h0(x) (A.24)

s.t.: fi(x)−hi(x)≤ 0, ∀i = 1, ...,m, (A.25)

where fi ’s and hi ’s are all convex functions. We further assume that fi ’s and hi ’s are twice

differentiable, and are strictly convex without loss of generality according to (A.1). Among

various algorithms having desirable properties for the solution of DC problems, the MM

scheme, which solves a sequence of convex problems acquired by linearizing non-convex parts

in the objective function as well as the constraints, is preferred. Accordingly, an approximate

solution can be found that iteratively solves (A.24) through defining the following convex

subproblem

min
x
g0(x|xn) (A.26)

s.t.: gi(x|xn)≤ 0, ∀i = 1, ...,m, (A.27)

where

gi(x|xn) = fi(x)−
(
hi(x

n)+∇xhi(xn)T (x−xn)
)
, ∀i ∈ {0, ...,m}. (A.28)

The aforementioned approximation satisfies the MM principle and is a tight upper bound of

fi − hi with equality achieved at x = xn. This technique is used several times throughout
the thesis. Moreover, the solution methodology for the MM algorithm is summarized in

Algorithm 11. A valid question to be asked at this point would be how good the convergence

behaviors of the MM algorithms are. For the answer, the interested reader is referred to

[401, 402, 403].
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Algorithm 11 The MM (Majorization Minimization or Minorization Maximization) algorithm

1: Initialize

Iteration index n = 0 with the maximum number of iteration Nmax
and find a feasible point x0.

2: repeat

3: Find xn by solving the optimization problem (A.22) and store as x.

4: Set n = n+1 and xn = x.

5: until some convergence criterion is met or n = Nmax
6: return optimal x

A.7 Optimization Packages

The field of optimization encompasses a diverse array of tools and packages, each tailored

to address the complexities of various optimization problems at hand. This overview briefly

highlights some of the most prominent optimization packages while also shedding light on

additional tools that play a crucial role in the optimization landscape.

The GNU Linear Programming Kit (GLPK) [404] stands out for its capacity to tackle large-

scale Linear Programming (LP), Mixed Integer Programming (MIP), and related problem

types, providing a robust framework for dealing with complex optimization tasks.

Gurobi[405] Optimizer emerges as a leading commercial solver, acclaimed for its efficiency in

solving LP, Quadratic Programming (QP), and MIP challenges, including specialized forms

such as Mixed Integer Linear Programming (MILP), Mixed Integer Quadratic Programming

(MIQP), and Mixed Integer Quadratically Constrained Programming (MIQCP). Its reputa-

tion for speed and reliability makes it a preferred choice among professionals.

Mosek [406] offers another powerful optimization solution, with capabilities that extend to

LP, QP, MIP, Second-Order Cone Programming (SOCP), and Semi-Definite Programming

(SDP), making it a versatile tool for a wide range of optimization problems.

SeDuMi [407] and SDPT3 [408, 409] are distinguished for their focus on Semi-Definite

Programming (SDP), offering advanced solutions for problems within this domain.

Beyond these mentioned tools, the optimization field is rich with other noteworthy packages,

each designed to meet specific needs:

• CVX [410, 175]: A Matlab-based software for convex optimization that provides
an easy-to-use interface for specifying and solving convex programs. It automates

the transformation of high-level convex optimization problems into standard form,

leveraging solvers like SeDuMi, SDPT3, and Mosek for efficient problem-solving.

• CVXPY [411]: Inspired by CVX, this Python-based framework offers similar function-
alities, enabling users to formulate and solve convex optimization problems through a

high-level API. It supports various solvers, including MOSEK, Gurobi, and SCIP, and

extends its applicability to disciplines beyond Matlab’s reach.

• YALMIP [412]: Primarily developed for Matlab, YALMIP is a high-level modeling tool
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that simplifies the task of formulating and solving optimization problems. It acts as an

interface between the user’s problem formulation and the solver, capable of handling

a broad spectrum of optimization tasks and integrating with several solvers, such as

Gurobi, Mosek, and GLPK.

• OSQP [413] (Operator Splitting Quadratic Program (OSQP)): Specializes in solving
large-scale quadratic programming problems, particularly useful in areas like control

systems and finance. Its emphasis on scalability and efficiency makes it an essential

tool for certain optimization challenges.

• COIN-OR [414] (Common Optimization INterface for Operations Research (COIN-
OR)): An initiative to foster the development of open-source software for the opera-

tions research community, offering a collection of packages that cover various aspects

of optimization, from linear and integer programming to more specialized areas.

The continuous evolution of optimization tools and packages, alongside the introduction of

new solutions, ensures that researchers and practitioners have access to the cutting-edge

technologies required to tackle problems of ever-increasing complexity. The goal of employ-

ing these tools is not to contribute to their development but to leverage their capabilities

to address the specific optimization challenges at hand, underscoring a distinct domain of

research dedicated to creating and refining these sophisticated solvers.
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