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Abstract

N today's world, staying connected is more important than ever, but achieving reliable

wireless communication everywhere can be a challenge. This dissertation introduces a
cutting-edge technology known as Intelligent Reflecting Surfaces (IRSs) that promises to
revolutionize how we connect. Imagine a smart, invisible “mirror” that can bend and direct
wireless signals precisely where needed, overcoming obstacles and ensuring your device always
gets a strong connection. That is what the IRS does.

IRS, at its core, is a sophisticated planar array, composed of numerous passive or active
elements capable of individually manipulating electromagnetic waves to reshape the wireless
signal propagation environment. By smartly adjusting the phase and amplitude of these
elements, an IRS can seamlessly steer signals toward intended receivers, effectively creating
optimized communication paths even in scenarios where direct Line-of-Sight (LoS) is ob-
structed. This ability to mold the propagation environment on demand, without additional
energy for signal transmission, enables the IRS to enhance connectivity in diverse environ-
ments, from densely built urban areas to indoor spaces. Furthermore, the ability of the IRS
to operate without the need for active power amplification allows for a significant reduc-
tion in energy consumption, making it an eco-friendly solution for extending and improving
wireless network coverage.

In this dissertation, IRS is presented as a key enabler for a myriad of advanced technolo-
gies, unlocking new potentials across various high-tech fields by enhancing their performance
and efficiency. By strategically manipulating electromagnetic waves, IRS provides a solu-
tion to enhance power efficiency in multi-user Simultaneous Wireless Information and Power
Transfer (SWIPT) networks. This capability allows for a steady flow of information and
power transfer, illustrating the dual capability of the IRS to support energy harvesting and
data transmission. Furthermore, the integration of IRS into Ultra-Reliable Low-Latency
Communication (URLLC) and Machine Type Communication (MTC) systems emerges as
a game-changer, significantly reducing latency and increasing reliability. IRS can signifi-
cantly benefit Virtual Reality (VR) users facing considerable path loss or blockages, ensuring
immersive experiences without latency or loss of quality.

IRS also enhances Mobile Edge Computing (MEC) by optimizing signal delivery for efficient
edge data processing. These improvements are essential for critical applications requiring
instantaneous feedback and high levels of data integrity, such as autonomous vehicles and
industrial automation, underpinning the role of the IRS in facilitating the next wave of
communication needs. This work delves into the strategic deployment of IRS across a
broad frequency spectrum, from Frequency Range 1 (FR1) to Frequency Range 2 (FR2),
extending into the higher frequency domains of millimeter-Wave (mmWave) and TeraHertz
(THz) frequencies, illustrating its profound impact on the future of telecommunications.



In order to investigate the performance of IRS-assisted networks, this dissertation defines a
range of Key Performance Indicators (KPIs), such as data rate, power efficiency, energy ef-
ficiency, Signal-to-Interference-plus-Noise Ratio (SINR), transmit signal power budget, and
received power strength. These KPIs serve as metrics to assess and optimize the network’s
performance based on designing an efficient resource allocation policy. Non-linear, non-
convex, and Mixed Integer Nonlinear Programming (MINLP) problems arise when addressing
the resource allocation optimization problem. These problems are Non-deterministic Poly-
nomial time (NP)-hard due to the complex relationship between variables and the system'’s
constraints. Given the complexity of these optimization problems, different strategies are
used to simplify and approach their solution. By relaxing the objective function (the NPs)
and constraints that are non-convex to a more tractable format, the problems became more
manageable. This relaxation approach often involved transforming the optimization prob-
lem into its convex equivalent or utilizing approximation techniques to linearize or convexify
non-convex terms.

Algorithms are developed that are capable of solving the main problem either globally or sub-
optimally but sufficiently close to the global optimum. These solutions employ optimization
solvers and computer simulations, exploiting advanced mathematical tools and techniques
such as the big-M method for linearizing product terms involving binary variables and Suc-
cessive Convex Approximation (SCA) to obtain convex approximations of non-convex terms.
The iterative nature of these solutions allowed for step-by-step refinement, gradually moving
towards an optimal configuration of a resource allocation design despite the initial problem’s
complexity.

Through exhaustive simulations, this dissertation unveils the diverse performance improve-
ments achievable through resource allocation in IRS-assisted networks, providing rich insights
into how IRS technology can improve wireless communication systems. These simulations
serve as a critical bridge, connecting theoretical predictions with empirical evidence and val-
idating the practical feasibility of the proposed IRS-enhanced network. By exploring various
IRS configurations — examining both passive and active types and varying the number of
reflective elements — and their implementation in different environments and settings, this
study not only confirms the theoretical models’ accuracy but also explains the conditions un-
der which IRS deployments yield maximal performance gains, manifesting the IRS versatility
in adapting new technologies.

Collectively, this dissertation studies the impact of IRS across a broad range of technologies.
By enhancing the performance of SWIPT networks, facilitating URLLC and MTC, enabling
MEC, and revolutionizing VR, mmWave, and THz applications, IRS stands at the forefront
of wireless communication innovation. This work demonstrates the diverse applications of
IRS technology and lays the foundation for future research aimed at utilizing IRS to tackle the
dynamic challenges of modern wireless networks. It charts a path toward the development
of more robust, efficient, and engaging communication ecosystems.



Samenvatting

N de wereld van vandaag is constant verbonden zijn essentieel, maar overal betrouwbare

draadloze communicatie bieden is complex. Deze dissertatie onthult een vooruitstrevende
technologie, Intelligente Reflecterende Opperviakken (IRS), die draadloze connectiviteit zal
transformeren. Denk aan een slimme, onzichtbare "spiegel” die draadloze signalen buigt en
richt naar waar nodig, obstakels omzeilt en een sterke verbinding garandeert. Dat is wat IRS
doet.

IRS, in zijn kern, is een geavanceerde vlakke antennematrix, bestaande uit talrijke passieve of
actieve elementen die in staat zijn om elektromagnetische golven individueel te manipuleren
om de draadloze signaalpropagatieomgeving te hervormen. Door de fase en amplitude van
deze elementen slim aan te passen, kan een IRS signalen naadloos naar bedoelde ontvangers
sturen, waardoor geoptimaliseerde communicatiepaden worden gecreéerd, zelfs in scenario’s
waar het directe zicht (LoS) wordt belemmerd. Dit vermogen om de propagatieomgev-
ing naar behoefte te vormen, zonder extra energie voor signaaltransmissie, stelt de IRS in
staat de connectiviteit in diverse omgevingen te verbeteren, van dichtbebouwde stedelijke
gebieden tot binnenshuis. Bovendien maakt het vermogen van de IRS om te werken zon-
der de noodzaak van actieve vermogensversterking een aanzienlijke vermindering van het
energieverbruik mogelijk, waardoor het een milieuvriendelijke oplossing is voor het uitbreiden
en verbeteren van de draadloze netwerkdekking.

In deze dissertatie wordt de IRS gepresenteerd als een sleutelfactor voor een breed scala aan
geavanceerde technologieén, waardoor nieuwe mogelijkheden worden ontsloten in diverse
high-tech velden door hun prestaties en efficiéntie te verbeteren. Door elektromagnetische
golven strategisch te manipuleren, biedt IRS een oplossing om de energie-efficiéntie in multi-
gebruiker Simultane Draadloze Informatie- en Energieoverdracht (SWIPT)-netwerken te ver-
beteren. Deze mogelijkheid zorgt voor een constante stroom van informatie- en energieover-
dracht, waarbij de dubbele capaciteit van de IRS wordt geillustreerd om energieoogst en
datatransmissie te ondersteunen. Bovendien biedt de integratie van IRS in Ultra-Reliable
Low-Latency Communication (URLLC) en Machine Type Communication (MTC)-systemen
unieke voordelen, waardoor de vertraging aanzienlijk wordt verminderd en de betrouwbaarheid
wordt verhoogd. IRS kan Virtual Reality (VR)-gebruikers die aanzienlijke padverliezen of
blokkages tegenkomen aanzienlijk ten goede komen, waarbij realistische virtuele ervaringen
zonder vertragingvertraging of kwaliteitsverlies worden gegarandeerd.

IRS verbetert ook Mobile Edge Computing (MEC) door de signaallevering te optimalis-
eren voor efficiente gegevensverwerking aan de rand van het netwerk. Deze verbeterin-
gen zijn essentieel voor kritieke toepassingen die onmiddellijke feedback en hoge niveaus
van gegevensintegriteit vereisen, zoals autonome voertuigen en industriéle automatisering,
waardoor de rol van IRS wordt onderstreept bij het faciliteren van de volgende golf van
communicatiebehoeften. Dit werk verdiept zich in de strategische inzet van IRS over een
breed frequentiespectrum, van Frequentiebereik 1 (FR1) tot Frequentiebereik 2 (FR2), en
breidt uit naar de hogere frequentiedomeinen van millimetergolf (mmWaves) en terahertz



(THz)-frequenties, waarbij de diepgaande impact op de toekomst van telecommunicatie
wordt geillustreerd.

Om de prestaties van IRS-ondersteunde netwerken te onderzoeken, definieert deze dissertatie
een reeks Kernprestatie-indicatoren (KPl's), zoals datasnelheid, energie-efficiéntie, vermo-
gensefficiéntie, SINR (Signaal tot Interferentie plus Ruisverhouding), zendvermogensbudget
en ontvangen vermogenssterkte. Deze KPI's dienen als meetwaarden om de prestaties van
het netwerk te beoordelen en te optimaliseren op basis van het ontwerpen van een efficiént re-
source allocatiebeleid. Niet-lineaire, niet-convexe en Gemengde Gehele Getallen Niet-lineaire
Programmering (MINLP)-problemen ontstaan bij het aanpakken van het resource allocatie
optimalisatieprobleem. Deze problemen zijn niet-deterministisch polynomiale tijd (NP)-hard
vanwege de complexe relatie tussen variabelen en de systeembeperkingen. Gezien de com-
plexiteit van deze optimalisatieproblemen worden verschillende strategieén gebruikt om hun
oplossing te vereenvoudigen en te benaderen. Door de doelfunctie (de KPI's) en beperkingen
die niet-convex zijn te ontspannen naar een beter hanteerbaar formaat, werden de problemen
beheersbaarder. Deze ontspanningsbenadering omvatte vaak het transformeren van het op-
timalisatieprobleem naar zijn convexe equivalent of het gebruik van benaderingstechnieken
om niet-convexe termen te lineariseren of convex te maken.

Algoritmen worden ontwikkeld die in staat zijn het hoofdprobleem op te lossen, hetzij globaal
of suboptimaal, maar voldoende dicht bij het globale optimum. Deze oplossingen maken ge-
bruik van optimalisatie-oplossers en computersimulaties, waarbij geavanceerde wiskundige
hulpmiddelen en technieken zoals de grote-M-methode voor het lineariseren van productter-
men met binaire variabelen en opeenvolgende convexe benadering (SCA) worden ingezet om
convexe benaderingen van niet-convexe termen te verkrijgen. De iteratieve aard van deze
oplossingen maakte stapsgewijze verfijning mogelijk, waardoor geleidelijk naar een optimale
configuratie van een resource allocatieontwerp werd bewogen ondanks de complexiteit van
het initiéle probleem.

Door uitputtende simulaties onthult deze dissertatie de diverse prestatieverbeteringen die
haalbaar zijn door resource allocatie in IRS-ondersteunde netwerken, waarbij rijke inzichten
worden geboden in hoe IRS-technologie draadloze communicatiesystemen kan verbeteren.
Deze simulaties fungeren als een cruciale brug, die theoretische voorspellingen verbindt met
empirisch bewijs en de praktische haalbaarheid van het voorgestelde IRS-versterkte netwerk
valideert. Door verschillende IRS-configuraties te verkennen - zowel passieve als actieve typen
onderzoeken en het aantal reflecterende elementen variéren - en hun implementatie in ver-
schillende omgevingen en instellingen, bevestigt deze studie niet alleen de nauwkeurigheid van
de theoretische modellen, maar verklaart ook de voorwaarden waaronder IRS-implementaties
maximale prestatieverbeteringen opleveren, waarbij de veelzijdigheid van IRS in het aanpassen
van nieuwe technologieén wordt getoond.

Deze dissertatie bestudeert de impact van IRS op een breed scala aan technologieén. Door
de prestaties van SWIPT-netwerken te verbeteren, URLLC en MTC te faciliteren, MEC
mogelijk te maken en VR, mmWave en THz-toepassingen te revolutioneren, staat IRS aan
de voorhoede van draadloze communicatie-innovatie. Dit werk toont de diverse toepassingen
van IRS-technologie en legt de basis voor toekomstig onderzoek gericht op het gebruik van
IRS om de dynamische uitdagingen van moderne draadloze netwerken aan te pakken. Het
wijst de weg naar de ontwikkeling van robuustere, efficiéntere en boeiendere communicatie-
ecosystemen.
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 Chapter |

Introduction

HE surge in innovative technologies like Artificial Intelligence (Al), Virtual Reality (VR),

three-Dimensional (3D) media, and the Internet of Everything (loE) has significantly
increased data traffic worldwide. In the second quarter of 2023, global mobile data traffic
was recorded at 133.86 EexaBytes (EB) per month, with projections suggesting a rise to
5016 EB per month by 2030 [15]. These figures suggest the critical need for advancements
in communication technology as we move towards a future dominated by fully automated
remote systems. Autonomous technologies are gaining ground across various sectors, such
as manufacturing, healthcare, transportation, maritime, and space exploration. This trend
is supported by the widespread integration of millions of sensors in urban areas, vehicles,
homes, and industries, facilitating a smarter, automated lifestyle. As a result, there is an
imminent need for communication networks that can handle high data rates and provide
reliable connectivity to accommodate these evolving applications.

Despite their substantial advancements over current technologies, the fifth-Generation (5G)
wireless networks are anticipated to fall short in delivering a fully automated, intelligent
network capable of offering everything as a service and providing a fully immersive expe-
rience [16]. While 5G systems have marked a significant upgrade, they are not expected
to meet the needs of the next wave of intelligent and automated systems in a few years’
time [17]. 5G introduced numerous enhancements, including access to new frequency bands
like millimeter-wave (mmWave) and optical spectra, improved spectrum usage and man-
agement, and the combination of licensed and unlicensed bands [18, 19]. Yet, the rapid
expansion of data-driven and automated systems might surpass what 5G networks can han-
dle. One of the critical areas where 5G may lag is in its integration of communication,
intelligence, sensing, control, and computing capabilities, a fusion essential for future loE
applications. For instance, devices like VR headsets require Beyond 5G (B5G) capabilities,
needing data rates of at least 10 Gigabits per second (Gbps) [20]. Therefore, as 5G ap-
proaches its capacity limits by 2030, discussions and research are already underway to outline
the objectives for the subsequent generation of wireless communication technologies [21].

Items poised to necessitate the capabilities of a sixth-Generation (6G) system include (i) ex-
pansive interfaces for human and machine interaction, (ii) pervasive computing that bridges
local devices with cloud services, (iii) the integration of sensory data to construct comprehen-
sive multi-reality environments, and (iv) enhanced precision in sensing and communication
for control over physical environments [22]. 6G networks aim to address the shortcomings of
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5G by weaving together futuristic services, including ambient sensing intelligence and novel
forms of interaction between humans and machines, as well as between humans themselves.
This next step in network evolution will heavily incorporate Al and introduce cutting-edge
technologies like terahertz (THz) communication, 3D networking, quantum communica-
tions, holographic beamforming, backscatter communications, Intelligent Reflecting Surface
(IRS), and proactive caching [23]. The driving forces behind 6G involve a fusion of previ-
ous network advancements — network densification, superior throughput, utmost reliability,
minimal energy consumption, and extensive connectivity — while also pushing forward with
innovative services and technologies such as Al, smart wearables, implants, autonomous
vehicles, augmented reality devices, sensing technologies, and 3D mapping [24]. A fun-
damental expectation from 6G wireless networks is their ability to manage enormous data
volumes and provide exceptionally high data rates [25].

The ambition for the 6G communication system is to serve as a comprehensive global
communication infrastructure, offering per-user bit rates of around 1 Terabits per second
(Tbps) in many scenarios. This represents a connectivity capacity 1000 times greater than
that of 5G, alongside ultra-long-distance communication capabilities with sub-millisecond
latency [26]. A standout feature of 6G will be its full integration of Al to support au-
tonomous systems, with video-type traffic expected to dominate data transmission in 6G
networks. Leading technologies propelling 6G forward will include the THz spectrum, Al,
Optical Wireless Communication (OWC), 3D networking, UAVs, IRS, and wireless power
transfer, setting the stage for an unprecedented era of connectivity and technological inte-
gration [27].

In the transition from 5G to 6G wireless systems, there is an anticipated move away from the
traditional massive Multiple Input Multiple Output (m-MIMQ) configurations towards the
adoption of IRS [28]. IRS represents a novel hardware innovation to significantly enhance
energy efficiency in communication systems, often referred to as green communication. Also
known as meta-surfaces, IRS comprises numerous reflective diode units capable of altering
the phase of incoming electromagnetic signals in a controllable manner 1. This capability
positions IRS as a pivotal evolution in communication technology, sometimes referred to as
“m-MIMO 2.0" for 6G networks [35]. These surfaces are expected to incorporate index mod-
ulation techniques, further boosting spectral efficiency and representing a key advancement
in the infrastructure of 6G wireless communications.

1.1 Motivation

The 6G wireless network aims to surpass the capabilities of 5G by targeting more ambitious
goals such as ultra-high data rates, superior energy efficiency, comprehensive global connec-
tivity, and unmatched reliability and low latency. Achieving these objectives may be beyond
the reach of current technology trends designed for 5G services, such as enhanced mobile
broadband (eMBB), ultra-reliable and low latency communication (URLLC), and massive
Machine Type Communication (mMTC), due to several challenges [36, 37, 38]:

LAn IRS can be a meta-surface (generally deep subwavelength) or a conventional passive reflectarray.
Also, we acknowledge IRS can use other mechanisms than diode units to provide reconfigurability, e.g., [29,
30, 31, 32, 33, 34].
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e Increasing the number of active nodes like Base Stations (BSs), Access Points (APs),
relays, and distributed antennas/Remote Radio Heads (RRHs) to reduce communica-
tion distance and enhance network coverage and capacity, which leads to higher energy
consumption, and increased deployment, backhaul, and maintenance costs, along with
more complex network interference issues.

e Adding significantly more antennas to BSs/APs/relays to leverage the benefits of m-
MIMO technology, necessitating greater hardware investment and energy expenditure,
along with increased signal processing complexity.

e Shifting to higher frequency bands, such as mmWave and THz frequencies, to exploit
their vast available bandwidth. This shift requires the deployment of additional active
nodes and the installation of even more antennas (i.e., super MIMO) to offset the
greater propagation loss associated with these higher frequencies.

Given these limitations, it is crucial to explore radically new and innovative technologies
to ensure future wireless networks can grow sustainably, maintaining low costs, complexity,
and energy consumption. Conversely, a primary obstacle in realizing ultra-reliable wireless
communication stems from the dynamic nature of wireless channels, which fluctuate due to
user movement. Traditional strategies to address this variability involve compensating for
channel fading through a range of modulation, coding, and diversity techniques, or adjusting
to it with adaptive power/rate control and beamforming methods [39, 40]. Yet, these
approaches introduce extra overhead and provide only limited management of the inherently
unpredictable wireless channels. This leaves the critical challenge of achieving both high-
capacity and ultra-reliable wireless communications unresolved.

In this dissertation, IRSs are highlighted as a crucial technology that catalyzes advancements
in a range of high-tech sectors by boosting their operational performance and energy effi-
ciency. By adjusting the reflection of signals through numerous low-cost passive elements,
IRS dynamically enhances communication performance, marking a significant step towards
energy-efficient green communication. Known as meta-surfaces, these devices can modify
the phase of impinging electromagnetic signals, positioning IRS as a pivotal innovation in
6G networks.

A notable breakthrough for IRS-aided wireless systems, especially in single-user scenarios,
is the ability to form a “signal hot spot” through a combination of active beamforming at
the BS/AP and passive beamforming at the IRS [41]. It has been demonstrated that IRS
can achieve a significant asymptotic increase in Reference Signal Received Power (RSRP)
or Signal-to-Noise Ratio (SNR), scaling quadratically in the order of O(N?), where N repre-
sents the number of IRS reflecting elements [42]. This gain surpasses the linear enhancement
O(N) seen with m-MIMO systems, attributable to IRS's dual functionality, effectively dou-
bling the gain compared to m-MIMO under the same total transmit power. Moreover, unlike
traditional MIMO relays which, even in an ideal Full-Duplex (FD) mode with perfect Self-
Interference Cancellation (SIC), only achieve a linear SNR improvement with the increase
in active antennas due to relay noise, IRS benefits from a full-duplex, noise-free reflection
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mechanism, thus providing a greater SNR boost [43]. An analysis comparing the perfor-
mance between an IRS-assisted Single-Input Single-Output (SISO) system and a m-MIMO
setup reveals the superior efficiency of IRS in enhancing wireless communications [44].

Furthermore, in multi-user systems supported by IRS, it is shown that IRS not only boosts the
signal power/SNR at the user’s receiver but also establishes an almost “interference-free"
zone around it. This is achieved by utilizing the IRS's capability to nullify spatial inter-
ference, enabling users close to the IRS to withstand more interference from the BS/AP
than those outside the IRS coverage. This advantage allows for more versatile transmit
precoding strategies at the BS/AP for users located outside the IRS’s influence, thereby
enhancing the overall signal-to-interference-plus-noise ratio (SINR) for all users in the net-
work. This dissertation also explores the integration of active and passive beamforming in
various system designs [45, 46, 47], including physical layer security, simultaneous wireless
information and power transfer (SWIPT) [48, 49, 50, 51], and NOMA [52, 53], underscoring
the transformative impact of IRS across multiple wireless communication paradigms [54].

This dissertation explores the potential of the IRS in revolutionizing next-generation wireless
networks. Below, we summarize the key contributions of this work.

1.2 Contributions

In this section, we detail the key contributions of our research, emphasizing the notable
progress made in understanding and implementing IRS in wireless communication networks.
Drawing from the 3rd Generation Partnership Project (3GPP) technical reports (38.101 and
38.101, cf. [55, 56, 57]) which examine channel models for frequencies ranging from 0.5 to
100 GHz and categorize the frequency spectrum into two distinct ranges — below 7.125
GHz as Frequency Range 1 (FR1) and above it as Frequency Range 2 (FR2)? — the primary
contributions of this dissertation are divided into two main areas:

Frequency Range 1 (FR1) Contributions (Chapter 3, 4, 5 ,6)

1. Establishing the baseline with SWIPT network optimization. (Chapter 3)
This dissertation’s initial contribution lays the groundwork by enhancing power effi-
ciency in single-cell networks with multi-antenna and multi-user setups, specifically
through SWIPT. By aiming to maximize energy harvesting while minimizing power
consumption, we present an optimization framework that simplifies beamforming and
antenna selection. This foundational work provides the theoretical basis and estab-
lishes a baseline for advancing energy efficiency and operational effectiveness in future
wireless networks, paving the way for subsequent studies on the impact of IRS.

2Due to the lack of established channel models for THz frequencies in the standardization community, we
provisionally place THz frequencies into FR2. It is possible that this could lead to the creation of a Frequency
Range X (FRX) in the future, although a consensus on this classification has not yet been reached. While
it may seem counterintuitive, Frequency Range 3 (FR3) is an unofficial term that refers to the spectrum
between 7.125 and 24.25 GHz, which lies between FR1 and FR2 [58]. In this dissertation, we loosely classify
THz frequencies within FR2, despite anticipating that a more appropriate frequency range will soon be
assigned to such high frequencies.
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2. Optimizing URLLC through IRS-enhanced beamforming. (Chapter 4)

The second key contribution of this work is the integration of IRS in multi-user MISO
systems, aiming to improve URLLC services. This is achieved by minimizing the overall
transmission power via the concurrent optimization of both active and passive beam-
forming, facilitated by a sophisticated Alternating Optimization (AO) algorithm. Our
method sheds light on the complex interplay between active and passive beamforming,
demonstrating the significant potential of IRS to advance URLLC systems. Empirical
evidence from simulation studies supports the effectiveness of our proposed solutions,
representing an essential advancement towards fully leveraging IRS in the evolution of
wireless communications.

3. Enhancing MTC in loT networks with IRS for better energy efficiency and ser-
viceability. (Chapter 5)
This study investigates the incorporation of Machine-Type Communication (MTC)
within a multi-user MISO setup. Our focus was on enhancing the network's overall
energy efficiency and improving the capacity to support an extensive range of loT users
by finely tuning both active and passive beamforming strategies. The adoption of a
new AO algorithm served to demonstrate the effect of IRS on network performance,
particularly in terms of energy savings and the ability to cater to a broader loT user
base.

4. Improving edge computing efficiency in multi-user MTC networks with IRS in-
tegration. (Chapter 6)
This portion of the dissertation investigates the integration of Mobile Edge Computing
(MEC) with MTC in settings that involve multiple users. It emphasizes the crucial role
played by IRS in boosting computational offloading, thereby enhancing both latency
and reliability for MT C devices. Through the strategic optimization of radio resource
allocation and decisions regarding edge offloading in networks supported by IRS, a
groundbreaking method to increase the efficacy of edge computing in MTC scenarios
is introduced.

Frequency Range 2 (FR2) Contributions (Chapter 7, 8)

6. Exploring FR2 with active and passive IRS in mmWave networks (Chapter 7)
This contribution is an exploration of FR2, diving into the domain of mmWave wireless
networks. By introducing an active IRS-enhanced MISO system operating at mmWave
frequencies, we tackled the optimization of the system’'s sum rate. This involved
leveraging the unique benefits of active IRS configurations. Through a comprehensive
optimization framework and the introduction of two algorithms, we highlighted active
IRS’s capabilities to boost network performance and established a new benchmark for
applying IRS technology in mmWave spectra, paving the way for novel research and
development avenues.

6. Exploring FR2 in THz miniature UAV networks (Chapter 8)
For the last contribution of this dissertation, we investigate the cutting-edge domain
of THz band communication. A framework is developed to optimize energy efficiency
through the strategic deployment of a miniature UAV trajectory alongside a refined
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network resource allocation strategy. Our investigation focuses on the pivotal influ-
ences of miniature UAV mobility, NOMA power allocations, and SWIPT power-splitting
ratios on system-wide performance.

The above contributions are described in detail in the following publications:

1. J. Jalali, A. Khalili, A. Rezaei, J. Famaey and W. Saad, "Power-efficient Antenna
Switching and Beamforming Design for Multi-User SWIPT with Non-Linear Energy
Harvesting"”, in 2023 |IEEE 20th Consumer Communications & Networking Conference
(CCNC). Las Vegas, NV, USA, Jan. 2023, pp. 746-751. (IEEE Student Travel
Grant) (Chapter 3)

2. J. Jalali, A. Rezaei, A. Khalili and J. Famaey, “Power-efficient Joint Resource Allo-
cation and Decoding Error Probability for Multiuser Downlink MISO with Finite Block
Length Codes”, in 2022 25th International Symposium on Wireless Personal Multime-
dia Communications (WPMC), Herning, Denmark, Oct. 2022, pp. 232—237. (Best
Paper Award) (Chapter 4)

3. J. Jalali, A. Khalili, A. Rezaei, R. Berkvens, M. Weyn and J. Famaey, “IRS-Based En-
ergy Efficiency and Admission Control Maximization for loT Users With Short Packet
Lengths”, IEEE Transactions on Vehicular Technology, vol. 72, no. 9, pp. 12379—
12384, Sept. 2023. (Chapter 5)

4. J. Jalali, F. Lemic, H. Tabassum, R. Berkvens, and J. Famaey, “Toward Energy Effi-
cient Multiuser IRS-Assisted URLLC Systems: A Novel Rank Relaxation Method”, in
GLOBECOM 2023 - 2023 IEEE Global Communications Conference - 6G Communi-
cation Workshop, Kuala Lumpur, Malaysia, Dec. 2023, pp. 1-7. (Chapter 5)

5. J. Jalali, A. Khalili, R. Berkvens and J. Famaey, “Joint Offloading Policy and Re-
source Allocation in IRS-aided MEC for loT Users with Short Packet Transmission”,
in 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong,
Hong Kong, Oct. 2023, pp. 1-7. (VTS Student Travel Grant) (Chapter 6)

6. J. Jalali, A. Khalili, A. Rezaei and J. Famaey, “Is Active IRS Useful for mmWave
Wireless Networks or Not?", in 2023 International Conference on Computing, Net-
working and Communications (ICNC), Honolulu, HI, USA, Feb. 2023, pp. 377-382.
(Chapter 7)

7. J.Jalali, M. Bustamante, F. Lemic, H. Tabassum, J. Struye, J. Famaey, and X. Costa
Pérez, “Location Optimization and Resource Allocation of IRS in a Multi-User In-
door mmWave VR Network™, in 2024 IEEE Wireless Communications and Networking
Conference (WCNC), Dubai, United Arab Emirates, Apr. 2024, pp. 1-7. (ComSoc
Conference Travel Grant) (Chapter 7)

8. J. Jalali, A. Khalili, H. Tabassum, R. Berkvens, J. Famaey and W. Saad, “Energy-
Efficient THz NOMA for SWIPT-aided Miniature UAV Networks", IEEE Communi-
cations Letters, vol. 28, no. 5, pp. 1107-1111, May 2024. (FWO Research Grant
V478223N) (Chapter 8)
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Figure 1.1: Dissertation outline.

1.3 Outline

Fig. 1.1 provides an overview of how the chapters relate to the contributions listed in the
previous section. Each chapter is based on the publications listed in Section 1.2.

The dissertation proceeds with a detailed examination of IRS-enhanced wireless communica-
tion technologies in Chapter 2, providing readers with essential concepts pivotal throughout
the study. Chapter 3 sets the groundwork by discussing the power efficiency metric in
multi-user SWIPT networks, serving as the foundational chapter for subsequent analysis. In
Chapter 4, we embark on an in-depth look at the application of IRS technology in enhancing
URLLC services, followed by an exploration of IRS integration within MTC services in Chap-
ter 5. Notably, Chapters 3, 4, and 5 focus on downlink communications, whereas Chapter
6 shifts the perspective to investigate an IRS-assisted MEC network in the uplink scenario.
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Chapter 7 delves into the exploration of higher frequency bands of mmWave. Chapter 8
introduces a pioneering study on a miniature UAV network operating within the even higher
frequency spectrum of THz. The dissertation culminates in Chapter 9, where we conclude
and summarize our primary findings.

This dissertation comprehensively examines the transformative role of IRS across various
technological domains. From boosting the efficiency of SWIPT networks and supporting
URLLC and MTC, to facilitating MEC, and enhancing VR, mmWave, THz applications,
IRS emerges as a key driver of innovation in wireless communication. This study illustrates
the wide-ranging applications of IRS technology and establishes a foundation for future
inquiries aimed at leveraging IRS to navigate the evolving challenges of contemporary wireless
networks. It envisions a trajectory towards crafting more resilient, effective, and immersive
communication environments.



 Chapter &7

Intelligent Reflecting Surface-Aided
Wireless Communications: A Brief
Overview

HE future of mobile communications is set to undergo a significant transformation

with the advent of 6th generation (6G) and beyond wireless networks, introducing
a plethora of new applications and stringent technical demands. At the forefront of this
shift is the integration of Intelligent Reflecting Surfaces (IRSs)!, which revolutionizes the
traditional view of the propagation channel. Historically seen as an unpredictable medium
that adversely affects signal quality, IRS technology empowers network operators to precisely
control the interaction of radio waves with their environment. This is achieved by manip-
ulating the scattering, reflection, and refraction properties of radio waves, thus mitigating
the inherent challenges of wireless propagation. IRS is particularly notable for its capability
to modify the wavefront characteristics of signals, including phase, amplitude, frequency,
and polarization, without necessitating complex signal processing operations. This chapter
aims to provide a brief overview of IRS technology, tracing its development, distinguishing
it from previous technologies, identifying key research questions, and highlighting the need
for new communication-theoretical models in light of IRS.

This chapter does not aim to provide an exhaustive review of the latest advancements
and the state of the art in IRS technology. Instead, it focuses on areas relevant to this
dissertation. The content herein draws from a literature review conducted over the past
four years in preparation for my publications. The purpose is to introduce the reader to key
concepts that will be revisited throughout this dissertation.

1Several terminologies are used to describe Reflective Surfaces, including software-controlled metasur-
faces [59], Reconfigurable Intelligent Surfaces (RIS) [60], Intelligent Reflecting Surfaces (IRSs) [61], and
reconfigurable intelligent metasurfaces [62]. For the sake of consistency and clarity in this dissertation, the
term “IRS" will be used uniformly to refer to these technologies.
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2.1 Intelligent Reflecting Surfaces

IRSs have been introduced as a novel paradigm to reconfigure the wireless propagation
environment through software-controlled reflections. Comprising a planar array of numerous
low-cost passive reflectors, each IRS unit is capable of independently adjusting the amplitude
and/or phase of the incident signals. This capability enables precise three-Dimensional (3D)
beamforming, setting IRS apart from traditional wireless link adaptation methods that modify
signals at the transmitter or receiver. Instead, IRS proactively alters the wireless channel
itself with highly controlled and intelligent reflections, offering a new Degree of Freedom
(DoF) to boost communication performance in a smart, programmable wireless environment.
With the advantage of not requiring transmit Radio Frequency (RF) chains and supporting
short-range operation, IRS can be deployed densely to enhance network coverage cost-
effectively and with minimal energy use, sidestepping the complex interference management
typically required. Additionally, IRSs are versatile, designed to fit on various surfaces, thus
accommodating a wide range of application scenarios, although this innovative approach
necessitates further research in communication modeling and problem-solving [62].

2.2 Architecture of an IRS: From Concept to Implemen-
tation

IRSs are grounded in the technology of metasurfaces, which are essentially two-Dimensional
(2D) arrays composed of metamaterials. These metasurfaces are made up of numerous
meta-elements, each with distinct ElectroMagnetic (EM) characteristics determined by their
design parameters. As shown in Fig. 2.1, an IRS incorporates these elements placed at in-
tervals shorter than the wavelength of the signals they interact with. Upon encountering
an EM signal, each IRS element generates a current, subsequently re-emitting an EM wave
whose amplitude and/or phase may differ from that of the incoming signal. By strategically
configuring these elements, an IRS can precisely modulate the phase and amplitude of the
reflected EM waves to create a 3D beam. This coordination among IRS elements facili-
tates the manipulation of wireless signals, achieving passive beamforming towards specific
directions without relying on external power sources. Such passive modulation of signals en-
ables the IRS to intelligently direct reflections, significantly boosting the efficacy of wireless
communication networks [54].

Diving deeper, Fig. 2.1 also illustrates the structured composition of the architecture of an
IRS, which typically consists of three distinct layers alongside a sophisticated controller. The
surface layer consists of numerous metallic patches arrayed on a dielectric substrate, serving
the primary role of interacting with incoming signals. Positioned beneath this, a copper
plate ensures no signal energy leakage. The foundational layer encompasses the control
circuit board tasked with modulating each metallic element’s reflection characteristics —
amplitude and phase shift — under an attached smart controller. In practical setups, a
Field-Programmable Gate Array (FPGA) is often deployed as this controller, doubling as a
communication nexus with the broader network infrastructure (such as Base Stations (BSs),
Access Points (APs), and User Equipments (UEs)) through dedicated low-rate wireless
connections for information exchange.
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Figure 2.1: Architecture of an IRS.

A closer look at an individual IRS element's design, as depicted in Fig. 2.1, reveals the in-
clusion of a Positive-Intrinsic-Negative (PIN) diode®. By varying the bias voltage through a
DC feeding line, the PIN diode toggles between active (“On") and inactive (“Off") states,
producing a phase shift of m radians. This mechanism allows for the individual calibration
of each element’s phase shift by adjusting their bias voltages via the smart controller. Fur-
thermore, the design incorporates variable resistor loads to modulate the reflected signal’s
amplitude. Changing resistor load values adjust the dissipation of the incident signal’s energy,
facilitating tenable reflection amplitudes between 0 and 1. Achieving independent control
over both amplitude and phase shift at each element necessitates the seamless integration
of these components, highlighting the complexity and precision required in IRS design.

The utilization of IRS in wireless networks brings several benefits, including [64, 65, 66]:
e Enhanced Signal Strength: IRSs have the capability to intelligently redirect and fine-

tune wireless signals, boosting signal strength in targeted areas. This is achieved by
precisely altering the phase shifts of its elements, directing focused signal beams to

2Alternative mechanisms, such as Field-Effect Transistors (FETs) or MicroElectroMechanical System
(MEMS) switches, are also viable options for implementing IRS technology [59]. For those interested in the
practical implementation of IRS, a specific design for the 5.8 GigaHertz (GHz) frequency band is provided
in [63]. This particular IRS features a total of 1100 metaatoms configured in a Uniform Planar Array (UPA)
with 20 rows and 55 metaatoms per row. The impedance of each metaatom is controlled by two varactor
diodes, facilitating the adjustment of the phase of reflected signals across a span of 240 degrees.
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specific regions, thus mitigating path loss and elevating signal clarity.

e Low Power Consumption: Composed of numerous reflective elements, often im-
plemented with diodes, IRSs operate without the need for active RF chains, leading
to significantly reduced power consumption compared to traditional active antenna
systems.

e Programmability: The elements within an IRS can be programmatically adjusted to
alter the direction and properties of incoming EM waves, channeling them towards in-
tended destinations. This adaptability allows for the achievement of various objectives
such as signal boosting, latency minimization, interference mitigation, and coverage
expansion.

e Simplified Design: |IRSs are designed to be modular and lightweight, facilitating
straightforward installation on surfaces like interior walls or ceilings. Their adaptable
nature ensures easy incorporation into current wireless frameworks, enhancing system
flexibility and adaptability.

o Cost-Effectiveness: Implementing IRS technology can be a more economical solution
than the expansion of infrastructure or increasing the transmit power of base stations.
By integrating with existing network architectures, IRS deployment avoids the neces-
sity for substantial infrastructural enhancements, offering an efficient way to improve
network quality and reach with minimal additional cost.

2.3 IRS vs. Other Technologies: Key Advantages and Dif-
ferences

Through several key differences and advantages, IRSs distinguish themselves from other
technologies, such as active relays, backscatter communication, and massive MIMO (m-
MIMOs) with active surfaces [67]. Unlike active wireless relays, which amplify and retransmit
signals using active components like power amplifiers, IRS simply reflects the received signals
passively, without the need for active transmission modules. This not only makes the IRS
more energy-efficient but also allows it to operate in a full-duplex (FD) mode, unlike the
typically half-duplex active relays, thus offering greater spectrum efficiency. Although FD
relays are possible, they necessitate complex and expensive self-interference cancellation
solutions [68].

Contrary to traditional backscatter communication systems, such as Radio Frequency |IDen-
tification (RFID) tags that modulate and reflect signals from a reader to communicate,
IRS does not transmit its own information [69, 70]. Instead, it enhances an existing com-
munication link by coherently combining direct and reflected paths at the receiver, thereby
strengthening the signal for improved decoding without the need for self-interference cancel-
lation techniques required by backscatter systems. Besides, the IRS differs from m-MIMOs
systems with active surfaces in its foundational architecture and functionality. IRS employs a
passive array architecture and operates by reflecting signals, as opposed to the active trans-
mission approach of m-MIMOs. This distinction in array architecture (passive vs. active)
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and operational mechanism (reflect vs. transmit) underlines the unique position of IRS in
enhancing wireless communications with efficiency and cost-effectiveness [71].

The integration of IRS into wireless networks introduces a novel combination of active
elements, such as BSs, APs, and user terminals, with (somehow) passive components,
namely the IRS itself. This hybrid approach marks a departure from conventional networks
that rely solely on active components. Consequently, this dissertation aims to explore the
intricacies of IRS-aided networks, covering aspects such as signal and system modeling, the
principles of passive and active beamforming, channel estimation, and deployment strategies.
It particularly focuses on the primary challenges and proposes potential solutions for the
development and application of IRS-aided networks, serving as a catalyst for further research
in this emerging field.

2.4 Holographic Massive MIMO Surfaces

IRSs are not necessarily the same as Holographic Massive MIMO Surfaces (HMIMOS). The
distinction between the two lies primarily in their functionality and design, which can be
better clarified. HMIMOS are versatile components that are critical for achieving adaptable
wireless environments. They can act as transmitters, receivers, or reflectors, making them
highly flexible in their applications.

The term “active HMIMOS" applies when these surfaces incorporate energy-demanding RF
circuits and signal processing units for transceiving purposes. Active HMIMOS represent
an advanced iteration of traditional m-MIMO systems, characterized by an increased den-
sity of software-managed antenna elements on a compact 2D surface. As the quantity of
these elements grows, leading to closer spacing between them, such configurations of HMI-
MOS are also known as Large Intelligent Surfaces (LIS). Active HMIMOS may feature a
dense assembly of small antenna elements linked with reconfigurable networks, forming a
unified antenna array that utilizes the hologram principle for signal dissemination and recep-
tion. Alternatively, they can employ discrete photonic antenna arrays with integrated active
components for handling optical or RF signal transformations [72, 73, 74].

Conversely, passive HMIMOS, identified as IRS, function similarly to passive metallic mir-
rors or “wave collectors,” programmable to change incident EM fields. Unlike their active
counterparts, passive HMIMOS consist of cost-effective elements that operate without ex-
ternal power, relying on energy harvesting for autonomy, aiming for energy neutrality. This
technology stands out for its efficiency in molding and directing radio waves without needing
power amplifiers or RF chains, and it operates without intricate signal processing. Capable
of full-duplex communication, passive HMIMOS mitigate self-interference and maintain low
noise levels with minimal control link requirements. Their low energy use and inexpensive
hardware make them ideal for integration into various settings, from architectural facades
to wearable technology, enhancing wireless networks' flexibility and efficiency [75]. This is
the power of IRS as passive HMIMOS.
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2.5 Optimization of IRSs

Consider an IRS composed of @ unit cells, each acting as a diffusive scatterer capable of
changing the phase of an impinging EM wave. This behavior is mathematically represented
as Erq = Et,¢846/% 3, where E; 4 and E, 4 denote the incident and reflected electric fields
of the g-th unit cell, respectively, and ¢4 C ® € [0,27) is the phase shift induced by the
g-th unit cell, chosen from a set @, while B4 > 1 is reflection amplitude of the g-th IRS
element [79, 80]. The task of configuring the IRS entails optimizing these phase shifts
¢q (and amplitudes B4 in case of an active IRS rather than passive IRS), leading to a
non-convex optimization problem due to the unit-modulus constraint |e/®7| = 1. Although
various strategies have been proposed in the literature to tackle this non-convex constraint,
they generally do not scale well for large IRS configurations as the number of optimization
variables becomes excessively large [81, 82, 60, 83, 84]. For example, an IRS of size 1 meter
by 1 meter at a carrier frequency of 5 GHz, assuming a unit-cell spacing of half a wavelength,
would encompass Q = 1100 unit cells. Consequently, direct optimization of ¢4 for each cell
in such large IRS arrays may not be feasible for on-the-fly design considerations.

In an IRS-enhanced communication framework that includes several multi-antenna BSs/APs,
multiple IRS units, and a large user base equipped with either single or multiple antennas,
managing IRS configurations centrally becomes a formidable challenge. This setup would
necessitate the transmission of extensive control data to a central controller, leading to
substantial computational and energy costs. To address these issues, there is a critical need
to develop algorithms that can efficiently handle resource allocation, beamforming, IRS
settings, and user scheduling. Furthermore, the network optimization process is expected
to be further complicated by factors such as power distribution, spectrum utilization, and
the assignment of users to specific BSs/APs and IRS units. As the network integrates
more IRS units, the complexity of designing effective algorithms is expected to increase
correspondingly.

In this dissertation, we address these challenges by devising resource allocation policies char-
acterized by low computational complexity and optimal convergence behavior. Our approach
encompasses a variety of use cases, exploring a broad spectrum of communication network
metrics (such as power/spectral/energy efficiency, throughput, and user quality of service)
and optimization strategies specifically tailored for IRS-aided networks. By adopting this
methodology, we aim to enhance the efficiency and effectiveness of deploying IRS tech-
nology across diverse scenarios. Our focus on various optimization approaches enables us
to tailor solutions that meet the unique requirements of each use case and mitigate the
computational and energy constraints associated with centralized IRS management. This
comprehensive examination of IRS-aided networks is crucial for implementing distributed al-
gorithms that optimize network performance while effectively balancing computational load
and energy usage.

3More complex models (that depend on the angle of arrival/departure, unit cell radiation pattern, and
other relevant physical parameters) exist in the literature [29, 30, 31, 32, 34, 76, 77, 78].



16 CHAPTER 2. IRS-AIDED WIRELESS COMMUNICATIONS: A BRIEF OVERVIEW

2.6 Applications of IRSs

The introduction of IRSs is transforming wireless networks, enabling a host of promising ap-
plications. Fig 2.2 presents a vision for a future IRS-aided wireless network. IRS technology
proves invaluable in extending coverage for millimeter-wave (mmWave) and Terahertz (THz)
communications, which typically suffer from signal obstructions. By strategically placing IRS
at cell edges, not only is the signal strength for users at these locations improved, but inter-
ference from adjacent cells is effectively reduced. This is particularly advantageous in set-
tings such as smart offices or homes, where IRS can significantly counteract power loss over
distances for systems like simultaneous wireless information and power transfer (SWIPT),
thanks to its capability for directed beamforming towards proximate devices [85, 86, 87].

Further, IRS can be seamlessly integrated into the indoor infrastructure, attached to ceilings,
walls, or even discreetly behind decorations, to foster enhanced network coverage and estab-
lish high-capacity connectivity zones. Such advancements are critical for enhanced Mobile
BroadBand (eMBB) and massive Machine Type Communications (mMTC) services within
diverse environments, including smart factories and commercial venues, offering improved
device activity detection and efficiency by exploiting IRS’ extra controllable paths in varying
propagation conditions [86, 88]. Outdoors, the IRS finds utility in various structures, from
building exteriors to public fixtures, supporting a range of applications, including URLLC for
remote operation and intelligent transportation systems. By mitigating Doppler and delay
spread effects, IRS contributes to the stabilization of wireless channels, thereby enhanc-
ing communication reliability essential for minimizing packet retransmissions and reducing
latency (which is the key for URLLC applications) [89, 90].

As a pioneering technology, IRS is set to revolutionize the “dumb"” infrastructure of today
into an intelligent, interactive topography, promising substantial advantages across multiple
sectors in the evolving 6G ecosystem. Its potential has ignited industry interest in devel-
oping and commercializing IRS-like technologies to forge new value chains. Concurrently,
numerous pilot projects are underway, advancing research in this innovative field. Despite
the diverse nomenclature, ranging from intelligent walls and smart reflect-arrays to large
intelligent surfaces, all these innovations fundamentally rely on the principle of passive and
adjustable surfaces for manipulating signal reflection or refraction [91, 92, 93].

2.6.1 Practical Scenarios: From Blockage Mitigation to Advance Us-
age

Fig. 2.3 depicts various practical scenarios where IRS-aided wireless networks can signifi-
cantly enhance connectivity and security. Signal blockages and obstructions pose significant
challenges to signal coverage, often compromising wireless communication systems’' con-
nectivity. In the first scenario, an IRS overcomes the challenge of signal blockage between
a user and a BSs/APs, which is common in environments prone to obstruction, like indoor
spaces affecting mmWave communications. Through the strategic placement of IRS ele-
ments, it is possible to reroute incident signals around obstacles, effectively creating a virtual
Line-of-Sight (LoS) connection and extending coverage to areas otherwise shadowed by an
APs [94, 95]. The second scenario addresses enhancing physical layer security. When an
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Figure 2.3: Typical IRS applications in wireless network.

eavesdropper is closer to the BSs than a legitimate user or in the same direction, tradi-
tional transmit beamforming struggles to prevent information leakage. Here, an IRS near
the eavesdropper can adjust its signal reflection to negate the signal reaching the eavesdrop-
per, thereby securing the communication [96, 97, 98]. In the third use case, an IRS aids a
cell-edge user experiencing both weak signal strength from its BSs and interference from a
neighboring BSs. By deploying an IRS at the cell edge and fine-tuning its beamforming, the
desired signal is amplified while interference is minimized, creating both a “signal hotspot”
and an “interference-free zone” [81, 99, 100, 101]. The fourth application demonstrates
the IRS’s role in facilitating massive D2D communications. Here, the IRS serves as a central
hub for signal reflection, enabling multiple low-power D2D links by mitigating interference
among them. Lastly, the potential of the IRS in SWIPT scenarios is explored, particularly for
Internet-of-Things (loT) networks. Utilizing the large surface area of an IRS, it is possible
to significantly improve the efficiency of wireless power transfer to loT devices by compen-
sating for power losses over distances with passive beamforming, showcasing the diverse
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Figure 2.4: Application scenario for an IRS to mitigate blockage in an indoor factory.

capabilities of IRS in modern wireless communication systems [102, 103, 104, 105].

2.6.2 Indoor Environments: A Factory Setting

In industrial settings, as shown in Fig 2.4, the complexity of the environment often re-
sults in signal blockage due to numerous obstructions such as machinery, tools, and the
constant movement of personnel, robots, and vehicles. The IRS offers a solution to this
problem by facilitating a reliable connection between an APs and mobile users within the
premises. By strategically positioning the IRS, it can dynamically redirect beams to navigate
around obstructions, ensuring a robust and continuous link with users and the machines,
even amidst changes or reconfigurations in the factory layout. The ability of the IRS to
redirect its reflecting beams to accommodate the movement of users and bypass physi-
cal barriers guarantees uninterrupted wireless communication. For enhanced coverage and
flexibility, mounting the IRS on a mobile platform allows for the adjustment of its location
to suit the factory's current configuration and the users’ positions, optimizing the signal
quality and addressing blockage challenges effectively. Furthermore, the deployment of a
considerable number of IRS elements allows the system to adapt flexibly to the wireless
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environment, navigating around blockages. These elements collaboratively build a robust
reflective Non-Line-of-Sight (NLoS) link, thereby amplifying signal propagation and broad-
ening the coverage area [106, 107].

The implementation of an IRS in such environments circumvents the need for major infras-
tructural modifications or the extensive repositioning of network components [108]. With
its ability to be reconfigured, the IRS enhances connectivity, significantly improving both
operational and communication efficiency in smart manufacturing environments [109]. Its
capacity to maintain a dependable connection with moving users boosts productivity and
enhances the factory’s overall performance [110]. Further insights into the application of
IRS in industrial settings, particularly for systems accommodating Machine-Type Commu-
nication (MTC) % and URLLC services [111, 112], are detailed in Chapters 4 and 5 of this
dissertation.

2.7 IRS-aided System Design: Dissertation Objectives

Research on optimizing IRS configurations has proliferated due to their ability to reshape
wireless propagation channels [76, 113, 114, 115, 116, 117, 118, 119, 120, 121]. Various
studies demonstrate the technology’s versatility, such as those proposing robust resource
allocation algorithms for IRS-enhanced systems and exploring resource distribution in IRS-
supported OFDMA frameworks [122, 123]. While enhancements in multi-cell [81] and full-
duplex [124] systems have been explored, along with IRS's integration into non-orthogonal
multiple access (NOMA) setups [125], the emphasis has largely been on eMBB traffic and
predominantly single-carrier systems [66, 88, 126]. The incorporation of IRS into both
URLLC and MTC services introduces a transformative shift, notably reducing latency and
improving system reliability. In this dissertation, our investigation extends IRS into such
services, further expanding the scope of the research.

The strategic manipulation of EM waves enables IRS to amplify power efficiency within
multi-user SWIPT systems [50]. This dual functionality underscores the flexibility of IRS
in promoting energy harvesting and reliable data transmission. IRS proves invaluable for
Virtual Reality (VR) networks that encounter significant path loss or obstructions, ensuring
uninterrupted, high-quality experiences. IRS also enhances Mobile Edge Computing (MEC)
by optimizing signal delivery for efficient edge data processing [101]. This improvement
is critical for applications demanding immediate feedback and strict data integrity, such
as autonomous vehicles and industrial automation, highlighting the IRS’s crucial role in
addressing next-generation communication requirements. Subsequent to our examination,
additional studies have delved into the use of miniature unmanned aerial vehicle (UAV)
networks. The exploration in this dissertation further spans the strategic application of IRS
across a wide frequency spectrum, from Frequency Range 1 (FR1) to Frequency Range 2
(FR2), and into the advanced territories of mmWave and THz frequencies, illustrating its
profound impact on the future of telecommunications.

4MTC refers to automated communication between devices or machines, characterized by minimal or
no human intervention, typically utilizing protocols and technologies designed for efficient and scalable data
exchange in loT and industrial automation environments.
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To assess the efficacy of IRS-enhanced networks, this dissertation identifies a suite of KPls,
including data rate, power and energy efficiency, Signal-to-Interference-plus-Noise (SINR),
transmit signal power budget, and received power strength. These KPIs are crucial for
evaluating and refining the network’s performance through the development of an effective
resource allocation strategy. Non-linear, non-convex, and MINLP problems arise when ad-
dressing the resource allocation optimization problem. These problems are NP-hard due to
the complex relationship between variables and the system'’s constraints. Given the com-
plexity of these optimization problems, different strategies are used to simplify and approach
their solution. By relaxing the objective function and constraints that are non-convex to a
more tractable format, the problems became more manageable. This relaxation approach
often involved transforming the optimization problem into its convex equivalent or utilizing
approximation techniques to linearize or convexify non-convex terms.

Algorithms are developed that are capable of solving the main problem either globally or sub-
optimally but sufficiently close to the global optimum. These solutions employ optimization
solvers and computer simulations, exploiting advanced mathematical tools and techniques
such as the big-M method for linearizing product terms involving binary variables and Suc-
cessive Convex Approximation (SCA) to obtain convex approximations of non-convex terms.
The iterative nature of these solutions allowed for step-by-step refinement, gradually moving
towards an optimal configuration of a resource allocation design despite the initial problem’s
complexity.

Through exhaustive simulations, this dissertation unveils the diverse performance improve-
ments achievable through resource allocation in IRS-assisted networks, providing rich insights
into how IRS technology can improve wireless communication systems. These simulations
serve as a critical bridge, connecting theoretical predictions with empirical evidence and val-
idating the practical feasibility of the proposed IRS-enhanced network. By exploring various
IRS configurations — examining both passive and active types and varying the number of
reflective elements — and their implementation in different environments and settings, this
study not only confirms the theoretical models’ accuracy but also explains the conditions un-
der which IRS deployments yield maximal performance gains, manifesting the IRS versatility
in adapting new technologies.

Collectively, this dissertation studies the impact of IRS across a broad range of technologies.
By enhancing the performance of SWIPT networks, facilitating URLLC and MTC, enabling
VR, and revolutionizing VR, mmWave, and THz applications, IRS stands at the forefront of
wireless communication innovation. This work demonstrates the diverse applications of IRS
technology and lays the foundation for future research aimed at utilizing IRS to tackle the
dynamic challenges of modern wireless networks. It charts a path toward the development
of more robust, efficient, and engaging communication ecosystems.

In this dissertation, we contribute to the IRS-aided system design for different service type
users with three principal innovations:

e Extending IRS to URLLC, MTC and other Use-Cases: We explore the use of IRS
in reducing latency and enhancing reliability for URLLC and MTC services, broadening
the scope of IRS applications beyond traditional eMBB traffic. We further investigate
IRS functionality in VR, MEC, and UAV networks.
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e Developing Optimization Algorithms: We introduce algorithms for solving com-
plex optimization problems in IRS-assisted networks, utilizing advanced mathematical
techniques to approach global or near-global optimums efficiently.

e Performance Validation through Simulations: Through simulations, we demon-
strate the significant improvements IRS can bring to wireless networks, validating
theoretical predictions and showcasing the technology’s adaptability across various

applications.



 Chapter &8

Power Efficient Multi-User SWIPT
Networks

EFORE diving into Intelligent Reflecting Surface (IRS) technology, we need to develop

a baseline. This chapter lays the groundwork for a comprehensive understanding of
power efficiency in a downlink multi-antenna, multi-user single-cell network, particularly in the
context of Simultaneous Wireless Information and Power Transfer (SWIPT). The proposed
power efficiency problem aims to maximize the harvested energy and minimize transmission
power consumption simultaneously. The emphasis on maximizing the harvested energy while
minimizing transmission power consumption addresses a crucial aspect of wireless commu-
nication networks. The approach includes optimizing beamforming and antenna selection
procedures at the receivers, considering minimum data rate requirements, which introduces
a complex optimization landscape. The problem is identified as a non-linear programming
problem, highlighting the complex nature of achieving power efficiency in such networks.

As a result, a joint optimization of beamforming and antenna selection design is performed
based on the scheduling chosen for information decoding and energy harvesting. This method
involves breaking down the main problem into two manageable subproblems: antenna selec-
tion optimization based on maximum channel gain across all antennas and transmit beam-
forming optimization through a unique two-layer iterative process leveraging the sum-of-ratio
programming. This dual approach enables a low-complexity, locally optimal solution, signif-
icantly improving power and energy efficiency.

Furthermore, the chapter presents simulation results to validate the effectiveness of the pro-
posed scheme, demonstrating notable improvements in power and energy efficiency. These
results also uncover an intriguing balance between power and energy efficiency, suggesting
an inherent tradeoff that must be navigated in the design of SWIPT-enabled networks.

This first technical chapter aims to develop a baseline fundamental backbone, building the
foundation for the subsequent chapters. The concepts, methodologies, and solutions in-
troduced here are essential for understanding and advancing the state of power efficiency
in multi-antenna, multi-user single-cell networks. As such, this chapter serves as the cor-
nerstone upon which the rest of the discussions and explorations in this book will be built,
ensuring a coherent and progressive development of ideas and technologies in the realm of
IRS-aided wireless communications.

23
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3.1 Introduction

Recently, the technology of Simultaneous Wireless Information and Power Transfer (SWIPT)
has been recognized as a promising approach for simultaneously enhancing the Energy Effi-
ciency (EE) and extending the battery lifespan of wireless devices [127]. Research in this field
has primarily concentrated on either increasing the amount of energy harvested or improving
throughput levels [128, 129]. However, focusing exclusively on enhansing throughput may
lead to elevated power consumption within the network, while prioritizing the maximization
of harvested energy through SWIPT could degrade Quality of Service (QoS). In response
to this dilemma, EE has been proposed as a pivotal metric designed to handle the delicate
balance between minimizing power consumption and maximizing throughput.

This metric introduces a different understanding of network performance, emphasizing the
importance of achieving a harmonious equilibrium between the dual objectives of energy
conservation and information transmission efficiency. By evaluating both energy harvest and
throughput within a unified framework, EE offers a comprehensive metric that addresses the
complexities and inherent trade-offs involved in SWIPT technology. This approach not only
underscores the multi-layered challenges of optimizing network operations but also highlights
the potential for innovative solutions that can reconcile competing objectives in the pursuit
of sustainable and efficient wireless communication systems.

The quest for energy-efficient resource allocation design in SWIPT networks is a focal point
of numerous scholarly studies, as evidenced by the array of research tackling this issue [130,
131, 132, 133, 134, 135, 136]. These investigations have unfolded a variety of innovative
strategies designed to elevate the EE across diverse network architectures. Among these
strategies, beamforming techniques within complex multi-cell, multi-user environments have
been emphasized for their potential to significantly enhance network performance [130].
Furthermore, the optimization of EE in Multiple-Input Single-Output (MISO) Orthogonal
Frequency Division Multiple Access (OFDMA) frameworks through advanced beamforming
methodologies, such as zero-forcing, has been thoroughly examined [137].

The body of work extends beyond these approaches, with additional research focusing on
the enhancement of EE through beamforming strategies specifically designed for OFDMA
networks [131]. This is complemented by in-depth investigations into Non-Orthogonal Mul-
tiple Access (NOMA) based SWIPT networks. Such studies focus on achieving maximal EE
by finely tuning the balance between power allocation and Time-Switching (TS) control in
TS-based SWIPT architectures [132]. This collective research effort represents a concerted
move towards optimizing the dual functionality of SWIPT networks, ensuring not only the
efficient transmission of information but also the effective harvesting of energy.

Building upon the same research dedicated to enhancing EE in SWIPT networks, the study
presented in [133] explores a heterogeneous NOMA SWIPT network, introducing a novel
solution for EE maximization. This solution considers the matching theory concept cou-
pled with the application of Lagrangian duality, presenting a sophisticated mathematical
framework for addressing EE optimization problems. Furthermore, [134] advances the dis-
course by proposing an EE optimization strategy through a meticulous subcarrier allocation
design policy. This strategy is aimed at fostering green communication in wireless sensor
networks by harnessing the capabilities of SWIPT technology, marking a significant step
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towards sustainable network operations.

Additionally, the research in [135] delves into a Multiple-Input Single-Output (MISO) SWIPT
network, distinguished by a non-linear energy harvesting model. Here, a comprehensive ap-
proach to EE maximization is undertaken, involving the joint optimization of Power-Splitting
(PS) ratios and beamforming design. This approach features the intricate balance required
to maximize EE without compromising the network’s operational capabilities. Meanwhile,
the work in [136] introduces an Energy Efficiency Indicator (EEI), specifically designed to
mediate the relationship between data rate and energy harvesting. This indicator serves as
a tool for calibrating network performance with an eye towards achieving an optimal balance
between these two critical dimensions.

Despite these considerable advancements, it is striking to note that previous studies have
largely overlooked the potential of Antenna Switching (AS) techniques at the receiver level to
balance the trade-off between Information Decoding (ID) and Energy Harvesting (EH) [130,
131, 132, 133, 134, 135, 136]. This oversight suggests an opportunity for further exploration
into how AS techniques could enhance the dynamic interplay between ID and EH, potentially
unlocking new pathways to superior energy efficiency. The ability of multiple antennas
to switch between decoding and harvesting modes, based on real-time assessments, could
dramatically elevate the efficiency and adaptability of SWIPT networks, heralding a new era
of smart, energy-efficient wireless communication.

Intuitively, the concept of utilizing multiple receive antennas presents a promising avenue for
enhancing both energy harvesting capabilities and the efficiency of information transfer in
SWIPT networks. This approach benefits from the potential for increased energy collection
and improved signal reception, thus facilitating a more robust and efficient communication
system. Furthermore, AS provides a trade-off between operational costs, system complex-
ity, and overall network performance. By selectively activating certain antennas based on
prevailing conditions, networks can achieve optimal functionality with minimized resource
expenditure.

The process of receiver antenna selection extends the AS scheme within the specialized
environment of co-located SWIPT networks [138]. This advanced methodology allows for
each antenna at the user’s device to be dynamically designated for either ID or EH according
to real-time Channel State Information (CSI). Such flexibility not only enhances the adapt-
ability of the network but also optimizes the dual objectives of SWIPT technology. We refer
to this methodology as “generalized AS” technique in SWIPT-based networks, signifying a
leap forward in the strategic deployment of network resources. Here, the AS function acts
as a decisive “switch,” orchestrating the operational mode of antennas to ensure they fulfill
their dual potential in EH and ID as necessitated by the network demands, as illustrated in
Fig 3.2.

The exploration of AS techniques in SWIPT systems represents a niche yet significant area
of study, with only a handful of research works delving into the intricacies of how antennas
can dynamically alternate between ID and EH functionalities [139, 140, 141, 142]. Among
these, the study conducted in [141] is notable for its innovative approach, proposing an
antenna-clustering methodology that leverages hybrid Deep Reinforcement Learning (DRL)
to optimize the average data rate for systems equipped with multiple antennas at both
the receiver and transmitter ends. Similarly, the work presented in [142] explores an AS
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strategy specifically designed for multi-antenna secondary receivers within cognitive-based
networks, employing a thresholding method to facilitate the switching process. Despite these
advancements, it is observed that the existing literature, including the studies [129, 139,
141], and [142], primarily overlooks the EE aspect of networks employing AS. In contrast,
[140] takes a step forward by assessing EE within a Point-to-Point (P2P) Multiple-Input and
Multiple-Output (MIMO) SWIPT system, underlining the potential for improving network
performance through efficient energy use.

Motivated by the practical scenarios, the critical gap identified in the literature is the absence
of any study focusing on the optimization of “power efficiency” in multi-user SWIPT net-
works through a combined approach of generalized AS and beamforming techniques. This
approach not only aims to enhance the power harvested and data rate but also seeks to min-
imize power consumption, thereby ensuring a sustainable balance that meets the network's
quality conditions. Given the evolving needs of modern wireless networks, such as increased
data demand and the push for energy sustainability, the integration of generalized AS with
beamforming strategies presents a promising avenue for research. This novel direction could
pave the way for significantly more energy- and power-efficient SWIPT networks, tailored
to meet the challenges of contemporary and future wireless communication systems.

This chapter delineates a pioneering approach through the implementation of generalized AS
alongside a beamforming design tailored for multi-user SWIPT systems, aiming primarily to
elevate the network’s power efficiency. The essence of our contribution is encapsulated in the
strategic deployment of these technologies to refine the balance between energy harvesting
and power consumption, thereby optimizing the overall network functionality. The core
aspects of our contributions are detailed as follows:

e We first present the difference between generalized AS and other SWIPT architecture.
Our investigation then begins with a critical evaluation of the system's power efficiency,
which we articulate as the ratio of the aggregate harvested energy to the total power
expenditure [143]. This foundational concept serves as the basis for our subsequent
optimizations and analyses in the generalized AS SWIPT network.

e Building upon this, our objective expands to encompass the holistic optimization of
the network’s effective power. By designing beamforming for both information and
energy signals within a MIMO framework that incorporates generalized AS, we un-
dertake a comprehensive approach. Essential to our methodology is the assurance of
maintaining each user's minimum Quality of Service (QoS), in order to balance the
tradeoff between ID and EH. We maximize the effective power throughput subject to
minimum data rate and maximum power transfer constraints. Achieving these ambi-
tious goals necessitates a deliberate selection of receiver antennas and an optimization
of transmit beamforming, tailored distinctly to the network's unique attributes. The
complexity and non-linear nature of this problem are acknowledged, setting the stage
for innovative solutions.

e |n response to the challenging nature of the original optimization problem, we adopt
a strategic approach by decomposing it into two manageable subproblems, thereby
paving the way for a locally optimal solution. In particular, the first subproblem is
solved via searching for the best channel gain across all antennas. The objective func-
tion in the second subproblem follows the sum of objective ratio functions that will
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be transformed into an equivalent subtractive form. To navigate these challenges, we
leverage the Semi-Definite Programming (SDP) relaxation technique coupled with a
one-dimensional search methodology, facilitating an iterative progression toward ob-
taining an optimal solution.

e The practical validation of our theoretical constructs is achieved through rigorous
simulation exercises. These simulations not only affirm the robustness of the proposed
algorithm in enhancing power efficiency and energy efficiency across a spectrum of
antenna and sensor user configurations but also illuminate the inherent trade-offs
between these two critical efficiencies. The insights learned from these simulations are
instrumental in demonstrating the tangible impacts of our contributions.

In essence, this chapter not only provides the innovative application of generalized AS and
beamforming within the realm of SWIPT networks but also illustrates the profound im-
plications of these strategies on the operational efficiency of such networks. Through a
methodical dissection of the problem and the strategic employment of advanced mathe-
matical techniques, we offer a blueprint for achieving an optimal balance between energy
harvesting and information transmission, heralding a new era in the design and optimization
of SWIPT systems.

This chapter aims to develop a baseline fundamental backbone, building the foundation for
the subsequent chapters. The concepts, methodologies, and solutions introduced here are
essential for understanding and advancing the state of power efficiency in multi-antenna,
multi-user single-cell networks. As such, this chapter serves as the cornerstone upon which
the rest of the discussions and explorations in this dissertation will be built, ensuring a
coherent and progressive development of ideas and technologies in the realm of wireless
communications.

The rest of the chapter is organized as follows. This chapter unfolds with a comparative
analysis of generalized AS against traditional SWIPT architectures in Section 3.2. We then
detail the system model and problem formulation in Section 3.3. Section 3.4 introduces
a solution to the proposed scheme. This is followed by Section 3.5, where we validate
our theoretical models with extensive simulations, demonstrating the practical viability and
benefits of our proposed method. The chapter concludes in Section 3.6, where we summarize
our findings and reflect on their implications for the advancement of SWIPT systems.

Notations: We denote the matrices and column vectors by boldfaced lowercase and up-
percase letters, e.g., A and a, respectively. ||al|| indicates the Euclidean norm of vector a
and |a| describes the magnitude of a complex number a. The transpose and Hermitian of
a matrix are expressed as (-)7 and ()", respectively. Moreover, Tr(A) and rank(A) define
the trace and the rank of matrix A, respectively. diag(A) specifies a vector whose elements
are taken from the main diagonal elements of the matrix A. A > 0 indicates A is a positive
semidefinite matrix. CV*M is the space of an N x M with complex element entries. The set
containing the elements a and b is denoted as {a, b}. Matrix Iy, expresses an M x M iden-
tity matrix. CA(u,X) gives the distribution of a Circularly Symmetric Complex Gaussian
(CSCG) random vector with the mean p and covariance matrix X, where ~ means “with
the distribution of.”
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3.2 Generalized AS versus other SWIPT Architectures

In our discussion, we delve into the concept of generalized AS within the context of SWIPT
networks, a burgeoning area of research that intersects with multiple Wireless Power Transfer
(WPT) technologies. The core idea behind SWIPT is its ability to utilize radio frequency
(RF) signals for dual purposes — both to convey information and to transfer energy to
energy-constrained wireless User Equipments (UEs). This innovative approach allows UEs
to simultaneously harvest energy and process information from RF signals emanating from
a Base Station (BS), a mobile AP (e.g., a drone), or an Access Point (AP).

SWIPT systems are designed to facilitate the concurrent transfer of energy and information
signals in the DL direction from one or multiple BSs or APs to one or several receivers. This
setup is optimized for simultaneous ID and EH, fundamentally altering the dynamics of wire-
less communication systems by enhancing their energy efficiency and operational capabilities.
Ideally, a receiver equipped for SWIPT would possess integrated circuitry capable of perform-
ing both ID and EH concurrently. This integration represents a departure from traditional
designs, where separate circuits were utilized for EH and ID, marking a significant evolution
in the design and functionality of receivers within SWIPT networks [144, 145, 146] L

While simultaneous EH and ID operations are embodied in the SWIPT technology, it is
crucial to understand that these processes do not necessarily occur on the same segment
of the received signal. Practically, attempting to harvest energy directly from the signal
carrying information would compromise the integrity of the data within the RF domain,
rendering the information content unusable. Moreover, relying on a singular antenna for
both EH and ID tasks might not provide a consistent energy supply, given the inherent
limitations in energy collection capabilities of a single antenna setup. To circumvent these
challenges and effectively enable SWIPT, distinct strategies are employed, such as dedicating
separate antennas for EH and ID operations or dividing the incoming RF signal into two
distinct paths — one for EH and another for ID — through the use of a splitter. This
differentiation is essential for the practical implementation of SWIPT systems, ensuring
both energy harvesting and information decoding can occur efficiently without interference
between the two processes.

The architectural design of EH and ID receivers within SWIPT systems can be broadly cate-
gorized into two types: separated and co-located architectures (cf. Fig. 3.1). In a separated
architecture, EH and ID functions are performed by two distinct devices, each equipped
with its own antenna and experiencing different channel conditions from the transmitter. As
shown in Fig. (3.1a), the EH receiver, designed for low-power operation, focuses solely on
energy collection, whereas the ID receiver processes the data. Given the efficiency of energy
harvesting diminishes with distance, EH receivers are typically positioned closer to the BS
or AP compared to ID receivers, necessitating spatial separation and often defined by an
inner and outer radius to demarcate EH and ID zones. Conversely, a co-located SWIPT
architecture integrates both EH and ID capabilities within a single device, receiving identical
channel conditions from the transmitter. This setup enables the device to simultaneously
perform EH and ID without the need for spatial separation, offering a more elegant approach
to SWIPT but requiring sophisticated internal mechanisms to manage the different func-

IThe concept of generalized AS in this framework further enriches this evolving landscape, promising new
avenues for maximizing the efficiency and effectiveness of SWIPT systems.
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tionalities efficiently. Each architecture offers distinct advantages and challenges, shaping
the deployment and effectiveness of SWIPT systems in various operational environments.

Within the realm of co-located receiver architectures for SWIPT, three pragmatic approaches
— Time Switching-(TS), Power-Splitting (PS), and Antenna-Switching (AS) — stand out
for their innovative means of enabling simultaneous EH and ID operations. These methods
ensure that EH and ID receivers, despite sharing the same physical space, can efficiently
manage the tasks without compromising on performance.

In the TS approach, as illustrated in Fig. (3.1b), the architecture includes an EH module,
an ID module, and a switch. This setup allows the receiving antenna to alternate between
EH and ID modes according to a predefined, yet adjustable, TS sequence. This method
requires precise scheduling of information and energy reception, alongside accurate timing
mechanisms, to ensure the seamless transition between modes. Conversely, the PS approach,
depicted in Fig. (3.1c), employs a strategy where the incoming RF signal is divided into two
distinct streams at varying power levels dedicated to EH and ID tasks, respectively. This
division is governed by an optimizable PS ratio, enabling a balanced distribution of power
for both functions within the same time frame. The AS methodology, as in Fig. (3.1d),
introduces a paradigm where independent antennas are designated for EH and ID activities,
facilitated by a straightforward AS algorithm. This setup typically involves an antenna
array at the receiver, employing spatial multiplexing to segregate the antenna into subsets
dedicated to either EH or ID functions. This configuration allows for a dynamic allocation
of resources, with one subset of antennas focusing on energy harvesting while the remaining
antennas are tasked with decoding information.

The AS approach is notably recognized for its simplicity and practicality, making it a partic-
ularly appealing option for SWIPT architecture designs. It offers a straightforward solution
without the complex scheduling required by TS or the precise power allocation demands of
PS [147]. Moreover, its flexibility and lower complexity render it an optimal strategy for not
only co-located receiver architectures but also for enhancing separated receiver designs, as
suggested by Fig. (3.1a). This adaptability and ease of implementation highlight the AS
method as a superior choice for real-world applications of SWIPT systems. In addition, the
AS approach can be similarly adopted to optimize the separated receiver architecture as
shown in Fig. (3.1a) [148].

The AS approach, particularly in its advanced form of generalized AS, emerges as a notably
strategic and flexible methodology in co-located SWIPT networks. By extending the basic
premise of AS to allow for the dynamic selection of receiver antennas, based on real-time
CSI for either ID or ED, this methodology significantly broadens the operational versatility of
SWIPT systems. Such an advanced approach introduces a paradigm shift in how antennas
are utilized, seamlessly alternating between EH and ID to maximize network efficiency and
resource utilization. In the traditional AS framework, antennas are separated into distinct
groups, each dedicated to either EH or ID. Conversely, generalized AS supplies each antenna
with both EH and ID functionality. This allows antennas in the generalized setup to ‘switch’
between two specific roles, unlike in conventional AS, where a physical switch is used to
toggle between different antennas for EH and ID tasks. Our introduction of the generalized
AS concept represents a first in the field, offering a novel and sophisticated solution that
optimally aligns with the objectives of SWIPT technology. This innovative leap enhances the
adaptability and efficiency of SWIPT networks, ensuring that each antenna within a user's
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network.

device is employed to its fullest potential in accordance with the instantaneous demands of
the network environment.

3.3 System Model and Problem Formulation

In our study, we focus on a DL Orthogonal Frequency Division Multiplexing (OFDM) network
architecture, where an AP provides coverage to multiple sensor User Equipments (UEs)
within its range. The AP is equipped with Nt antennas, while each sensor user is equipped
with M antennas, allowing for enhanced communication capabilities and network efficiency.
We define the set of k sensor users under the AP’s coverage as K = {1, 2, ..., K}, representing
a diverse array of devices with varying communication needs.

A key assumption in our model is the availability of perfect CSI at the central resource
allocator?. This assumption enables the design of an optimized resource allocation policy
that can dynamically adjust to various network conditions. The perfect CSI ensures that
the resource allocation mechanism can make informed decisions, maximizing the network’s
overall performance by efficiently utilizing the available spectral resources. This approach
emphasizes the importance of accurate information in the strategic planning and execution
of network resource distribution, aiming to enhance the communication experience of all
sensor users within the DL OFDM network.

In our system model, where each user is equipped with multiple antennas, the framework
allows for the strategic selection of the optimal antenna for specific tasks — either ID or
energy EH, in accordance with the predefined resource allocation policy. This configuration
enables a user to engage in both ID and EH activities simultaneously, though each activity
is allocated to different antennas to avoid interference and maximize efficiency. Specifically,
the finest antenna, chosen from the antenna set M, is dedicated to ID, while the other
available antennas are utilized for EH. This methodical selection ensures that each antenna

2|t is assumed that the AP has perfect CSl through a feedback channel. In particular, the AP sends some
orthogonal preambles in the downlink to the sensor users and obtains the CSI by listening to the sounding
reference signals transmitted by the sensor users [149].
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Table 3.1: Summary of Our Main Notations in Power-efficiency Optimization of a Multi-user SWIPT
Network.

| Symbol | Definition

The DL channel gain vector for the in-
h, € CNex1 | formation transfer from the AP to the
mt" antenna of user k.

The DL channel matrix for the wireless
G, € CNexM | pbower transfer from the AP to the user
k.

Binary indicator that selects the mt" an-
by« €{0,1} | tenna from the AP to the k™" user for
data transmission.

The transmit information beamforming
of the AP for the kt/ user.

The transmit energy signal of the AP
broadcasted to all sensor users.

wy c (CNtX].

We c (C/Vtxl

is used to its fullest potential, aligning with the system'’s operational objectives. To aid in
the comprehension of our system model and the underlying principles of antenna selection
for ID and EH, we have delineated key variables and their definitions in Table 3.1. For
readability, we summarized some of the essential variables used to describe the system
model in Table 3.1. We further assume that the AP transmits both the information and
energy signals simultaneously. Thus, the discrete-time signal transmitted by the AP can be
mathematically represented as follows:

T = Z WSk + We, (3.1)
ke

where s € C is a unit-energy information carrying symbol intended for the k-th user. This
formulation, (3.1), encapsulates the essence of SWIPT by integrating the transmission of
information-bearing signals, identified by the weighting vectors wy for each user k, with an
energy signal, denoted by w,. It is important to highlight that the energy component of
the transmission, while devoid of information, plays a crucial role in the energy harvesting
process at the user end. This energy signal is not arbitrary but is instead crafted at the
AP using a deterministic pseudo-random sequence. The characteristics of this sequence
are well-defined, possessing a zero mean and a specific covariance matrix W, which is
mathematically expressed as we ~ CN(0, W,). The deterministic nature of this sequence,
generated with a predefined seed, ensures that it is known to all users, facilitating efficient
energy harvesting without compromising the integrity of the transmitted information. This
approach underscores the intricate balance between information dissemination and energy
transmission inherent in SWIPT systems.

For simplicity of the analysis, we adopt the assumption of a narrow-band block-fading prop-
agation channel [146, 150]. This approach simplifies the channel’s representation and is
particularly suitable for scenarios where the channel’s properties do not change significantly
over the block of transmission. The signals received for ID and EH in such a channel
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environment can be given as follows:

e =Y bl (b, wjsi+we)+np, Vk e K, (3.2)
JEKX
yiH = (In —diag(by)) Y. GF (wysj +we) +nf™, Vkek, (3.3)
JeK

where the noise components nLD and nEH are considered to be Additive White Gaussian Noise
(AWGN) with properties reflecting circularly symmetric Gaussian distributions. Specifically,
the noise term for the ID process is distributed as nLD ~CN(O,ULD2 , indicating a zero-
mean complex Gaussian distribution with variance O'LDQ. Similarly, the noise affecting the EH

process follows nEH NCN(O,UEHQIM), where Iy, is the identity matrix of size M, reflecting
the dimensionality of the EH noise vector.

Within the framework of our model, we employ the generalized AS technique, which can
distinguish between signals intended for information transfer and those allocated for power
transfer. Through the application of generalized AS, we strategically partition the antennas
at the receiver into two distinct groups. One set is dedicated exclusively to EH, absorbing
the power transmitted by the AP to replenish the device's battery or to power other opera-
tions. Concurrently, the remaining antennas are tasked with wireless information processing,
capturing and decoding the data transmitted from the AP. This dual-path strategy ensures
that the system maximizes the utility of every antenna, optimizing both energy intake and
information throughput [151]. In this optimized configuration, the achievable data rate for
user k through a selected received antenna m is described by the following relationship:

b kB w2

R, k(bm k. wk) =109y <1+ 2
o +/m,k

), Yme M Vkek, (3.4)

where the AWGN is considered at the k" user with zero mean and variance ULDQ. The term
Im k in (3.4) indicates the multi-user interference and is given by:

Imk= Y, bmilhll wu?, VYmeMVkeKk. (3.5)
k' #k k'€

We should note that the EH beams may cause interference in the data rate function in
Equation (3.4). It is crucial to acknowledge that while EH beams are primarily aimed at
powering devices, they may inadvertently interfere with the data rate calculations as specified
in Equation (3.4). Nevertheless, the anticipated challenge posed by this interference is
mitigated by the fact that the energy signals, being deterministic and known to the sensor
users, allow for a proactive approach to interference management. Users are equipped to
eliminate these energy signals as a form of interference, even prior to the decoding of the
information-bearing signals, through the application of Successive Interference Cancellation
(SIC) techniques [152]. This process indicates the adaptability and resilience of our system
design, ensuring that data transmission efficiency is maintained despite the concurrent energy
transfer.

For facilitating the presentation, we define by = [by k. ..., by k]" € Z**M as the vector repre-
senting the antenna selection within the optimization problem framework. Consequently, the
achievable data rate of user k considering the antenna selection and the effects of potential
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interference from EH beams, is expressed as:

Ri(be,wi) = Y, Rmi(bmi wi), VkeK. (3.6)
memM

Further enhancing our analytical framework, we introduce a novel performance metric ded-
icated to evaluating the efficiency of wireless power transfer. This new metric serves as a
tool for assessing the effectiveness of our proposed system in optimizing the simultaneous
delivery of information and power, thereby summarizing the core objectives of SWIPT tech-
nology in enhancing network performance and user experience. The new performance metric,
P (by, wy, We), for the wireless power transfer efficiency which is given by [136, 143]:

Yrek AL (b wi, We)

P by, wi, We) =
(B i, We) Pr(wi, We)

(3.7)

The denominator of (3.7), Pr(wg, We), is the total power dissipated in the system in
[Joule/Second] given by:

Lrerc |lwil? + Tr(We)
B

where Pyt and P. are the circuit power in each transmit antenna and fixed consumed power
for baseband signal processing, respectively [153]. We note the first term in (3.8) is the
so-called RF's transmit power consumption that is divided by 0 <3 <1, the constant AP
power amplifier efficiency. The numerator in (3.7), P,Eli(bk,'wk,We) is the total harvested
energy in the network topology. The harvesting is realized using the active EH antennas for
each user. The total harvested energy is then given by [152, 143]:

Pr(wy, We) = + N7 Pant + Pc, (3.8)

O — QA
P (br, wi, We) = %, Vk € K, (3.9)
1
Ag=——"——, vk ek, 3.10
T T exp(axly) (3.10)
Q
K Yk eK. (3.11)

e =
“7 1 exp (— o (PET bk, wie, We) = Ci))

The constant A is introduced to guarantee a zero-input/zero-output response for EH [152].
In the traditional logistic function (3.11), the linear factor is given by

PER (b wi, We) = Tr( L Gl (wywf + Wo)6). ke K, (3.12)
JeK
where ~
Gy = (I—diag(bk)>Gk, Vk e K. (3.13)

In the total linear received RF power formula (3.12), 0 < €, < 1 is introduced as the power
conversion efficiency for the mt" active EH antenna of the k" receiver. This parameter
quantifies the efficiency with which the EH antenna converts the received RF power into
usable electrical energy. The parameter Q4 is defined as the maximum power that can be
harvested by user k when the EH circuit becomes saturated. This saturation threshold pre-
vents the EH circuit from being overloaded by excessive RF power, which could potentially
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damage the circuit or reduce its efficiency. Furthermore, oy and (x are constant param-
eters that characterize the non-linear behavior of the EH process. These parameters can
be precisely determined through the use of a curve-fitting tool, allowing for a more accu-
rate modeling of the EH efficiency across different power levels. We should note that the
contribution of the noise power to the P,\E,['k(bk,wk,We) formula can be neglected, as it is
significantly lower than the main signal power, thereby having a minimal impact on the total
energy harvested.

With these parameters and considerations in place, we proceed to formulate the main op-
timization problem, which focuses on beamforming design coupled with antenna selection
within a generalized AS-based SWIPT framework, targeting a single-cell multi-user network
configuration. The objective is to enhance the overall network performance by optimizing
the allocation of antennas for EH and ID, in conjunction with the beamforming vectors. This
optimization problem aims to balance the maximizing data transmission efficiency while en-
suring optimal energy harvesting by the network’s users. The formulation of this problem
captures the intricacies of the generalized AS technique and its impact on the SWIPT sys-
tem’s performance, which is essential for advancing our understanding and capabilities in
managing the complex interplay between information and power transfer in modern wireless
networks. The optimization problem can be written as follows:

Py, max P by, wi, We) (3.14a)
stor Y wil P+ Tr(We) < pmax. (3.14b)
ke
Ri(bk, wk) = Rmin, Yk €K, (3.14¢)
Y, bnix=1, Vk ek, (3.14d)
memM
bmx €10,1}, Yk e KC,Vme M. (3.14e)

In the optimization framework of our study, we formulate the optimization problem P;
which is central to the deployment of a generalized AS-based SWIPT network in a single-
cell multi-user setting. This optimization problem is defined by several key constraints that
ensure the operational feasibility and efficiency of the system. The constraint (3.14b) limits
the total transmit power of the AP that should not exceed its maximum threshold (pPmax).
This limitation is vital for maintaining energy efficiency and adhering to regulatory power
emission standards. Constraint (3.14c) guarantees a minimum data rate requirement, Rin,
for each user k. This guarantee ensures that all users receive a baseline QoS, critical for
user satisfaction and system reliability. Constraint (3.14d) determines that each user utilizes
only one antenna for ID, a rule that underpins the operational logic of the generalized AS
technique by designating clear roles for each antenna at the user end. Finally, (3.14e)
specifies the antenna selection variable takes only binary values. This binary nature reflects
the decision-making process in antenna selection — whether an antenna is allocated for EH
or ID.

Given these constraints, the optimization problem P1 emerges as a Mixed-Integer Non-Linear
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Programming (MINLP) challenge. The MINLP nature of the problem stems from the binary
decision variables involved in antenna selection and the non-linear relationships encapsulated
within the system’s power and data rate equations. This complexity renders the problem
generally intractable, necessitating innovative solution designs that can efficiently navigate
the problem space [154]. Our objective is to develop a solution approach that not only
adheres to the stipulated constraints but also optimizes the system’s overall performance in
terms of power efficiency.

3.4 A Two-layer Optimal Solution Design

Addressing the complex challenge presented by our optimization problem Py, we approach
the solution through a strategic decomposition into two distinct but interrelated subprob-
lems: antenna selection and beamforming. This decomposition is crucial for simplifying the
problem'’s structure and focusing on specific aspects of the system’s optimization individually,
thus allowing for a more granular and effective solution strategy.

The antenna selection subproblem is tackled by prioritizing the identification of the antenna
that offers the maximum channel gain. This step involves evaluating each antenna’s per-
formance to determine the most effective configuration for ID. The criterion for selection
is straightforward; maximize the channel gain to ensure the highest QoS in terms of data
rate for each user. Once the optimal antenna for ID is identified, the remaining antennas
are allocated for EH tasks. Following the resolution of the antenna selection subproblem,
attention shifts to the beamforming subproblem. This phase of the solution design is crucial
for shaping the transmission strategy in a way that respects the predefined objective function
and aligns with the system’s goals of efficiency and reliability. The second subproblem is
optimally solved via a two-layer iterative structure based on the sum-of-ratios programming.

The complexity of each subproblem necessitates a modular approach, especially given the
limitations of traditional solution methodologies like the Dinkelbach method or the Charnes-
Cooper transformation in handling sum-of-ratios objective functions [155, 156]. To cir-
cumvent these challenges, we employ a two-layer iterative structure specifically devised for
sum-of-ratio programming (in the second subproblem). This two-phased approach, encom-
passing both antenna selection and beamforming optimization, underscores our compre-
hensive strategy for tackling the SWIPT system’s optimization problem. By methodically
addressing each component, we ensure a cohesive solution that not only meets the individual
requirements of each user but also enhances the system's overall performance and efficiency.
In what follows, we explain each step in detail.

3.4.1 Antenna Selection

Our approach initially focuses on the antenna selection process, assuming a scenario with
predetermined transmit beamforming configurations. The main optimization problem, Py,
clearly indicates that each user is to allocate precisely one antenna for ID purposes, with
the remaining antennas dedicated to EH within this framework. This allocation strategy
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is critical for optimizing the system's dual functionality—enhancing both data transmission
quality and energy collection efficiency.

The main dilemma of the optimization problem P; lies in adhering to the stringent data
rate QoS requirements imposed for each user. This necessitates a strategic selection of
antennas, prioritizing those with the maximal channel gain for ID tasks. Such a selection
criterion is pivotal, as the quality and reliability of information transmission directly hinge on
the strength and clarity of the received signal. Hence, to ensure that every user's data rate
demands are satisfactorily fulfilled, we employ the following principle: the antenna offering
the supreme channel gain amongst all available antennas for a user is selected for ID. This
principle can be encapsulated in the formula:

1, argmax hpk,
bm.x = meM ., YmeM,VkeK. (3.15)
0, otherwise,

In essence, we assess the channel quality between the AP and all user's antennas via (3.15).
This evaluation is crucial for identifying which antenna among the available options provides
the highest channel quality, thereby determining the most suitable antenna for ID purposes.
Following this determination, the remaining antennas are allocated for EH, optimizing the
system's dual-function capabilities3.

By allocating the antenna with the best channel gain conditions exclusively for ID, rather
than for EH, we consciously prioritize the transmission of information signals. This strategic
decision underscores our commitment to ensuring the feasibility and practicality of our design
policy. Such prioritization is key in SWIPT-enabled networks, where the efficient decoding
of information signals is paramount to the network’'s functionality and user satisfaction.

It is important to highlight that the complexity associated with the antenna selection algo-
rithm is not as daunting as it might seem. Despite the potential for a large solution space,
the actual number of antennas present on a typical mobile receiver is relatively modest. Con-
sequently, the process of selecting the optimal antenna for ID from a limited array does not
introduce exponential complexity. This manageable scale ensures that the antenna selection
procedure remains practical and implementable within the constraints of current technology
and device capabilities, thus reinforcing the viability of our solution in real-world applications.
Through this careful and strategic antenna allocation, we aim to enhance both the efficiency
and effectiveness of SWIPT systems, ensuring that they can meet the demands of modern
wireless communication networks.

3.4.2 Beamforming Design

Following the successful allocation of antennas for ID and EH purposes, our next step
in our two-phased approach involves meticulously crafting the beamforming strategy for
both information and energy signals. This step is crucial for enhancing the system's power
efficiency, which is our defined novel metric for assessing the performance and sustainability
of the SWIPT-aided network.

3Here, we assume that the users are sensor nodes. These nodes do not need to transmit with a high
data rate and are more interested in EH.
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To facilitate this process, we introduce beamforming matrices defined by Wy, = wkwE, where
each matrix Wy € HNTXNT represents the beamforming strategy for the user k. Additionally,
we define the channel matrix Hy, = hm,kh,*l’k, to encapsulate the channel characteristics
between the AP and the m-th antenna of user k, which is critical for the beamforming
design. For simplicity, we ignore the constant terms (Pant and Pc) in the total power
consumption model in (3.8). This simplification aids in focusing the optimization on the
variables that we can influence directly through our design choices.

Employing Semi-Definite Programming (SDP), a powerful tool in optimization theory, we
can reformulate the original problem Py into a more tractable format. SDP allows us to
handle the quadratic nature of the beamforming matrices and the linear constraints of the
system within a convex optimization framework. This approach simplifies the computational
process and ensures that we can find a global optimum for the beamforming design problem,
subject to the constraints and objectives defined. Thus, using SDP, the original optimization
problem in P1 can be reformulated as follows:

Z P[\%Ek(wk: We)

Ps: 1
2 W z Tr(Wk)+Tr(We) (3.162)

to ) Tr(Wk) + Tr(We) < pmax, Yk € K, (3.16b)
kEK
Ri(Wi) = Rin, Vk e K, (3.16¢)
rank(Wy) <1, Vk e K, (3.16d)
W, - 0. (3.16¢)

J

we adopt the SDP relaxation. This method involves a strategic simplification of the problem
by omitting the rank-one constraint (3.16d), which traditionally ensures that the solution
translates directly into a physically implementable beamforming vector. The removal of
this constraint allows us to transform the beamforming design problem into a semi-definite
programming problem, which is easier to solve using available optimization tools. Next, we
handle the constraint (3.16c). In doing so, we restate this constraint as follows:

Tr(H W)
I’( k k > Z TI’ ka/ +O'k Vk e K, (317)
'Yreq k’;ﬁk
where
Yreq = 2Rmin — 1. (3.18)

A significant challenge in our optimization problem is the inherent non-convexity of the
non-linear objective function, which complicates the process of finding a global optimum.
However, by categorizing this function within the sum-of-ratio class of objective functions,
we create an opportunity to go about this complexity more effectively. To accomplish this,
we introduce a new slack variable, denoted as p, effectively transforming the optimization
problem. This introduction of g allows us to reformulate the non-linear, non-convex objective
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function into a format that is more amenable to optimization techniques commonly used for
sum-of-ratios problems. To this end, we formulate the optimization problem as follows:

Yk PEH (W, W,
P3: max kexk NLk( K e), (3193)
Wi, We %
t.: Y, Tr(Wi) + Tr(We) < Pmax, Vk €K, (3.19b)
kel
Y Tr(Wi)+Tr(We) = o, (3.19¢)
ke
Tr(H W,
L E) > Y Tr(HWi)+07,  VkeK, (3.19d)
Yreq K2k
We = 0. (3.19)

In order to solve this optimization problem, we consider an iterative algorithm composed
of two essential layers to refine the solution progressively. The initial layer is dedicated to
determining the optimal configurations for the beamforming matrices, W) and W, given a
preset value of the slack variable, . The subsequent layer then undertakes the critical task
of updating o based on newly obtained beamforming matrices from the preceding stage.
This dynamic adjustment ensures that the system continuously evolves towards achieving
an optimal balance between transmission efficiency and energy utilization.

The challenge posed by the sum-of-ratio objective functions in the first layer of the opti-
mization problem in (3.19) necessitates an innovative approach beyond traditional methods
like Dinkelbach’s algorithm, which proves inadequate for this context. This transforma-
tion simplifies the mathematical treatment of the problem and preserves the integrity of
the optimal solution, facilitating a more straightforward path to achieving our optimization
objectives Through this layered algorithm, we systematically address the complexity of the
optimization problem, ensuring a thorough and effective solution strategy that enhances the
system's overall performance. Therefore, we find an equivalent subtractive form yielding the
same optimal solution based on the following lemma from [154].

Lemma 1 [154]: For (3.19), there exist two vectors ¢* = [¢*, ..., ¥%]T and B* = [B5,....Bk]"
in which W and W are the optimal solutions to the following optimization problem

z Z (p |:Qk<1 —Akrk> —5;(@(1 —Ak))] , (3.20a)

ma
(wy, Wg}es 0 =k
where S is the set belonging to the feasible solution of P3. In (3.20), the [k term is:
M =1+exp(—ax (FEH (Wi, We) = (), VkeK. (3.21)
Note that {W}, W} should satisfy the following equations

Qx <1 _Akl—k> —ﬁ; (/—k(l —Ak)) =0, Vk e K, (3.22)

¢;(rk(1—Ak)) ~1=0, Yk eK. (3.23)
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Algorithm 1 Power Efficient Resource Allocation Algorithm for Beamforming in Multi-User
SWIPT Networks
1: Initialize

iteration index of resource allocation policy i =1,
limitation over two layer iteration of /max
define feasible set vector g, and constant set {a,(, 2, €k, T, k}.
repeat

Set (W}, Wi} = {W; WE').

Solve the inner-layer of (3.20) to update {W; ™ W/+1}.

Solve the outer-layer of (3.20) to update {B3'*1, @/*1} regarding (3.28) and (3.29).
until /= /qhax
Update o for the obtained {W; ™!, W 1} via one dimensional search method.
return {o, W/ Wit}

@ N s wN

Subproblem (3.20) can be solved with two-layer iterative structure including an inner and an
outer layer. In the following, we describe these layers’ functionality.

3.4.2.1 Inner Layer Solution

Delving deeper into the solution mechanism, within the inner layer of the algorithm, we
define the following optimization problem denoted as P4. Given the specific assumptions
regarding the parameters ¢ and B based on Lemma 1, P4 emerges as a convex problem. This
convexity implies that the problem can be solved efficiently through standard optimization
techniques, offering a pathway to achieving the desired optimization with relative ease and
efficacy. Thus, the inner layer optimizing problem P4 reads as:

1

Ps: max - Q —Br(1+exp (—akx(Ag — , 3.24a
R k;cwk Kk — B p(— oAk —<k)) ( )
st.r Y Tr(Wi) + Tr(We) < pmax, Vk K, (3.24b)

kek
Y Tr(Wi) +Tr(We) =0, (3.24¢)

kek

Tr(H
Tr(H W) > Z Tr(HW) + 02, Vk e K, (3.24d)
VYreq K%k
A < ekTr( Z G?(ij}" +We)ék), Vk e K, (3.24¢€)
Jjex

W, =0, (3.24f)

where Ay is the auxiliary optimization variable.
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3.4.2.2 Outer-Layer Solution

In the outer layer of our iterative optimization process, we employ a damped Newton method
to obtain the values of ¥ and B, which are pivotal for determining the optimal solution. To
facilitate this process, we introduce specific functions for each user k, encompassing both
the B and 1 parameters, denoted as ¢x(Bx) and ¢x1x(WPx), respectively. These functions
are defined as follows, capturing the relationship between the parameters and the system's
operational dynamics:

d)k(.Bk) =Q <1 _Ak/_k> —,3: (/’k(l—Ak)), Vk e IC, (325)
Gk (Yk) =Yk </—k(1Ak)) -1, Vk ek, (3.26)

where k € {1,2,..., K}. It has been shown in [152] that the optimal solution {3*, ¥*} can
be found if and only if:

$(8. %) =1[d1.....2¢]" =0. (3.27)

This condition forms the basis for the iterative updates of ¥, and By during each iteration
of the outer layer. As a result the update rule at /-th iteration are given by:

B =8 +1nl. (3.28)
Pl = ¢i+7f77£<+1;2;<, (3.29)

where
n=[¢'(B. ¥) (B, ¥). (3.30)

in which ¢’(3, 1) is the Jacobian matrix of ¢(83, ).

Furthermore, 7' is the largest value of €' that should satisfy the following criterion

(' + €m0k, B +Mi) < (1= ke ld(B.)]. (3.31)

where / € {1,2,...}, €/ €(0,1), and k € (0, 1), moderating the adjustment’s extent to ensure
gradual and controlled convergence.

Since the optimization problem (3.20) is convex it lends itself to an efficient solution method-
ology. This approach is systematically outlined in the pseudo-code provided in Algorithm 1,
which serves as a structured guide through the optimization process. A noteworthy as-
pect of this process is the implementation of a one-dimensional search over the variable p,
necessitating the evaluation of problem P4 across a spectrum of o values®.

The optimization problem in question falls within the domain of convex SDP, a category
well-accommodated by established numerical algorithms for convex optimization tasks, such
as the interior point method. These algorithms are known for their robustness and efficiency,
offering a reliable means to navigate and solve convex SDP challenges. An optimistic de-
velopment in our beamforming design procedure is the existence of a rank-one solution,
a feature that significantly rationalizes the optimization process. As affirmed by existing

4The upper bound for g is pmax. This means the search area of the problem is inherently restricted by
the system’s maximum transmit power, pmax, Which is the feasible domain for p.
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Table 3.2: Overview of Simulation Parameters for a Multi-Antenna, Multi-User SWIPT Network.

Parameter Value
Number of sensor users (K) 8

Maximum cell coverage (dmax) 20 meters
Number of AP antennas (Nt) 4

Number of user antennas (M) 3

AP antenna power consumption (Pant) 30 dBm
Static circuit power consumption (Pc) 40 dBm
Central carrier frequency 3 GHz
Number of subcarriers (N) 16

Bandwidth of each subcarrier 180 kiloHertz (kHz)
Background noise (02) -120 dBm
Rician factor (p) 3 deciBel (dB)
Path loss exponent () 2.8

Standard deviation of log-normal shadowing | 8 dB

Power conversion efficiency (€) 0.3

Power amplifier efficiency (B) 0.2

Target transmission rate (Yreq) 10 dB

research [152], the presence of a rank-one solution validates the feasibility of achieving an
optimal beamforming configuration, thereby enhancing the efficacy of the proposed SDP
relaxation approach. This facet of the solution simplifies the practical application of beam-
forming strategies and accentuates the efficiency of utilizing SDP relaxation techniques
to optimize system configurations, ultimately contributing to the goal of improving power
efficiency in SWIPT-aided system.

3.5 Simulation Results

This section presents the system performance through simulation results, focusing on the
power efficiency of antenna switching and beamforming design in a multi-antenna, multi-
user SWIPT system (cf., Table 3.2). In evaluating the achievable power efficiency of the
proposed scheme, eight sensor users, K = 8, are uniformly distributed within a single cell,
where the maximum coverage of the cell is dyax = 20 meters. The AP and the sensor users
are equipped with four (N =4) and three (M = 3) antennas, respectively, facilitating robust
communication and energy harvesting capabilities. Key parameters include the AP antenna
power consumption (Pant =30 dBm) and static circuit power consumption (P. =40 dBm).

The numerical simulations are conducted under the assumption of a flat fading channel with a
central carrier frequency set at 3 GHz, reflecting a realistic communication environment. The
system utilizes N = 16 subcarriers, each with a bandwidth of 180 kHz, to efficiently manage
the available spectral resources. The receivers’ background noise across all antennas is
uniformly modeled as |0LD|2 = aﬁ =02 =—120 dBm, indicative of the operational challenges
in low-signal environments. Given the proximity of users to the transmitter, a Line-of-Sight
(LoS) communication channel is presumed, and a small-scale fading channel is modeled as
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Figure 3.3: Power efficiency versus maximum allowed transmit power in the downlink of SWIPT-
aided multi-user single-cell network.

Rician fading with Rician factor p =3 dB. This small-scale Rician flat fading channel gains
incorporates both a distance-dependent path loss component and a log-normal shadowing
component with a standard deviation of 8 dB, where the path loss exponent is equal to
a =2.8 [151]. The simulations account for the power conversion efficiency, ex =€ = 0.3, of
all active EH antennas, alongside the power amplifier efficiency, B = 0.2, of the AP, which
are critical parameters influencing the system'’s energy efficiency and power efficiency metrics
and sustainability. The target transmission rate for ensuring satisfactory QoS for each user
is set at yreq = 10 dB, a benchmark for evaluating the efficacy of the proposed scheme.

To ensure the reliability and robustness of our simulation results, we employ Monte Carlo
simulations, generating numerous random realizations of the channel gains. This approach
allows us to compute the average EE across various scenarios, offering a comprehensive
assessment of the proposed scheme's performance under diverse conditions [151]. Through
these simulations, we aim to demonstrate the viability and advantages of the proposed
power-efficient AS and beamforming design in enhancing the operational efficiency of multi-
antenna, multi-user SWIPT systems.

Figure 3.3 illustrates the impact of enhancing the maximum allowable power budget on
the network's power efficiency, revealing a non-linear relationship. Particularly notable is
the pronounced effect observed at higher pmax values, where the power efficiency dynamics
exhibit distinct characteristics across different power budget ranges. In the lower spectrum,
between 5 dBm and 20 dBm of pmax, there is a negligible alteration in power efficiency,
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indicating a phase of relative stability. The scenario shifts as the power budget spans from
20 dBm to 35 dBm, during which the power efficiency experiences a modest increase for
systems with a fewer number of antennas, and a more pronounced surge for configurations
with a larger antenna array. This distinction underscores the role of antenna count in
influencing efficiency gains. A further escalation of pmax beyond 35 dBm up to 45 dBm ushers
in a saturation phase for power efficiency, signifying a plateau where additional increases in
the power budget cease to yield significant efficiency improvements. This plateau effect is
attributed to the dominance of fixed circuit power consumption in the lower transmit power
regions, which initially allows for a gradual uplift in efficiency rates. As the AP’s transmit
power budget expands, surpassing a certain threshold, the relative contribution of RF's
transmit power consumption begins to overshadow that of the fixed circuit power, rendering
the system increasingly sensitive to increments in the power budget.

Moreover, this figure, Fig. 3.3, also elucidates the beneficial impact of increasing the number
of transmit antennas (Nt) on augmenting effective power efficiency. This enhancement is
logically anticipated, considering that power efficiency exhibits a quasi-linear dependency on
the transmission parameters, including both information and energy beamforming vectors.
For a comparative analysis, we compare our proposed optimization algorithm against a
baseline scheme focused on EH maximization (Max EH), wherein the objective is to maximize
the numerator of the power efficiency metric (cf., (3.7)) through a similar optimization
approach as in Algorithm 1. The comparative results distinctly demonstrate the superiority
of our proposed methodology, which, unlike the baseline, also integrates the minimization of
total power consumption into the efficiency maximization process. Additionally, it is observed
that while exclusively targeting EH maximization contributes to a rise in power efficiency for
lower to moderate pmax Vvalues, an inverse trend is noted at higher power budget levels. At
this juncture, achieving maximum EH leads to an increase in the total transmitted power,
which, in turn, elevates the denominator of the power efficiency equation, culminating in
a marked efficiency downturn. This phenomenon highlights the critical balance between
transmitted power and energy harvesting in optimizing power efficiency, underscoring the
nuanced interplay of system parameters in achieving optimal network performance.

In the domain of wireless communication systems, particularly within the context of SWIPT
systems, there is a fundamental tradeoff between power efficiency and EE. This behavior
arises because the objectives of maximizing power efficiency and EE inherently conflict,
especially when considering the balance between data rate optimization and the minimization
of power consumption. While power efficiency focuses on optimizing the utility of power in
transmitting data, EE aims to achieve the highest data rate relative to the total power
expended by the network. The crux of this tradeoff lies in the fact that strategies aimed at
enhancing power efficiency often do so at the expense of overall energy consumption, and
vice versa. Maximizing power efficiency typically involves optimizing the transmission power
to enhance the signal’s clarity and reach, which can lead to increased power consumption.
On the other hand, maximizing EE necessitates minimizing power consumption while still
achieving satisfactory data transmission rates, which may not always align with the strategies
that prioritize power efficiency. To explore and substantiate this tradeoff further, we embark
on a detailed analysis by defining EE mathematically as the ratio of the achievable data
rate (3.6) to the total network’s power consumption (3.8) as follows:
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Figure 3.4: System performance tradeoff between power efficiency and EE for pmax = 40 dBm in
the downlink of SWIPT-aided multi-user single-cell network.

This ratio encloses the essence of EE by quantifying the data rate that can be achieved per
unit of power consumed by the network, offering a clear metric for evaluating the efficiency of
resource allocation policies in the system. Through this definition and subsequent analysis,
we aim to discuss the trade-off between optimizing power efficiency and maximizing EE,
highlighting the considerations that support resource allocation decisions in SWIPT systems.

As shown in Fig. 3.4, a tradeoff between power and energy efficiencies is depicted, following
the maximization of EE as defined in (3.32). This graphical representation demonstrates
that power efficiency (EE) exhibits a monotonically decreasing trend as EE (power efficiency)
increases, highlighting the inherent balance that must be struck between these two efficien-
cies. A notable observation from the figure is the positive impact of augmenting the number
of receiver antennas on power efficiency. This improvement is attributable to the enhanced
capability of the network to harvest energy, thereby strengthening its power efficiency. More-
over, the dynamics introduced by varying the number of sensor users within the network are
evident. An increase in sensor users does not merely expand the performance tradeoff gap
between power and energy efficiencies; it also significantly boosts power efficiency for a given
EE level. This enhancement stems from the increased collective energy-harvesting capacity
brought about by a larger pool of sensor users, effectively enabling more efficient utilization
of the power emitted by the AP®. For comparison, we also plot the tradeoff region for the
case the energy signal (Wg) is set to zero, and maximum ratio transmission is adopted to

5This is because more sensor users mean more harvesting antennas, i.e., more of the emitted power from
the AP can be harvested when more receivers (more EH antennas) partake in the energy harvesting.
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Figure 3.5: EE versus maximum allowed transmit power in the downlink of SWIP T-aided multi-user
single-cell network.

optimize the information beamforming as a benchmark algorithm. This benchmark algorithm
serves as a reference point, highlighting the benefits of the proposed approach in harnessing
energy signals for improved network performance.

Shifting the focus to the last figure, Fig. 3.5, an exploration into the effects of escalating the
power budget on EE reveals a monotonically increasing trend up to a saturation point around
Pmax =~ 30 dBm. Beyond this threshold, EE plateaus, indicating that further amplification
of pmaxdoes not translate into proportional EE gains. This saturation is primarily due to the
escalating interference power, which adversely affects the quality of the received ID signal,
thereby capping the achievable data rate. Additionally, while an increase in the number of
transmit antennas (N7) markedly enhances power efficiency, its influence on EE is relatively
subdued. The logarithmic relationship between the data rate function and Ny implies that
the EE gains attainable through additional transmit antennas are marginal compared to the
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linear escalation of circuit power costs associated with higher N+-. Consequently, a significant
expansion in Nt may not yield commensurate benefits for ID and is less effective for EH
enhancement. Furthermore, Fig. 3.5 underscores the superiority of the proposed algorithm
over the baseline Maximum EH (Max EH) scheme. This comparison reveals the strategic
advantage of minimizing total power consumption alongside EE maximization, revealing the
proposed algorithm's efficacy in achieving optimal system performance.

3.6 Conclusion

To obtain a feasible solution, an optimization problem with a transformed objective function
was designed based on an iterative algorithm which vyields a locally optimal solution. In
particular, the antenna selection problem was solved based on maximum channel gain across
all antennas. The second subproblem was solved based on a two-layer method. Simulation
results revealed the superiority of the generalized AS scheme by demonstrating a good
balance of improvement in terms of power and EE.

In this chapter, we introduced an innovative optimization framework tailored for a MIMO-
OFDM network that employs generalized AS-based receivers, integrating the principles of
SWIPT. This new framework takes into account a realistic, non-linear power model for EH,
setting its sights on enhancing a new metric in wireless communications: power efficiency.
The optimization problem we presented is characterized by the simultaneous consideration
of antenna selection and beamforming strategies, a task rendered complex due to its non-
convex, non-linear nature, and the inclusion of binary variables. These attributes collectively
contribute to the problem’s inherent difficulty.

To navigate through the complexities of this optimization problem non-convexity and arrive
at a practically viable solution, we crafted an approach that modifies the original objective
function. This approach hinges on an iterative algorithm meticulously designed to converge
towards a locally optimal solution. The resolution of the antenna selection subproblem,
prioritizing maximum channel gain across available antennas, marked the initial phase of our
solution strategy. Subsequently, a two-layer method was applied to address the beamforming
subproblem, further refining the solution.

Our simulations underscore the efficacy of the generalized AS scheme, shedding light on its
capability to achieve a commendable synergy between power efficiency and EE. The results
unequivocally illustrate the advantages of this scheme, demonstrating notable improvements
in both power and EE metrics. Through this comprehensive investigation, the proposed
optimization framework not only addresses the technical challenges associated with SWIPT-
enabled MIMO-OFDM networks but also paves the way for significant advancements in the
domain of wireless communication, particularly in optimizing the dual objectives of efficient
power usage and effective energy harvesting.

In this chapter, we laid the groundwork for future discussions by establishing a fundamental
framework that underpins the rest of this work. The principles, approaches, and solutions
presented form a crucial basis for exploring advanced topics, notably Intelligent Reflecting
Surfaces (IRS), which will be the focal point of the forthcoming chapters. Our exploration of
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IRS in the next chapter aims to delve deeper into its applications and implications, building
upon the foundational knowledge and insights gathered here.



50

CHAPTER 3. POWER EFFICIENT MULTI-USER SWIPT NETWORKS



 Chapter &}

Energy Efficient Resource Allocation in
IRS Networks

HIS chapter formally introduces the concept of Intelligent Reflecting Surfaces (IRS)

and examines their advanced technical capabilities within the context of a multi-user
Multiple-Input Single-Output (MISO) system. Central to this investigation is a system
specifically designed to enhance Ultra-reliable Low-Latency Communications (URLLCs). It
incorporates a multi-antenna Access Point (AP) that effectively transmits information sym-
bols to a group of URLLC users, carefully integrating short packet transmission techniques
to address the critical need for reduced latency in wireless communications. A key goal of
this study is to minimize the total system’s transmission power by simultaneously optimiz-
ing both active and passive beamformers at the AP and the IRS, respectively. An efficient
algorithm based on Alternating Optimization (AO) principles is designed to tackle the main
optimization problem through a step-by-step iterative approach.

The development of the algorithm begins with the application of the Difference of Con-
vex (DC) functions combined with Successive Convex Approximation (SCA) techniques to
find a near-optimal solution for the AP’s active beamformer. This step is followed by the
adoption of a penalty-based strategy, complemented by SCA, to effectively manage the
unit-modulus constraints at the IRS. This two-pronged approach to optimization not only
highlights the delicate interplay between active and passive beamforming but also proposes
a specific objective aimed at improving the convergence rate of our algorithm. To validate
the effectiveness and efficiency of the proposed solution, the chapter includes a series of
simulation studies. These simulations benchmark the performance of our algorithm against
several baseline models, providing a solid empirical foundation for its superiority in optimizing
URLLC-enabled IRS systems. This thorough analysis sheds light on the potential of IRS to
transform the landscape of wireless communications, paving the way for future research in
this emerging domain.
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4.1 Introduction

The exploration of Intelligent Reflecting Surfaces (IRS) has emerged as a groundbreaking
area of research, aiming to significantly enhance the spectral and energy efficiencies of future
communication networks through its straightforward deployment strategies [157]. The IRS,
characterized as a planar meta-surface equipped with a large number of passive reflecting
elements!, possesses the unique ability to manipulate the radio propagation environment.
This is achieved by dynamically adjusting the amplitudes and phases of incoming signals,
thereby facilitating a more controlled and efficient communication pathway. Notably, the
IRS operates in a Full-Duplex (FD) mode, achieving this without the need for active Radio
Frequency (RF) chains for signal transmission and reception, nor for mechanisms to cancel
self-interference. Traditional FD systems require complex and costly hardware to manage
self-interference, but the IRS leverages passive elements to reflect and modulate incident
electromagnetic waves, enabling simultaneous transmission and reception without generat-
ing self-interference. This intelligent manipulation of the phase and amplitude of incoming
signals reduces complexity, power consumption, and system costs, making IRS a highly
cost-effective solution for Beyond fifth-Generation (B5G) communication systems. By sup-
porting efficient FD communication, IRS enhances data rates, addressing the demands of
B5G and future wireless networks. This capability positions IRS technology as a pivotal
component in the evolution of next-generation communication infrastructures, promoting
versatile, scalable, and energy efficient wireless networks [158].

The synergy between active beamforming techniques at the Base Station (BS) and passive
beamforming at the IRS opens new avenues for optimizing the Spectral Efficiency (SE)
and enhancing the network’s overall data throughput, as demonstrated in previous stud-
ies [159]. Moreover, the integration of IRS with technologies like wireless power transfer
and simultaneous information and power transfer (SWIPT) stands out as a pivotal strategy
for fostering green communication. Such collaborations have been shown to significantly
improve the network's Energy Efficiency (EE) by judiciously optimizing both the phase shifts
at the IRS and the active beamforming strategies at the transmitter [136]. Research into
IRS-aided Multi-Input Single-Output (MISO) systems has further highlighted the potential
of IRS technology in maximizing SE through the use of sophisticated algorithms, such as the
branch-and-bound method to achieve globally optimal solutions for phase shifts and active
beamforming at the IRS and AP, respectively [160]. Moreover, the targeted optimization of
the weighted sum-rate maximization problem underscores the benefits of designing coordi-
nated active and passive beamforming strategies at both the BS and IRS [83], showcasing
the IRS’s critical role in shaping the future of wireless communication networks.

On the other hand, Ultra-Reliable Low-Latency Communication (URLLC) represents a cor-
nerstone of B5G wireless systems, aimed at addressing the needs for rapid data transmission
and minimal delay in critical applications such as healthcare, autonomous driving, and the
tactical Internet [161, 162]. The strict requirements of URLLC, including short packet
transmission and ultra-low latency, necessitate a reevaluation of traditional communication
theories, notably the conventional Shannon capacity formula, which falls short under the
URLLC regime due to its incompatibility with the short packet paradigm [163]. Innovative

LIRS can also have active elements. This feature, known as active IRS in the literature, will be the subject
of Chapter 7.
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approaches to resource allocation within URLLC systems have been explored, with [164]
achieving a global optimum in bandwidth, power allocation, and antenna configuration to
significantly reduce the total power consumption across DownLink (DL) and UpLink (UL)
channels. Besides, the authors in [165] designed the active BS beamforming vectors to max-
imize the sum data rate performance of a Multiple-Input Single-Output (MISQO) orthogonal
frequency division multiple access (OFDMA)-URLLC system.

Further advancing the performance of URLLC systems, the integration of IRS offers a
promising avenue to tackle the challenges of latency. Studies such as [166] and [167] have
highlighted the potential of IRS in enhancing the data rate and reducing latency through
joint optimization strategies involving active beamforming at the BS and adaptive phase
shifts at the IRS. Specifically, [166] focused on optimizing the weighted sum data rate
in an IRS-assisted OFDMA-URLLC system, while [167] targeted latency minimization in
an IRS-supported mobile edge computing framework by coordinating edge computing re-
sources, computation offloading, and beamforming techniques. The exploration of IRS in
URLLC contexts extends to evaluating the average Decoding Error Probability (DEP) and
achievable data rates, as conducted in [168], indicating a substantial improvement in system
performance. Furthermore, the concept of user grouping has been leveraged to optimize la-
tency across IRS-enhanced networks catering to URLLC demands, as demonstrated in [90],
thereby underscoring the transformative impact of IRS technology in fulfilling the rigorous
requirements of URLLC systems.

While significant progress has been made in integrating IRS within the domain of URLLC
systems, the existing literature [166, 167, 168, 90] still does not fully capture the profound
impact of IRS technology, especially in terms of DEP and the management of average traf-
fic loads. The IRS’s capability to significantly enhance the network's Quality of Service
(QoS) invites further exploration into its deployment in high-stakes scenarios, which require
not just enhanced data rates but also an elevated Signal-to-Interference-Plus-Noise Ratio
(SINR). This underlines the necessity for our research, which aims to develop a novel re-
source allocation algorithm tailored for a DL MISO URLLC framework that leverages IRS
technology. Our approach involves employing a multi-antenna AP that communicates with
multiple single-antenna URLLC receivers, facilitated by a dynamically reconfigurable IRS.
This setup is poised to bridge the identified research gaps by focusing on minimizing the
overall transmission power, thus paving the way for a deeper understanding of the sys-
temic design intricacies. Our study contributes valuable insights into the optimization of
URLLC-enabled IRS systems and underscores the transformative potential of the IRS in en-
hancing URLLC services within increasingly complex and demanding operational contexts.
Through this investigation, we aspire to unlock new possibilities for IRS technology, thereby
contributing to the evolution of next-generation wireless communication systems.

In this chapter, we delineate our primary contributions toward enhancing the efficiency and
reliability of URLLC systems through the strategic deployment of the IRS. The highlights
of our work are summarized as follows:

e Central to our study is the objective to ‘reduce the system's overall transmission
power.” This is achieved by designing a comprehensive joint optimization problem
of both the active and passive beamforming strategies employed at AP and IRS, re-
spectively. Furthermore, we aim to optimize the DEP while ensuring adherence to the



4.1. INTRODUCTION 55

minimum data rate requirements of each URLLC user. A novel aspect of our approach
involves modeling the URLLC user traffic, especially those with finite blocklength data
rates, through a chance constraint formulation. This methodology facilitates the net-
work's ability to properly allocate resources, thereby efficiently managing the collective
traffic load.

e To tackle the complexities of the optimization problem formulated, we exploit an
Alternating Optimization (AO) resource allocation algorithm. This algorithm allows for
an iterative solution process wherein we first establish a lower bound for the SINR for
the active beamformers at the AP. Subsequently, we employ the Difference of Convex
(DCQ) functions and Successive Convex Approximation (SCA) technique to derive a
near-optimal solution. A penalty-based methodology is then utilized in conjunction
with the SCA technique for the passive beamformers at the IRS, effectively addressing
the unit-modulus constraints. Additionally, we introduce a specific objective aimed
at devising more effective phase shifts, thus ensuring improved convergence of the
optimization process.

e Through simulation studies, our findings underline the substantial benefits of incor-
porating an IRS alongside a multi-antenna AP within URLLC systems. Notably, the
implementation of IRS technology contributes to notable gains in system performance,
particularly in achieving lower latency and higher reliability. Moreover, our results indi-
cate the energy efficiency of utilizing IRS technology in comparison to the alternative
of equipping the AP with multiple antennas. This supports the potential of using the
IRS to facilitate more sustainable and efficient URLLC communication infrastructures.

These contributions collectively demonstrate the innovative strides our work makes in har-
nessing IRS technology to elevate the operational efficacy of URLLC systems, setting a new
benchmark for future research in the field.

The rest of the chapter is structured as follows. Section 4.2 begins with a system model anal-
ysis of energy-efficient resource allocation in an IRS-assisted URLLC network. We proceed
to formulate the problem in Section 4.3. In Section 4.4, we present a solution for the pro-
posed scheme. Section 4.5 validates our theoretical models through extensive simulations,
showcasing the practical feasibility and advantages of our proposed method. Finally, Sec-
tion 4.6 concludes the chapter, summarizing our findings and considering their implications
for the advancement of IRS systems.

Notations: Matrices and vectors are denoted by boldface capital letters A and lower case
letters a, respectively. For a square matrix A, AT, AY rank(A), Tr(A), and ||A||. are trans-
pose, Hermitian conjugate transpose, rank of a matrix, trace, norm of a matrix, respectively.
A = 0 shows a positive semidefinite matrix. 1y denotes the N-by-N identity matrix. diag(-)
is the diagonalization operation. diag(A) indicates a vector whose elements are extracted
from the main diagonal elements of matrix A. The absolute value of a complex scalar,
and the Euclidean norm of a complex vector are expressed by |-| and || ]|, respectively.
~ CN(p, C) denotes the distribution of a Circularly Symmetric Complex Gaussian (CSCG)
random vector with mean p and covariance matrix C. The largest eigenvalue of matrix X is
denoted by Amax(X). Q1(+) stands for the inverse of the Gaussian Q-function. Pr(X > a)
denotes the probability that the random variable X assumes a particular value strictly greater
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than a. Finally, CM*N represents an M x N dimensional complex matrix and Vy expresses
the gradient vector with respect to x.

4.2 System Model of an IRS-assisted URLLC Network

In this study, we consider the architecture of a DL MISO communication system, incorpo-
rating an IRS comprised of N elements, an AP equipped with M antennas, and K users each
possessing a single antenna. The set of users is denoted by K ={1,..., K}, as illustrated in
Fig. 4.1. For each user k within this system, a designated number of L, information bits
are allocated. These bits are subsequently encoded by the AP into a codeword consisting
of my symbols, represented as z[/], where [ spans the set £L=1{1,2,...,my}. Following the
encoding process at the AP, the formulated transmit signal intended for transmission can
be mathematically represented by the equation:

(=Y wezdlll, €L, (4.1)
ke

wherein wy € CM*1 is the dedicated beamforming vector allocated for user k. This beam-
forming strategy is pivotal, as it directly influences the signal's directionality and strength
towards each user, thereby optimizing the communication efficacy within the system. In the
context of this DL MISO system, it is assumed that the channel links exhibit time-invariance
and also belong to the category of slow fading channel models [169]. This assumption is
critical for the stability and predictability of the communication channel, ensuring consistent
performance over the communication duration. The system explicitly models the baseband
equivalent channel responses to include the transmission pathways effectively: from the AP
to the IRS, denoted by H € CN*M, from the IRS to user k, represented by hlY € CV*1,
and directly from the AP to user k, indicated by hﬁu € CM*1 These channel models are
foundational to understanding and optimizing the interaction between the transmitted sig-
nals, the reflective IRS, and the receiving users, enabling a comprehensive analysis of the
system’s overall performance and efficiency. Moreover, it is assumed that the Channel State
Information (CSI) and the delay requirements of all users are perfectly known at the AP (see
[136, 158, 159, 165])2.

Following the establishment of the transmit signal at the AP, it is important to under-
stand the mechanics of signal reflection and reception within this system. Let's define the
reflection-coefficients matrix at the IRS as:

© = diag (B16/*,B2€/%2, ..., By e/?N) (4.2)

where 3, € [0, 1] represents the reflection amplitude, and o, € (0,27],Yne N € {1,..., N},
indicates the phase shift of the n-th reflection coefficient at the IRS® The overall equivalent
channel link, considering both the direct path and the reflected path via the IRS, for user k
is expressed as:

hi 2 (W97 OH + (hpV)", VkeK. (4.3)

2The results in this chapter serve as theoretical performance upper bounds for the URLLC-enable IRS
systems with imperfect CSl in practice [170, 171].

3For reflection efficiency maximization, the amplitudes of all IRS elements are assumed to be one [158]
ie., Bn=1,VYneN.
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User 1 User 2 Access Point

Figure 4.1: Energy-Efficient Resource Allocation for a multi-user DL MISO URLLC-enabled IRS
system.

Defining the equivalent channel link brings us to the formulation of the received signal at
each user k:

vl =hsl+mN 2 Y hwez+nelll,  VkeKVkeL, (4.4)
ke

where ng[/] ~ CN(0, 02) symbolizes the Additive White Gaussian Noise (AWGN) at user k,
characterized by a mean of zero and variance O’i. Consequently, the SINR experienced by

user k can be expressed as:

[ w |

hH 12 2’
i;ékX,l;eK| kw,| +Gk

Yk € K. (4.5)

Yk =

It should be noted that in URLLC systems, the data blocks must be finite and have a short
length to guarantee low-latency and high-reliability wireless communication. This require-
ment stems from the essential goal of URLLC to minimize latency while maximizing the
reliability of transmissions, a balance critical for applications where even minimal delays or
errors could lead to significant consequences. Reflecting this necessity, a precise approxi-
mation of the achievable data rate for each user within such systems is paramount. The
formula for this approximation, as detailed in [163], serves as a cornerstone for evaluating
the efficiency and effectiveness of URLLC systems. This approximation takes into account
the finite blocklength regime, where traditional approaches to calculating channel capac-
ity, assuming infinite blocklengths, fall short of providing accurate or useful predictions for
URLLC scenarios. By incorporating these considerations, URLLC systems are better posi-
tioned to meet the requirements of high reliability and low latency, ensuring that wireless
communication remains both robust and agile in environments where performance and speed
are non-negotiable. The precise approximation for the achievable data rate of each user is
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given by:
Ri(ex wi, ©) = Fx(wi, ©) — Gk (ex, wk, ©), Vk €K, (4.6)
where
Fr(wg, ©®) = logs (1 +yk), Vk e K, (4.7)
Grler, Wi, ®) = Q1 (ex) midvk, Vk e K. (4.8)

Furthermore, within the context of URLLC systems, €, characterizes the decoding error
probability for user k, providing a quantifiable measure of the likelihood that a transmitted
message is incorrectly decoded. The term my specifies the blocklength, indicating the
number of symbols contained in each transmitted block of data. This parameter is crucial
in balancing the trade-off between latency and reliability, as shorter blocklengths contribute
to reduced transmission times at the cost of potentially increased error rates. Additionally,
Vi represents the channel dispersion for user k, a metric that reflects the variability in the
channel’s capacity to convey information reliably. It is mathematically defined as:

Ve=2a (1- (14+7072), Vk €K, (4.9)

where a =log,(e). The Equation (4.8) captures the channel dispersion and the effect of
the finite blocklength on the achievable data rate, with 7y, denoting the SINR for user k.

In the analysis of URLLC traffic, the load associated with user k is generally modeled as
a random variable, expressed as L, = vxS2. Here, vy is the size of individual data pack-
ets, whereas ) denotes the rate at which these packets arrive. This model reflects the
stochastic nature of network traffic, accommodating fluctuations in data demand and arrival
patterns. To ensure that the QoS requirements for each user are met, it is essential that the
probability of the traffic load surpassing the user’s allocated total data rate remains below
a predefined threshold, {. This threshold represents the maximum tolerable probability of
failure in supporting the traffic load, a critical consideration in the design and optimization
of URLLC systems to uphold stringent performance standards [172]. By adhering to these
parameters and models, URLLC systems can achieve the delicate balance between low la-
tency, high reliability, and efficient use of network resources, ensuring robust and responsive
communication for critical applications. A probabilistic constraint could be established that
reflects the critical balance between the system’s ability to support user traffic and the
intrinsic randomness of that traffic, ensuring that the QoS for each user is upheld within
acceptable limits of reliability. Such a constraint is formally written as:

PI’(Lk>Rk(€k,Wk,®)) SC, 0<C<1, Vk e K. (410)

This inequality essentially stipulates that the probability of the traffic load L, exceeding the
achievable data rate Ry (ex, Wy, ®) for each user k should not surpass a predefined threshold
¢, which lies between 0 and 1. This threshold shows the system’s maximum acceptable risk
level of failing to meet the data rate requirements due to variability in traffic load. In
particular, in our system model, each user k's packet size v is assumed to be constant,
while the packet arrival rate Qx is modeled to follow a Poisson distribution* with a mean

4The variability introduced by the Poisson distribution captures the stochastic nature of traffic arrival,
which is a critical aspect of accurately modeling and managing network resources in URLLC systems.
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rate parameter Ax. The Cumulative Distribution Function (CDF) of the packet arrival rate
for user k, denoted by Fq, (-), translates the probabilistic constraint into a tangible condition
for system design and optimization. Through algebraic manipulation, the aforementioned
probabilistic constraint can be reformulated into a more direct relationship between the
system parameters and the QoS requirements, as follows:

Rk(ek,wk,@)zuk/—_gkl(lf(), vk e, (4.11)

where F§1 represents the inverse CDF (quantile function) of Q. This expression sets a
minimum required data rate based on the packet size and the statistical behavior of packet
arrivals, adjusted by the tolerable failure probability (.

This formulation allows network designers to specify and enforce QoS guarantees directly,
considering both the inherent uncertainty of wireless channels and the stochastic nature of
network traffic, thereby ensuring that URLLC systems can deliver the requisite performance
levels for critical applications.

4.3 Resource Allocation Problem Formulation

In this segment of our investigation, the primary objective is to reduce the overall transmis-
sion power within the system under consideration. This goal is to be achieved through the
simultaneous optimization of several key variables: the active beamforming vectors employed
by the AP, the phase shifts at the IRS, and the DEP associated with each communication
link. The optimization problem, thus, seeks to find an efficient balance between minimizing
power consumption and fulfilling the system'’s operational constraints, ensuring that both
performance and efficiency targets are met. The formal mathematical representation of this
optimization challenge can be given as follows:

Py: min kg,CHwkllz (4.12a)
sit.: Ri(ex,wg, ©) zukl—};:(lf(), Vk e K, (4.12b)
1©nn| =1, VYneN, (4.12¢)
€k < €k max, Vk e K. (4.12d)

The constraint labeled as (4.12b) specifies the minimum data rate that must be sustained
for user k, a critical requirement that ensures each user receives sufficient bandwidth to
meet their QoS needs. Meanwhile, the constraint described in (4.12c) mandates that the
elements along the main diagonal of the diagonal phase shift matrix — corresponding to
the IRS’s phase shifters — must all possess unit modulus. This requirement is the key
for maintaining the integrity of the signal reflection process, ensuring that the IRS can
effectively manipulate the incident signals to enhance communication links. Additionally,
the constraint presented in (4.12d) is designed to uphold the reliability standards for each
URLLC user within the network. Here, €max represents the upper bound on the allowable
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error rate for data transmission, highlighting the importance of maintaining high reliability
in URLLC contexts. This constraint is crucial for applications demanding ultra-reliable
communications, where even minimal losses or errors can have significant implications.

By addressing the optimization problem P31, this chapter elucidates strategies for reducing
power consumption in IRS-aided URLLC wireless networks while simultaneously enhancing
their capacity to support high-performance, reliable communications. Through the man-
agement of beamforming techniques, phase shift adjustments, and error probabilities, the
study aims to contribute valuable insights into the design and operation of energy-efficient,
high-capacity IRS-aided URLLC systems.

4.4 Proposed Solution

The optimization problem P presents a significant challenge due to its non-convex nature,
primarily arising from the complex interdependencies among the optimization variables. Such
non-convexity typically renders direct, efficient solutions elusive, as there lacks a straightfor-
ward method to navigate the complex landscape of potential solutions. To tackle this issue,
we propose employing an AO strategy, known for its lower computational complexity, as a
pragmatic approach to approximating a sub-optimal solution.

The AO method we suggest decomposes the main problem, Pi, into more manageable
sub-problems, each focusing on a subset of the optimization variables. This decomposition
allows for iterative refinement of the variables in a manner that gradually converges towards
an improved solution. Specifically, the process begins by addressing the first sub-problem,
which involves the design of the active beamforming vectors at the AP. Here, we leverage the
SCA technique alongside the DC approach. The SCA technique handles a non-convex opti-
mization by iteratively solving convex approximations of the original problem, thereby easing
the computational burden. Simultaneously, the DC approach facilitates the breakdown of
non-convex components into convex and concave parts, further simplifying the optimization
process.

Following the resolution of the beamforming design, the focus shifts to the second sub-
problem, which targets the optimization of the phase shifts at the IRS. This phase of
optimization utilizes a penalty approach in conjunction with the SCA technique. The penalty
method introduces auxiliary constraints to transform the original problem into a penalized
version, where constraints are incorporated into the objective function as penalty terms.
This transformation often simplifies constraint handling, making the optimization problem
more tractable. The application of the SCA technique within this context ensures that each
iteration moves closer to fulfilling the original constraints while progressively optimizing the
phase shifts.

Additionally, to circumvent potential issues related to the feasibility of solutions — common
in complex optimization scenarios — a new objective function is proposed. This objective
aims to guide the optimization process more effectively, ensuring that the search for sub-
optimal solutions remains within the bounds of practical and achievable solution space.
Through this structured two-layered approach, our method promises to yield efficient and
effective solutions to the challenging non-convex problem Py, facilitating advancements in



4.4. PROPOSED SOLUTION 61

the design and optimization of communication systems where active beamforming and IRS
phase shifts are crucial elements.

4.4.1 First-stage: Optimizing w, and ¢, with Fixed ©

At this stage of our optimization process, we direct our focus towards the active beamformers
at the AP and the DEP for each user, while treating the phase shifts implemented by the IRS,
denoted as O, as fixed parameters. This assumption simplifies the optimization problem by
temporarily isolating a subset of variables, thereby allowing for a more targeted approach in
optimizing the active beamformers, wy, and DEP, €.

To facilitate this optimization, we employ the technique of Semi-Definite Programming
(SDP), a powerful mathematical framework well-suited for handling optimization problems
involving linear matrix inequalities. By adopting SDP, we introduce matrices Wy = wkw,’j
and H, = hkhf for all users k € K. This transformation converts the original beamform-
ing vectors and channel coefficients into their respective matrix forms. Under the SDP

framework, the original problem P; undergoes a reformulation, denoted here as®:
P> urpkiyr;k kgcTr(Wk) (4.13a)
st F(Wi) = Ge(Wi ex) > Fg l(1-C), Yk €K, (4.13b)
rank(Wy) <1, Vk e K, (4.13¢)
Wi, >0, Vk e K, (4.13d)
€k < €k max, Vk e K, (4.13e)

where v, in F (W) and G, (W}) can be expressed as:

Tr(hgwy)

Y Tr(hgw;)+o;
€K, ik

W= Wk € K. (4.14)

This stage of the optimization process is crucial for iteratively refining the system's perfor-
mance, setting the stage for subsequent optimization of the IRS phase shifts. By effectively
decoupling the problem into manageable subproblems and employing sophisticated mathe-
matical techniques like SDP, we inch closer to achieving our goal of minimizing the total
transmit power while adhering to the system's operational constraints and quality of service
requirements.

Addressing the challenge posed by the non-concavity of constraint (4.13b) in the optimiza-
tion problem P requires a strategic approach to ensure the tractability of the optimization

5This reformulated version harnesses the power of SDP to navigate the complexities of optimizing beam-
formers and decoding error probabilities within the constraints of fixed IRS phase shifts. By representing
the beamforming vectors and channel links as semidefinite matrices, the problem becomes more tractable,
allowing for the (potential of) utilization of SDP solvers to find optimal or near-optimal solutions.
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process. To tackle this issue, we introduce a novel approach that involves the deployment
of auxiliary variables w,, Vk € K. These auxiliary variables are designed to establish a lower
bound for the SINR, facilitating a more manageable form of the SINR expression that can
be optimized effectively. With this approach, the SINR constraint specified in (4.14) can be
reformulated as follows:

(W)
0< tup <y =
S Bk > Yk gk(Wk)

This reformulation allows us to decompose the SINR into components that are more con-
ducive to optimization. Specifically, the numerator and denominator of the reformulated
SINR expression, as indicated in (4.15), can be detailed as:

Vkek. (4.15)

fik(Wi) = Tr(hcwy), Vk €K, (4.16)
a(Wi)= Y Tr(hew))+07.Vk €K, (4.17)
i€k, i#k

respectively. Based on this decomposition, both the signal power and the interference plus
noise power components are articulated in terms that allow for the application of optimization
techniques. Leveraging the lower bound provided by the auxiliary variables w, the first stage
of the optimization problem can then be reformulated. This rephrased optimization problem,
retaining the essence of minimizing the total transmit power while satisfying the system'’s
constraints, can be restated as:

Ps: min Tr(W, 4.18a
5 ymin_ ¥ (W) (4.182)
st.. ug =0, Vk e K, (4.18b)
k(W)
< . Vk e K, 4.18c
= g (W) ( )
Ric(ex. k) = vk FH(1=C),  VkEK, (4.18d)
rank(Wy) <1, Vk e K, (4.18e)
W, >0, Vk e K, (4.18f)
€k S €k max, Vk € K:, (4189)
where
Ri(ek, i) = Fi(kk) — Gr(€k, kik ), Vk e K, (4.19)

In constraint (4.18d), and the terms Fy(ux) and Gg (e, k) are given by:

Fi(pk) =log(1+ p), Vk €K, (4.20)

1 a2 )
Grlek, pk) =@ (Ek)\/md (1—(1+Mk) )kaGIC- (4.21)

To address the non-convex nature of Pz, the optimization problem is initially transformed
into a canonical form that aligns with the requirements for DC programming techniques.
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This transformation is crucial as it prepares the ground for subsequent approximation and
manipulation techniques aimed at dealing with non-convex terms. Once the problem is cast
into the canonical form required for DC programming, the next phase involves employing
the first-order Taylor expansion. This mathematical tool allows us to approximate the non-
convex components of the problem with convex ones, thus rendering the problem more
tractable. Specifically, this approximation strategy is applied to constraint (4.18c), which
can be represented as follows:

pk gk (Wi) < fi(Wy)

=k A(Wy) < (W) — pkoz, Yk € K, (4.22)
where
AWi)= ), Tr(hyw;), Vkek. (4.23)
ieK, ik

This transformation is key to progressing the optimization process, as it breaks down com-
plex, non-linear relationships into forms that are more amenable to analytical and numerical
optimization techniques.

Nevertheless, a notable challenge arises with constraint (4.22), which inherently embodies
non-convexity due to the multiplication of two optimization variables: the beamforming
matrix Wi and the auxiliary variable wk, applicable for all i/, k € K. This type of constraint
typically complicates the optimization process, as direct optimization methods struggle to
handle such non-linear interdependencies effectively. To mitigate this challenge, a decoupling
strategy is proposed. By adopting a specific form for the problematic constraint, as detailed
in the literature [165, 2], the issue can be tackled. The proposed form, indicated as:

pk AWy) = Py (g, Wi) — Qx (i, Wi),Vk € K, (4.24)
where
1
Pr(px, Wi) = 5 (ke +AWK))?,  VkeK, (4.25)
1
Qu(br Wi) = 5 (k)® + (A(W)))? Yk € K, (4.26)

allows for the separation of the intertwined variables, thereby simplifying the constraint into
components that can be more readily optimized. This decoupling is key to overcoming the
inherent non-convexity, enabling the identification of sub-optimal solutions within a complex
problem space.

Through these strategic steps — casting the problem into a suitable DC-compatible form,
applying convex approximations to non-convex terms, and decoupling intertwined variables
— the once daunting task of optimizing P3 becomes more approachable. This approach
enables the pursuit of sub-optimal solutions to complex optimization problems within the
domain of communications system design. By denoting Ty = {ex, ux, Wi} as a set of
optimization variables, P3 can be recast as follows:



64 CHAPTER 4. ENERGY EFFICIENT IRS-AIDED RESOURCE ALLOCATION

P4 : min Z Tr(Wy) (4.27a)
Tk kek

st F(uk) = Grlwk) > wkFq (1=C),  VkeK, (4.27b)
Pr(Ti) — Ok(Tk) < fi(Wi) —uxoz, YkeK, (4.27¢)
pk = 0, Vk e K, (4.27d)
€k < €k,maxs Vk e K, (4.27¢)
rank(Wy) <1, Vk e K, (4.27f)
Wi =0, Vk e K. (4.279)

Addressing the optimization problem outlined in P4 presents yet another obstacle: the
incorporation of the Q~1(-) function. This function, representing the inverse of the Gaussian
Q-function, is notoriously difficult to handle directly within optimization frameworks due
to its non-linear and non-convex nature. To effectively deal with this issue and advance
towards a solution, we introduce a Lemma that facilitates an approximate representation of
the Q1(-) function, thereby simplifying the optimization process.

Lemma 1 For 0 < ¢, < 1, an approximation of Q™ 1(ex) is given by:

Q Y(en) = \/Z(B—Cek),Vke/C, (4.28)
where B and C are defined as:
T 7w 12773
B=|14+—+-— 4.2
<+ +480+40320+ ) (4.29)
T 7m? 12773
C= <1+ +T8+ 880 +> (4.30)
(4.31)

By adopting the Lemma 1, the transformation of the data rate constraint function as spec-
ified in (4.27b) becomes feasible, allowing us to recast it in a more tractable form. By
adopting the lemma's approximation for the @~1(-) function, we arrive at a new represen-
tation of the constraint as follows:

Fw) /5 d( e )(B—Cek>>Rmm,Vkefc. (4.32)

This reformulation significantly simplifies the original problem by providing an explicit relation
that incorporates the effects of decoding error probability, €, and the SINR, -y, into the
data rate constraint. However, the constraint as expressed in (4.32) remains non-convex,
largely due to the presence of the channel dispersion term, which complicates the direct
application of convex optimization techniques. To circumvent this issue, we introduce an
assumption applicable to the high SINR regime, where the channel dispersion, V4, can be
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closely approximated by:

1

Vi = (1—) ~1, Vk e K. (4.33)
(147%)?

This approximation assumes that as SINR, vk, increases, the impact of the channel’s variance

on the system’s performance diminishes, allowing us to treat Vj as approximately constant.

Under this assumption, the complex non-convex equation (4.32) can be simplified further,

resulting in:

=Gy(€p.uk)
Fk(,u'k)_\/zi’:u(B_Cek)zRmiankeK- (4.34)

This revised formulation, (4.34), represents a significant step towards enabling the applica-
tion of convex optimization strategies by describing the constraint in terms that are inher-
ently more helpful to such approaches. Here, Gk(ek,uk) is a modified term that contains
the interplay between the decoding error probability and the auxiliary variables, w,. Through
this strategic approximation and reformulation, the pathway to addressing the optimization
challenge in P4 becomes clearer, facilitating the advancement toward finding viable, efficient
solutions within the defined constraints.

It should be noted that the constraint (4.27c) also belongs to the class of DC problems.
Thus, the SCA technique can be directly applied to approximate the non-convex problem in
each iteration. Based on this similar recognition, the first-order Taylor expansion becomes
the key in crafting a globally lower-bound approximation for the function Qk(Tx) for each
user k € K. At a given iteration t, the lower-bound approximations of these functions are
given by:

Qu(Ti) = Ok(Ti) 2 Qu(TR) +8], Qi (Th) (1 — 1f)
+Tr(v€Vka (%) (Wk—W,f)),VkeIC, (4.35)
facilitating a piecewise convex approximation of the original, more complex, problem. Follow-

ing this strategic maneuver and by dropping the inherently non-convex rank-one constraint,
P4 with any given local point at iteration t can be approximated as:

Ps:min Y Tr(Wy) (4.36a)
Tk kex

s.t.: F(pk) — Gr(€x. k) = Rmin. VkeK, (4.36Db)
Pr(Ti) = Ok(Tk) < (W) — ko, Vk €K, (4.36¢)
Wi =0, Vk ek, (4.36d)
1 >0, vk € K, (4.36¢)

€k < €k max. Vk e K. (4.36f)
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Algorithm 2 lterative SCA Algorithm for Energy-efficient Resource Allocation Policy in
IRS-aided URLLC Networks
Input: Set iteration number t =0, maximum number of iterations Tmax, and initialize the
decoding error €, = 62, the auxiliary variable ux = p,g, and the active beamformers as
W, =w.
1: repeat
Calculate G (uk) and Ox(Tx) as stated in (4.34) and
(4.35), respectively.
Solve Ps to obtain {e}, uf, W/}
Sett=t+1.
until t = Thax
. Return T} = {e} uf, Wt} ={ef up, Wi}l

N

S

The optimization problem Ps is now a convex optimization problem that can be efficiently
solved by standard convex optimization solvers such as CVX. Ps, now framed as a convex
optimization challenge, paves the way for iterative, efficient resolution through SCA. The
iterative SCA algorithm for Ps is given in Algorithm 2.

4.4.2 Second-stage: Optimizing © with Fixed wy and ¢,

In the second stage of our optimization process, we focus on optimizing the phase shifts
at the IRS, denoted as ®, while keeping the active beamforming vectors wy and the DEPs
€k fixed. This step presents a unique set of challenges, primarily due to the constraints
associated with the phase shifts.

The main difficulty in this context is constraint (4.12c), which imposes a unit-modulus
requirement on the phase shifts. This unit-modulus constraint is inherently non-convex,
making the direct optimization of the phase shifts intractable with standard convex opti-
mization tools. To overcome this issue, we introduce a new variable representation for the
phase shifts. We define the vector 8 = (e/%1, ..., e/@n)H € CNX1 containing the phase shifts
of the IRS elements, and augment it with a dummy variable 7 € C, such that |7| =1, to
form the extended vector § = [@7 7]7 € C(N+Dx1

To further facilitate the solution, we introduce the matrix V = 80+ € C(N+t1)x(N+1) - This
representation ensures that V' is semi-definite and satisfies the condition rank(V) < 1. Lever-
aging this formulation allows us to circumvent the direct handling of the unit-modulus con-
straint by focusing on the properties of V. Thus, we obtain:

2
’ (B OH+ (M) wi| 2 Tr (VXWX

= Tr(WyYy), Yk €K, (4.37)
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where

Xy = [ (diag((h'kU)H)H)T (hQU)*} T,Vk ex, (4.38)
Y, =X{VX,, VkeK. (4.39)

Given that the objective function in Py does not depend on V', the problem effectively
becomes a question of feasibility. To resolve this and effectively derive the phase shift
matrix @, we explore an alternative optimization strategy that bypasses the direct feasibility
challenge. This approach involves studying the subsequent optimization problem:

K
Ps : maéigj(ize kglak (4.40a)
st Tr(WiY ) — Y Tr(uiWiYy) > pioi+ax Vk €K, (4.40b)
ieK,i#k
diag(V) = 1p41, (4.40¢)
V=0, (4.40d)
rank(V') < 1. (4.40e)

With the objective of enhancing the SINR margin beyond the minimum requirements outlined
in Py, the optimization process seeks to precisely determine the configuration of ®, the phase
shift matrix at the IRS. This step enables the maximum utilization of the communication
system’s performance by fine-tuning the phase shifts to align and strengthen the signal at
the intended receivers, thereby increasing the SINR margin. An essential aspect of this
optimization is adhering to constraint (4.40c), which enforces the unit-modulus nature of
the IRS's reflective elements. This constraint maintains the physical feasibility of the phase
shifts, ensuring that each element of ® reflects signals without amplifying or attenuating
their power.

In practice, solving Pg, which incorporates the unit-modulus constraint, often results in a
solution matrix with a rank greater than one. This poses a challenge since the ideal solution
would have a rank of one to correspond with the physical implementation of a single phase
shift per IRS element. Therefore, it is not justifiable to neglect and drop the constraint
(4.40c) as we did so in P4. Exploiting the DC programming method we explored earlier
could be beneficial in tackling this issue. By applying the DC method, the unit-modulus
constraint can be recast into an equivalent form that is mathematically tractable and more
suitable for optimization processes. Thus, the equivalent form of constraint (4.40c) can be
represented as®:

VI« =[IV]2<0. (4.41)

6By strategically addressing the rank and unit-modulus constraints, the optimization process can converge
towards a solution that not only satisfies the mathematical model but also aligns with the physical capabilities
and limitations of the IRS technology. This approach underscores the intricate balance between theoretical
optimization strategies and practical implementation considerations, ultimately enabling the realization of
IRS-assisted communication systems that leverage optimized phase shifts to achieve enhanced performance
metrics.
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Note that:
VIl =Y, 0i > [[V]2 = max;{o;}. (4.42)
i

This holds for any given V€ HV*N where o; is the i-th singular value of V. The equality
holds if and only if V' achieves rank one i.e., rank(V) =1 [173, 174]. Now, we take the
first-order Taylor approximation of ||V']|» as:

Vil IVl T (V) M (VO) (V=¥ ). (a4

By resorting to (4.43), a convex approximation can be obtained for (4.41) which is given
by:

V[l = [[VO o —Tr (Amax (V(t)) A (V“)) (V-v1) ) <0. (4.44)

Finally, with the convex constraint (4.44) at hand, the optimization problem in the (t+41)-
iteration can be written as follows:

r

K
P7: ma‘>/<for‘tnkize kglak (4.45a)
st Tr(WiY)— Y Tr(uiWiYy) > pfog+oa,  VkeK, (4.45b)
€K, i#k
diag(V') = 1p41, (4.45¢)
V=0, (4.45d)

HV - HV(t)”2Tr<>\max (V(t)) A (V(t)> (VVf)) <0. (4.45¢)

\

Following the reformulation and addressing of the unit-modulus and rank constraints via the
DC method, the optimization problem, now referred to as P, achieves a convex structure.
This transformation is significant because it transitions the problem into a domain where
established convex optimization techniques, such as CVX, can be applied effectively [175].

The convexity of P7 ensures that the optimization can be carried out with guarantees of
reaching a global maximum within the defined solution space. The culmination of our efforts
is encapsulated in the final iterative-based AO algorithm, which is detailed in Algorithm 3.
This algorithm iteratively applies the AO method, alternating between optimizing different
sets of variables while keeping others fixed, gradually converging to a solution that optimizes
the system'’s total transmit power, phase shifts at the IRS, and the DEP for each user. By
systematically addressing the various aspects of the optimization problem in stages, the AO
algorithm navigates the complexities of the design space, leveraging the strengths of convex
optimization to ensure efficient and effective solution convergence.

The iterative nature of the algorithm allows for continuous refinement of the solution, with
each iteration bringing the system configuration closer to the optimal setting. This process
demonstrates the power of combining theoretical optimization frameworks with practical
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Algorithm 3 Iterative AO algorithm for Energy-efficient Resource Allocation Policy in IRS-
aided URLLC Networks

Input: Set i =0, /max, and initialize the phase shifts as ® = @Y.

1. Repeat

2:  Solve problem Ps for given ®', and obtain the

optimal solutions {e}, uf, W}}.

3. Solve problem P7 for given {el,ut, W} }.
4: i=i+1.
5
6

:until / = /nax
: Return {e}, uy, wi, ®*} = {€}, u. wj, O}

solution techniques like CVX and highlights the potential of IRS-assisted communication
systems to achieve enhanced performance through careful system design and optimization.

Proposition 1 P; is non-increasing as the objective function value increases over each iter-
ation in Algorithm 3. In particular, after each iteration, the iterative Algorithm 3 improves
the objective function value of P; and converges to a locally optimal solution

Proof 1 Please see [12]. |

For a detailed exposition of the proof, including mathematical demonstrations and the algo-
rithmic steps that ensure convergence to a locally optimal solution, refer to the supplemen-
tary materials and discussions provided in the associated literature [151].

This proposition and its supporting proof underscore the efficacy of the optimized framework
employed to tackle the complexities of the problem space, iteratively steering the system to-
wards enhanced performance metrics. The proof further solidifies the theoretical foundation
of the algorithm’s design, ensuring its applicability and reliability in practical optimization
scenarios within IRS-assisted communication systems.

4.5 Numerical Results

This section demonstrates the efficiency and effectiveness of our newly developed algorithm,
Algorithm 3, for MISO URLLC-supported IRS systems, particularly under scenarios utilizing
finite blocklength codes. We establish our simulation environment within a defined square
space, measuring (100,100) meters. Here, the AP is strategically positioned at the coor-
dinates (0,0) meters, with the IRS located at (50,0) meters. We numerically simulate a
dynamic environment where all users are randomly distributed across this rectangular space,
adding a layer of realism to our evaluation. The signal path loss is modeled using the equa-
tion 35.3437.6log;o(dk) dB, where di represents the distance in meters from the AP to
user k, providing a 3gpp-compliant assessment of signal attenuation over distance [55]. For
the purposes of our simulations, we have set the convergence tolerance at 1072 and assumed
a thermal noise density of —174 dBm/Hertz (Hz), which aligns with standard wireless com-
munication scenarios. Furthermore, we impose a strict requirement on the maximum DEP
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Table 4.1: Simulation Parameters for Multi-user MISO URLLC-enabled IRS System.

Parameter Value

Area dimensions (100,100) meters
AP location (0,0) meters

IRS location (50,0) meters

User distribution Random within area
Path loss model 35.3+37.6l0og;p(dk) dB
Convergence tolerance 1072

Thermal noise density —174 dBm/Hz

Max DEP (€x.max) 10~7

Average traffic load 0.1 Mbps

Central carrier frequency 3.5 GHz

Bandwidth 350 kHz

Number of URLLC users (K) 4

Number of IRS elements (N) 50

Block code length 200 symbols

Static power consumption (Ps) 100 milli Watt (mW)
Dynamic power per IRS element (Py) 0.33 mW

Circuit power at AP (P;) 1 Watt (W)
Dynamic power of AP per antenna (Ppy,) | 100 mW

for any user k, which is defined as €x max = 1077, ensuring ultra-reliability in the URLLC
context. Additionally, we model the network to accommodate an average traffic load of 0.1
Megabits per second (Mbps) per URLLC user, with a total system bandwidth of 350 kHz
and a set number of URLLC users (K =4) and IRS elements (N = 50).

To ensure the reliability and robustness of our simulation results, we employ Monte Carlo
simulations, generating numerous random realizations of the channel gains. This approach
allows us to compute the average EE across various scenarios, offering a comprehensive
assessment of the proposed scheme's performance under diverse conditions. Through these
simulations, we aim to demonstrate the viability and advantages of the proposed algorithm
in enhancing the operational efficiency of IRS-aided URLLC networks.

Figure 4.2 illustrates the relationship between the DEP, denoted as €x max, and the average
transmit power required for block codes of length 200 symbols, symbolized by my = 250. An
intriguing observation from this figure is the inverse relationship between the decoding error
and the required transmit power; as the decoding error increases, the necessity for transmit
power diminishes. This trend underscores a fundamental principle in network reliability:
enhancing a network'’s reliability necessitates higher transmit power due to the decreasing
nature of Q1 (ex) with respect to €, leading to a reduction in G (ex, wy, ®). Consequently,
achieving the minimum data rate requirements becomes feasible with lower transmit power,
ultimately reducing the AP’s overall transmit power. Furthermore, the figure investigates
the effect of increasing the number of reflecting elements at the IRS, which leads to a
reduction in transmit power at the AP. In other words, the AP transmit power scales down
with an increasing number of reflecting elements. A comparative analysis with two baseline
schemes is also presented within this context. The first baseline scheme assumes a scenario
with fixed beamforming at the IRS, whereas the second scenario operates without an IRS.
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Figure 4.2: Impact of decoding error, €, on the average transmit power for a downlink of multi-user
IRS-aided URLLC network.

The comparison highlights the superior performance of our proposed algorithm, attributing
its enhanced efficiency to the strategic deployment of IRS and the joint optimization of
beamforming matrices at both the AP and IRS, thereby outperforming the first baseline
scenario and significantly surpassing the second scenario that lacks IRS integration. This
analysis demonstrates the efficacy of incorporating IRS into network design and emphasizes
the key role of adaptive resource allocation in optimizing network performance.

The concept of IRS has been recognized as a revolutionary approach towards achieving
environmentally friendly wireless communication systems. To quantitatively assess this, we
introduce the metric of energy efficiency (EE), defined as the total system data rate divided
by the overall network power consumption, measured in bits per joule. This relationship can
be mathematically expressed as follows:

Y Ri(ex, Wi, ®)
Kek

kZICHWk||2+ P+ N7Py+ P.+ MPoy,
S

Eerf(€x, Wi, ©) = (4.46)

where Ps = 100 mW indicates the static power consumption as required to maintain the
basic circuit operations of the IRSs, Py = 0.33 mW is the dynamic power dissipation per
reflecting component, P. =1 W is the circuit power at the AP, and Ppy, = 100 mW is the
dynamic power consumption of the AP per antenna.
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Figure 4.3: Average EE vs. the number of transmit antennas and reflecting elements for a downlink
of multi-user IRS-aided URLLC network.

10

It is observed that the EE increases with increasing the number of reflecting elements. On
the other hand, the EE of the system decreases as the number of antennas increases. This
is because with increasing the number of antennas at the AP, the power consumption at the
AP increases due to increasing the number of RF chains, which degrades the performance
of the system in terms of EE. One can conclude that the IRS are more efficient for green
wireless communication as it do not consume more transmit power as they are passive device.
Besides, increasing the number of reflecting elements provides more degrees of freedom for
the network to increase the network’s data rate while reducing the system's transmit power.

Fig. 4.3 illustrates the relationship between the IRS's reflective elements and the AP’s
transmit antennas versus EE. Notably, the figure demonstrates an increase in EE with the
augmentation of reflective elements on the IRS. This increment can be attributed to the
reflective elements’ role in enhancing the signal's directionality and strength without neces-
sitating additional power. Conversely, an increase in the number of transmit antennas at the
AP correlates with a decrease in EE. This decline is primarily due to the heightened power
requirements associated with the additional RF chains needed for more antennas, adversely
affecting the system'’s overall EE.

The insights gained from this analysis underline the IRS's capability to provide green wireless
communication efforts. Being inherently passive, IRS units do not contribute to increased
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transmit power, thereby presenting a sustainable alternative to conventional methods that
rely on augmenting the number of active antennas at the AP. Furthermore, by expanding
the number of reflecting elements, the IRS provides additional degrees of freedom. This
expansion facilitates a more efficient network operation by enabling higher data rates and
reduced transmit power, showcasing the IRS's substantial impact on enhancing wireless
network efficiency and sustainability.

4.6 Conclusion

This chapter delved into the intricacies of resource allocation strategies for a DownLink
(DL) multi-user Multiple-Input Single-Output (MISO) system, augmented by Ultra-Reliable
low-Latency Communication (URLLC) capabilities through the integration of an Intelligent
Reflecting Surface (IRS). The focus was on designing a resource allocation framework that
optimizes both active and passive beamforming. This approach aimed to significantly reduce
the total transmission power, all while considering the unique traffic loads of each URLLC
user and adhering to strict Quality of Service (QoS) requirements based on the implemen-
tation of short packet transmission. The challenge presented by the non-convex nature of
the problem was addressed by employing the Alternating Optimization (AO) method. This
method strategically decomposed the main problem into manageable sub-problems, specifi-
cally focusing on the optimization of active and passive beamforming matrices one at a time.
These sub-problems were then tackled using the Successive Convex Approximation (SCA)
approach and a penalty-based method, respectively.

The effectiveness of the proposed scheme was rigorously evaluated through simulations,
which highlighted the IRS's critical role in fulfilling the URLLC system's QoS demands
and achieving substantial reductions in transmission power, demonstrating a marked im-
provement over traditional methodologies. Moreover, the simulations support the IRS’s
contribution to enhancing EE, indicating its potential to revolutionize power-efficient green
communications. These findings illustrate the transformative impact of IRS technology in
enhancing the performance and sustainability of future wireless communication systems, of-
fering promising pathways for further research and development in the field of URLLC-aided
wireless communications.
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Energy Efficiency and Admission
Control in IRS Networks

N the previous chapter, Energy Efficiency (EE) in an Intelligent Reflecting Surface (IRS)-

aided network was studied as the sole design objective of the network to be optimized.
This chapter explores the dynamics of a multi-user Multiple-Input Single-Output (MISO)
system enhanced by Machine Type Communication (MTC) technology and enabled with an
IRS as a ‘joint’ optimization of EE and another network metric. Here, a multi-antenna Access
Point (AP) is tasked with transmitting information symbols to numerous Internet of Things
(IoT) users, all within the constraints of short packet transmission. The core objective
revolves around simultaneously elevating the system’s total EE and optimizing the number
of loT users that could be served fairly by jointly optimizing active and passive beamformers.
This is achieved through a novel algorithm that employs alternating optimization (AQ) to
iteratively solve the main optimization problem.

To facilitate this optimization, the approach adopts properties of the Difference of Con-
vex (DC) functions and the methodological precision of Successive Convex Approximation
(SCA), building a concave-convex problem. The active beamformers at the AP, along with
the strategic admittance of users into the system, are optimized through fractional program-
ming techniques, specifically exploiting a quadratic form to reach a sub-optimal solution. For
passive beamforming optimization, critical for manipulating Non-Line-of-Sight (NLoS) sig-
nals via the IRS, a novel combination of a penalty-based strategy and the SCA technique is
employed. This duo effectively addresses the complexities introduced by the unit-modulus
constraints integral to the IRS’s operational framework.

Through extensive simulations, a trade-off emerges between EE and the system's capacity
for user admissibility, highlighting the balancing required to optimize both active and passive
beamformers. Moreover, the simulations underscore the significant impact of IRS deploy-
ment on the system’s EE and its enhanced capability to incorporate a greater number of
users. This exploration not only affirms the proposed algorithm’s efficacy in solving the opti-
mization problem at hand but also illuminates the transformative potential of IRS technology
in improving the capabilities of MISO MTC-enabled frameworks in the loT communication
sphere.

The latter stages of this chapter venture into the evolving landscape of MTC, particularly
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as they transition into the era of sixth-Generation (6G) networks. This transition marks a
significant shift towards accommodating mission-critical applications that necessitate Ultra-
Reliable and Low-Latency Communications (URLLCs). These applications, ranging from
wireless industrial automation to healthcare, require not only unwavering reliability but also
rigorous adherence to delay-Quality of Service (d-QoS) standards. This shift introduces
fresh challenges in the radio access design for MTC networks, underscoring the need for
novel solutions. Emphasizing the adoption of short packet transmission strategies with finite
block-lengths emerges as crucial for meeting the strict low latency requirements central to
URLLCs.

In response to these challenges, this chapter also delves into an energy-efficient resource
allocation design algorithm for an IRS-assisted downlink URLLC network, building upon the
foundational MTC framework established earlier. While employing similar techniques of de-
composing the main non-convex problem into more manageable sub-problems and leveraging
an AO approach enhanced with SCA, we introduce an innovative iterative rank relaxation
method. This method allows for the formulation of a concave-convex objective function for
each sub-problem. This approach aids in the precise optimization of system parameters and
surpasses existing benchmarks through an iterative solution that methodically approaches
rank-one solutions for both the active beamforming and IRS phase-shift sub-problems.

This chapter is based on:

J. Jalali, A. Khalili, A. Rezaei, R. Berkvens, M. Weyn and J. Famaey, “IRS-Based
Energy Efficiency and Admission Control Maximization for loT Users With Short Packet
Lengths”, IEEE Transactions on Vehicular Technology, vol. 72, no. 9, pp. 12379-12 384,
Sept. 2023. https://doi.org/10.1109/TVT.2023.3266424

J. Jalali, F. Lemic, H. Tabassum, R. Berkvens, and J. Famaey, “Toward Energy
Efficient Multiuser IRS-Assisted URLLC Systems: A Novel Rank Relaxation Method”, in
GLOBECOM 2023 - 2023 IEEE Global Communications Conference - 6G Communication
Workshop, Kuala Lumpur, Malaysia, Dec. 2023, pp. 1-7.
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5.1 Introduction

Intelligent Reflective Surfaces (IRSs) have rapidly evolved to become a pivotal element in
the evolution of modern wireless communication networks, attracting widespread attention
from the research community for their remarkable ability to simplify deployment processes
while substantially improving the quality of wireless signal propagation [157, 61, 65]. In a
practical scenario, the IRS utilizes metamaterial reflection elements to redirect incoming
signals toward desired directions, thereby enhancing performance in terms of coverage and
achievable data-rate. As such, it is considered a crucial technique for deploying millimeter
(mmWave) and sub-mmWave wave bands in future mobile networks [10]. IRSs reflect signals
passively through beamforming without any need for signal decoding or amplification [64].
This characteristic sets IRSs apart from traditional relays, such as Decode-and-Forward
(DF) or Amplify-and-Forward (AF) relays, which actively process and re-transmit received
signals [176].

Distinguished by one of its many capabilities to operate in a full-duplex mode, IRS technology
has proven instrumental in boosting both Spectral Efficiency (SE) and Energy Efficiency
(EE), promising a significant leap forward for the development of Beyond-fifth-generation
(B5G) wireless networks. The efficacy of IRS in elevating network performance through these
dimensions has been thoroughly investigated, with a significant body of research dedicated
to refining both active and passive beamforming techniques. Such endeavors aim to optimize
SE and the weighted sum-rate, necessitating meticulous calibration of active beamforming at
the Base Station (BS) and passive beamforming at the IRS to fully leverage the technology's
benefits [160, 83].

Moreover, the synergy between Simultaneous Wireless Information and Power Transfer
(SWIPT) and IRS technologies has catalyzed breakthroughs in energy efficiency. Notably,
the research highlighted in [136] studies into the joint optimization of IRS phase shifts,
BS active beamformers, and power-splitting ratios for users, illustrating the potential for
an enhanced energy-efficient operation within IRS-enhanced SWIPT systems. Such studies
not only illuminate the IRS’s vital contribution to advancing wireless communications to-
wards more ecologically sustainable practices but also reveal the intricate tradeoff required
between amplifying signal quality and optimizing energy consumption. This comprehensive
exploration of IRS technology underscores its transformative impact on the wireless com-
munications landscape, positioning it as a key enabler for the future of connectivity.

Machine Type Communication (MTC) emerges as a cornerstone for the forthcoming surge
in wireless communication advancements, with its applications broadly divided into massive
MTC (mMTC) and ultra-reliable MTC (uMTC) domains. It is set to play a major role
in the proliferation of next-generation technologies, including the Internet of Things (loT),
Internet of Vehicles (IoV), and Internet of Everything (IoE). These developments are antic-
ipated to revolutionize the way connectivity is experienced across an extensive network of
devices and platforms, pushing the boundaries of traditional wireless communication frame-
works. The mMTC segment, in particular, is designed to support the expansion of future
networks, enabling them to support a massive number of devices. This expansion is crit-
ical for ensuring efficient connectivity for countless devices that communicate via shorter
packets [177]. However, this shift towards shorter packet transmissions presents a notable
challenge to the conventional Shannon capacity formula, which struggles to accurately de-
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pict the performance of these services [163]. This discrepancy has spurred the development
of novel resource allocation strategies aimed at accommodating networks with devices that
are delay-tolerant or those that meet the strict ultra-reliable low-latency (URLLC) criteria.

The exploration of resource allocation within MTC networks has led to significant research
efforts. For example, a study achieved global optimal resource allocation for a URLLC
system, focusing on optimizing bandwidth, power allocation, and antenna configuration to
minimize the combined average power consumption for DownLink (DL) and UpLink (UL)
communications [164]. Further investigations have sought to enhance network performance
through various means, such as maximizing the sum throughput in a Multiple-Input Single-
Output (MISO) Orthogonal Frequency Division Multiple Access (OFDMA) system via active
beamforming vectors at the BS [165]. Other notable efforts include the precoder design at
a BS for maximizing EE in multi-user Multiple-Input Multiple-Output (MIMO) networks
employing finite blocklength codes [178], and the optimal design for energy-efficient MIMO-
aided UL URLLC grant-free access systems [179]. Additionally, research has considered
a hybrid approach of puncturing and superposition policies to simultaneously maximize the
minimum average throughput for enhanced mobile broadband (eMBB) users and the number
of supported URLLC users [180].

The integration of IRS into delay-insensitive systems stands as yet another groundbreaking
approach to reducing computational latency, marking a significant stride towards heightened
efficiency and enhanced performance in wireless networks. In particular, within OFDMA sys-
tems designed for URLLC servises, the employment of IRS technology has been instrumen-
tal in substantially improving the weighted sum throughput. This improvement is achieved
through a concerted effort in jointly optimizing active beamforming vectors along with phase
shifts at both the BS and the IRS itself [166]. The utility of IRS extends into the realm of
mobile edge computing systems as well, where its application has been explored with the
objective of minimizing latency. This is accomplished by fine-tuning edge computing re-
sources, computation offloading strategies, and beamforming matrices, demonstrating the
IRS’s capability to significantly impact system performance by reducing latency [167]. A
further exploration of IRS technology within MTC, particularly in settings such as factory
automation, has provided valuable insights. This research has shed light on the improve-
ments in average data rates and the reduction in decoding error probabilities, especially
when considering the transmission of short packets — a critical consideration in industrial
applications where reliability and quick data transmission are paramount [111].

The strategic enablement of MTC services necessitates a concentrated effort to improve
reliability while simultaneously expanding the capacity for a larger number of MTC/loT
users within networks. In this pursuit, the deployment of IRS has been identified as a
promising avenue, offering a novel approach to enhance network capacity to accommodate
more users significantly. Despite the potential benefits, there exists a noticeable research void
concerning the application of IRS technology in systems enabled for MTC, particularly those
systems characterized by the transmission of short packets. The specific goal of optimizing
EE alongside increasing the count of fairly admitted loT users within such frameworks
remains an underexplored facet in the scholarly domain [165, 166, 178, 179, 180, 167,
111, 2]. This oversight signals a ripe opportunity for academic inquiry, pointing to the need
for comprehensive studies that not only aim to integrate IRS platforms into MTC systems
but also seek to balance EE improvements with the expansion of system capacity for loT
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users. Moreover, the challenge of upholding Quality of Service (QoS) standards within an
IRS-supported loT architecture, especially when dealing with the constraints of short packet
communications, poses an intriguing research question. The inherent limitations associated
with short packet transmissions — such as reduced data rates and potentially increased error
probabilities — complicate the attainment of optimal QoS levels. Thus, investigating how
IRS technology can be leveraged to mitigate these challenges, ensuring that QoS standards
are not just maintained but enhanced, represents a critical area for future research endeavors.

This chapter is dedicated to tackling these issues, presenting a comprehensive study on re-
source allocation algorithm design for a DL MISO MT C-enabled IRS system. Our model
encompasses a multi-antenna AP that serves multiple single-antenna loT users, leveraging a
smart reconfigurable reflector to facilitate communication. The innovation of our approach
is dual-faceted. Firstly, we strive to achieve an optimal balance in maximizing the total EE
of the system. Secondly, we integrate an effective admission control mechanism. This dual
pursuit is both an academic exercise and a practical endeavor to explore the potential of IRS
technology in MTC services. Through this comprehensive investigation, we aspire to illumi-
nate the path forward in system design, highlighting how IRS technology can substantially
enhance both the capacity and reliability of MTC services. By studying resource allocation
in the context of IRS-assisted MTC systems, we seek to bridge the existing research gap,
highlighting the potential of the IRS in enhancing network performance. Our exploration
aims at the practical implications of integrating IRS technology, offering an understanding
of how it can be harnessed to meet the rigorous demands of loT applications, especially
those requiring short packet lengths. This chapter has two parts. Consequently, the main
contributions of this part of the chapter can be summarized as follows:

e \We maximize the system'’s total EE together with admission control by jointly opti-
mizing active and passive beamformers at the AP and IRS, respectively, subject to
the minimum required data rate for each admitted loT user with a short packet and
unit-modulus constraints at the IRS.

e This problem is formulated as a Multi-Objective Optimization Problem (MOOP) which
is a non-convex Mixed Integer Non-Linear Programming (MINLP) problem, and it is
Non-deterministic Polynomial-time (NP) hard. To tackle this issue, we first convert
it into a Single-Objective Optimization Problem via a weighting coefficient. Then, we
exploit an Alternating Optimization (AO) resource allocation algorithm to solve the
formulated optimization problem iteratively, which improves the objective function in
each step. For the active beamformers at the BS, we first define a lower bound of the
Signal-to-Interference-plus-Noise Ratio (SINR) and then apply the Difference of Con-
vex (DC) functions and successive convex approximation (SCA) technique is adopted
to make a concave-convex function and then the fractional problem is solved based
on the quadratic transform which obtains a sub-optimal solution. Second, a penalty-
based approach is adopted along with the SCA technique to handle the unit-modulus
constraints at the IRS. In addition, an explicit objective is proposed to design a more
efficient phase shift and provide a better convergence. In addition, an explicit objective
is proposed to design a more efficient phase shift and provide a better convergence.

e The simulation results reveal that deploying an IRS can increase the system’s EE and
admission control of the loT users with a short packet length. Results also reveal an



80 CHAPTER 5. ENERGY EFFICIENT ADMISSION CONTROL IN IRS NETWORKS

interesting tradeoff region between EE and user admissibility.

In summary, to stress the novelty of the first part of this chapter, we restate that we
investigate a MISO MT C-enabled IRS system in this chapter. A multi-antenna AP transmits
information symbols to a set of loT users by taking into account short packet transmission.
We serve a target group of loT users, not any general user equipment (UE). We study a new
Multi-Objective Optimization Problem that has never been analyzed in the literature to the
best of the authors’ knowledge. In particular, the total EE, together with the number of loT
users that could be served, is maximized by jointly optimizing active and passive beamformers
at the AP and the IRS, respectively. An efficient algorithm based on AQO is proposed to
solve the main optimization problem iteratively. By the end of this chapter, we anticipate
offering valuable insights and guidelines that underscore the efficacy of IRS technology in
revolutionizing MTC systems. Our exploration is grounded in the belief that the strategic
application of the IRS can meet the exacting demands of modern loT applications.

As this chapter progresses, we delve into the evolution of MTC systems as they prove
beneficial to sixth-Generation (6G) network paradigms. This transition is characterized
by a heightened focus on supporting mission-critical applications that demand URLLCs,
spanning diverse sectors such as wireless industrial automation and healthcare. The unique
requirements of these applications — notably, their demand for exceptional reliability and
strict adherence to delay-Quality of Service (d-QoS) standards — present new and complex
challenges in radio access network design for MTC systems. These developments signal a
critical need for innovative approaches that can help the demands of URLLC.

This chapter is structured as follows: In Section 5.2, we introduce the system model of
an MTC-enabled IRS-assisted network finite blocklength transmission. Next, we explain
the practical overhead design and channel estimation issues in Section 5.3 In Section 5.4,
we propose our multi-objective maximization problem of total EE and admission control.
The proposed problem will be solved in the subsequent Section 5.5. The computational
complexity and the solution convergence of the MTC-enabled IRS-assisted network are
discussed in Section 5.6, with results and a brief summary outlined in Section 5.7 and
Section 5.8, respectively. In Section 5.9, we introduce the system model and outline the
proposed EE optimization problem of a URLLC network. The resource allocation algorithm
to solve the EE problem is detailed in Section 5.10 to enable URLLC service in an IRS-
aided network. In Section 5.11, we assess the performance of our novel rank-one relaxation
algorithm. Finally, Section 5.12 draws conclusions.

Notations: Matrices and vectors are denoted by boldface capital letters A and lower case
letters a, respectively. For a square matrix A, AT, A" rank(A), Tr(A), and ||A||. are trans-
pose, Hermitian conjugate transpose, rank of a matrix, trace, norm of a matrix, respectively.
Iy denotes the N-by-N identity matrix. diag(-) is the diagonalization operation. diag(A)
indicates a vector whose elements are extracted from the main diagonal elements of matrix
A. R{-} is used to denote the real part of a complex number. The absolute value of a
complex scalar, and the Euclidean norm of a complex vector are expressed by |-| and || - ||,
respectively. CN (u, C) denotes the distribution of a circularly symmetric complex Gaussian
(CSCG) random vector with mean p and covariance matrix C. The largest eigenvalue of
matrix X is denoted by Amax(X). @~1(-) stands for the inverse of the Gaussian Q-function.
Moreover, CM*N represents an M x N dimensional complex matrix and Vyexpresses the
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Figure 5.1: Energy efficiency and admission control of loT users in an MTC-enabled IRS-assisted
network with finite blocklength transmission.

gradient vector with respect to x. Finally, we express N x N positive semidefinite matrices
as AeSﬂ and read A = 0.

5.2 System Model of an MTC-enabled IRS-assisted net-
work

In our system model, we consider a scenario comprising loT users operating within an en-
vironment enhanced by an IRS system capable of supporting finite blocklength communi-
cations. This setup is depicted in Fig. 5.1 and includes an IRS equipped with N reflective
elements, an AP that has M antennas, and K loT users each having a single antenna. The
ensemble of IRS elements is represented by the set N/ ={1,..., N}, the array of AP anten-
nas by M ={1,..., M}, and the set of users by K ={1,...,K}. For each user k within this
network, a specific number of information bits, denoted as By, is allocated. These bits are
then encoded by the AP into a codeword comprised of my symbols. The symbol sequence
designated for user k is symbolized as zx[/], with / indexing the symbols within the sequence
L=1,2,...,mg. The formulation of the transmit signal emanating from the AP, intended
for sequential broadcast across the communication channel, can mathematically be written
as:

s[l] = Z upwizelll, VIeL, (5.1)

keK

where wy € CM*1 represents the beamforming vector for user k. This vector steers the
transmitted signal toward the intended recipient, thereby optimizing the signal's integrity
and ensuring efficient utilization of the available spectral resources. In our system model,
the channel links between the AP, the IRS, and the loT users are assumed to exhibit time-
invariant characteristics, indicative of a slow fading environment. This assumption allows us
to simplify our model by eliminating the time index /, thereby adopting a quasi-static flat-
fading channel. In this context, the wireless channels are considered to remain consistent
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throughout the duration of each transmission block, ensuring that the channel properties do
not fluctuate within the scope of a single codeword transmission. The presence of a user in
the system is indicated by setting vy = 1 for the k-th loT user, signifying that this user is
actively being served. Conversely, a value of ux = 0 implies the absence or dropping of the
k-th user from the system’s consideration in the current transmission block.

In our exploration, we account for a scenario wherein both the Channel State Information
(CSI) and the specific delay requirements are precisely known at the AP. This knowledge
base provides a strategic advantage, allowing for an in-depth understanding of the system'’s
performance capabilities under the assumption of perfect CSI. It also paves the way for
extrapolating insights into the theoretical upper-performance bounds for systems that op-
erate under conditions of imperfect CSI. This consideration is vital as it acknowledges the
real-world challenges and limitations encountered in wireless communication systems, where
perfect CSl is often unattainable due to dynamic environmental conditions and inherent sys-
tem noises. The significance of having accurate CSI and understanding delay constraints at
the AP cannot be overstated. It enables the formulation of more efficient resource alloca-
tion strategies, beamforming vector optimizations, and reflective surface configurations, all
tailored to meet the stringent requirements of loT applications. Moreover, this approach fa-
cilitates a comprehensive evaluation of how deviations from the ideal CSI assumptions impact
system performance, thereby offering a holistic view of potential performance thresholds. (see
[83, 136, 160, 165, 2])

The system defines the baseband equivalent channel responses to demonstrate the complex
interactions between the AP, the IRS, and each user. Specifically, H € CN*M represents the
channel response from the AP to the IRS. The channel from the IRS to user k is denoted as
h;y x € CV*1, and the direct channel from the AP to user k is represented by hp,, , € CM*1.
These definitions allow for a comprehensive description of the signal propagation paths within
the system. Furthermore, the IRS’s reflection-coefficients matrix is denoted as:

© =diag(B1€/*1, 8262, ..., B e/*N). (5.2)

This matrix modulates the reflected signal's properties, with 8, € [0,1] corresponding to
the reflection amplitude and a, € (0,27], Vn € N, indicating the phase shift imposed by
the IRS. This mechanism of reflection-coefficient modulation is central to the IRS's ability
to enhance the communication system'’s performance by optimally redirecting the incident
signals toward the intended loT users, thereby maximizing the system's overall efficiency
and reliability in a slow-fading environment.

To model the impact of both the direct and the IRS-assisted paths on signal transmission,
we define the equivalent channel link for each user k as follows:

hy £h!!  ®h+hf,,, Vkek. (5.3)

This equation, (5.3), encapsulates the aggregate channel effect by combining the direct
AP-to-user link and the AP-to-IRS-to-user reflected path, thereby creating a comprehensive
representation of the communication channel. Given this equivalent channel, the signal

IWe consider continuous phase shifts, as discrete shifts cause misalignment of IRS-reflected and non-
IRS-reflected signals, which degrades performance [157].
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received by each user k can be expressed as:

yk:ths+nké Z Ukthwka+nk,Vk€K, (5.4)
kel

where the noise at the receiver is modeled as an Additive White Gaussian Noise (AWGN)
variable, nyx, with zero mean and variance O'% and follows a circularly symmetric Gaussian
distribution, denoted by nx ~CAN (0, 07). This model takes into account the random nature
of the communication channel’s noise and its impact on the received signal. The MIMO
experienced by user k is thus formulated as:

||

3
Y uihlwi|"+ 02
i£kick

Vi = VkeK. (5.5)

This equation, (5.5), highlights the balance between the desired signal power and the aggre-
gate interference and noise, which is crucial for ensuring reliable communication. Addressing
the need for low-latency and high-reliability in wireless communication for MTC-type loT ter-
minals, the concept of finite and short blocklength transmission is introduced. This approach
is vital for applications requiring timely and dependable data exchange. The achievable data
rate for each user, accounting for the finite blocklength regime, is precisely approximated as
follows [163]:

Ri(ug, wi, ©) = F(ux, wi, ®) — G(ug, wg, ®), Yk € K, (5.6)

where
Fi(ug, wg, ©) =log,(1+k), Yk e K, (5.7)
Gl w0, ©) = Qe Ve, Y EK. (5.8)

Furthermore, the decoding error probability for each user is denoted by €, while the term
my specifies the length of the block used in the transmission, serving as a key parameter in
the context of finite blocklength communications. The concept of channel dispersion, Vk,
further enriches our analysis by quantifying the variability of the channel’s capacity and is
mathematically expressed as:

Vi =a?(1— (1+)?),Vk e K, (5.9)

with a = log,(e) acting as a scaling factor to translate natural logarithms to the base-2
logarithms, aligning with the bits measurement used in information theory. To ensure the
QoS for each user, relevant to the aspects of reliability, latency, and the requisite number
of received bits, we introduce a critical parameter: a minimum threshold data rate, th.
This threshold guarantees that the communication service meets the specified performance
criteria for each user, formalized as:

Ri(ug, wy, ®) > R Vk € K. (5.10)

This condition ensures that the system's design and operational protocols are aligned to
satisfy the users’ essential communication needs. Advancing our discussion to the domain
of EE, we define it as the quotient of the total system data rate by the overall network power
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consumption, measured in [bits/Joule]. This metric offers a holistic view of the system'’s
performance, balancing throughput against the energy expenditure:

Y Ri(uk, wi, ©)
Kkek

Eerf(Uk, wi, @) = :
‘ Y g llwgl|? 4+ Ps+ NPy + PAP
Kkek

(5.11)

where Ps represents the static power consumption, necessary for sustaining the basic circuit
operations of the IRS, and P, accounts for the dynamic power dissipation per reflecting
component, indicative of the energy required for adjusting the IRS elements. The term PCAP
denotes the circuit power at the AP, encompassing the energy consumption intrinsic to the
AP’s operation.

This comprehensive framework is designed to study the complex balance between achieving
high data rates and maintaining energy efficiency within the system, underlining the im-
portance of sophisticated resource allocation and system design to meet the demands of
modern wireless communication networks. In the subsequent analysis, our primary objective
is to formulate an optimization problem that aims to maximize the EE of the system with
an admission control mechanism. This formulation is carefully designed to accommodate
the minimum data rate requirements of loT users, particularly in scenarios characterized by
short packet lengths. The core challenge lies in devising a strategy that not only enhances
the EE of the network but also ensures that the QoS criteria, specifically in terms of data
rate thresholds for each user, are met under the constraints of finite blocklength communi-
cations. Before delving deeper the the optimization problem, let’s discuss the practicality of
such a design.

5.3 Practical Overhead and CSI Estimation

The domain of IRS channel estimation is split into two predominant methodologies, con-
tingent upon the IRS’s inherent configuration capabilities—specifically, whether the IRS is
equipped with sensing devices, such as receive RF chains. This distinction gives rise to two
classifications: semi-passive IRS and fully passive IRS. The delineation between these config-
urations significantly influences the approach and feasibility of channel estimation strategies,
as detailed in an array of studies [35, 181, 182, 183, 184, 157].

Semi-Passive IRS Channel Estimation

The semi-passive IRS model incorporates sensors that can directly acquire pilot signals from
information users or the AP, facilitating the direct estimation of their corresponding channels
to the IRS. Since IRS reflecting components and sensors are supposed to be in each other’s
proximity, the links between the information users or the AP and IRS elements can roughly be
reconstructed from the estimated CSls with sensors. The estimation process is carried out
using the strong spatial correlation between IRS elements and sensors, employing advanced
signal processing methods such as machine learning, data interpolation, and compressed
sensing. This approach culminates in the application of the channel reciprocity theorem to
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determine the CSI of the reverse channels, thereby providing a more direct and potentially
accurate channel estimation method.

Fully Passive IRS Channel Estimation

In contrast, the fully passive IRS lacks any form of sensing capabilities, rendering direct
channel estimation methods inapplicable. This means estimating the channels between
AP and IRS separately from the links between IRS elements and the information users
is not viable for a fully passive IRS. This configuration demands innovative strategies to
estimate the cascaded channels involving the AP, the IRS, and the information users. One
practical method involves sending training signals from the AP or information users and
varying the IRS elements’ reflection patterns over time to deduce the composite channel
characteristics. However, this method faces a significant hurdle due to the large number
of reflecting elements in typical IRS deployments, which could result in prohibitively high
pilot/training signal overhead.

To mitigate this challenge, the concept of IRS element grouping emerges as a pragmatic so-
lution. By grouping adjacent IRS elements into subsurfaces, the channel estimation process
is simplified to determining the effective cascaded channel for each subsurface rather than
each individual element. This strategy effectively reduces the channel estimation overhead,
making it a viable approach for fully passive IRS configurations. These differing methodolo-
gies underscore the adaptability required in channel estimation techniques to align with the
specific IRS configurations. While semi-passive IRS allows for a more straightforward estima-
tion process through its onboard sensors, fully passive IRS necessitates creative solutions to
overcome the limitations imposed by its lack of direct sensing capabilities. Both approaches,
however, are instrumental in advancing the potential of IRS technology to enhance wireless
communication networks, albeit through distinct pathways significantly. Generally, no RF
chain is needed at the IRS for cascaded channel estimation since channel estimation is done
at the AP. Otherwise, the IRS needs to be equipped with RF chains to estimate channels
directly.

In the context of IRS-aided communication systems, especially those operating under finite
blocklength regimes, the protocol for channel estimation and signal transmission is designed
to ensure system efficiency and accuracy. This process, as delineated in studies such as [64,
185, 54], highlights the operational dynamics between the AP, the IRS, and the user devices,
emphasizing the critical role of CSI in optimizing the system’s performance. Here's an
overview of the transmission protocol for an IRS-equipped system with receive RF chains:

Transmission Protocol Overview

1. Uplink Pilot Transmission: Initially, in a manner akin to Time Division Duplexing
(TDD) protocols seen in massive MIMO systems, all receivers (i.e., user devices) send
orthogonal pilot signals simultaneously to the AP in the uplink phase. This step is
pivotal for acquiring the necessary CSI without interference.

2. Channel Estimation: Upon receiving these signals, the AP estimates the channels
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between itself and the users (BS-user channels), while the IRS, equipped with receive
RF chains, independently estimates the channels between itself and the users (IRS-user
channels).

3. Information and Channel Feedback: Subsequently, the AP begins transmitting infor-
mation symbols to the users. Concurrently, it communicates the estimated BS-user
channels to the IRS using either optical links (suitable in indoor settings) or dedi-
cated wireless links (for broader contexts, like outdoor environments or when an IRS
controller is involved). This dual communication enables the IRS to perform joint
optimization of the active beamforming vectors at the AP and the phase shifts on the
IRS.

4. Optimization and Adjustment: The IRS controller, upon receiving the channel infor-
mation and requirements, transmits the optimized active beamforming vectors back
to the AP and adjusts the IRS’s phase shifts accordingly to maximize system perfor-
mance.

5. Cooperative Transmission: Finally, with the optimized parameters in place, the AP
and the IRS cooperatively transmit information symbols to the receivers, ensuring
enhanced signal quality and system efficiency through the joint beamforming effort.

Signaling Overhead and Channel Estimation Challenges

The signaling overhead in this IRS-aided system primarily consists of the complex num-
bers representing channel information that needs to be exchanged between the AP and the
IRS for effective optimization. Accurately obtaining the CSI at both the AP and the IRS is
paramount to harnessing the full potential of the IRS-aided system. However, practical chal-
lenges in achieving precise CSI necessitate reliance on channel reciprocity in TDD systems,
allowing for downlink channel estimation based on uplink channel information by varying IRS
reflection patterns. For multi-user systems, channel estimation overhead can be mitigated
by utilizing the IRS to reflect simultaneously transmitted pilot signals from all users through
the same IRS-AP channel, thus streamlining the process [183, 186]. Despite these advance-
ments, the chapter adopts a simplified approach for clarity, assuming sequential user channel
estimation in the uplink 2. The beamforming designs proposed within this chapter remain
adaptable to various channel estimation techniques, conditional on the availability of first and
second-order statistics of the channel estimation errors. This adaptability underscores the
robustness of the proposed methods in accommodating different operational environments
and channel estimation accuracies.

In the following paragraphs, we calculate the overhead for a simple scenario of not having
receiver noise at the AP. We avoid adding this part to our manuscript as it may hide away
the main contribution of our study due to limited space.

2|n this chapter, we assume that the downlink-uplink channel reciprocity holds; thus, the downlink channel
can be learned by estimating its counterpart in the uplink by varying the IRS reflection patterns [187, 188].
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5.3.1 Channel Estimation for an IRS-Assisted loT Users with Finite
Block Length

In line with the foundational assumptions established for our principal system model and
depicted in Fig. 5.2 (modified version of Fig. 5.1), our examination of channel estimation
revolves around a configuration where a set K single-antenna loT users, with a finite block
length communication capability, engage in simultaneous uplink interactions with an AP that
has M antennas. This interaction is significantly enhanced by the strategic deployment of
an N-element IRS, specifically introduced to amplify the communication efficacy across the
user spectrum. Within the scope of this model, a critical assumption is made regarding the
channel conditions, which are presumed to remain invariant over each fading block, typified
by a length of T symbols.

The dynamics of the communication channels within this setup are encapsulated through
several key definitions. The channel connecting each user k to the AP is precisely defined by
hg pu € CMx1 offering a clear depiction of the direct communication link. Concurrently, the
interaction between each user k and the IRS is characterized by hy ;j, = [hLLYJl,...,hLlfN]T €
CN*1 while the IRS-to-AP channel is delineated as R = [ry, ...,ry] € CM*N_ These channel
representations are foundational to understanding the communication network's structure
and the IRS's role within it.

The presence of the IRS introduces a unique dimension to the AP's received uplink signal
at any given time instant /, within the range 1 </ < T, manifesting as a composite of
both the direct signals emanating from the users and those reflected via the IRS. This dual
nature of signal reception underscores the impact of the IRS in mediating and enhancing
the communication flow between the users and the AP. A crucial component of the IRS's
operational mechanism is embodied in the reflection coefficients, 8, ;, which define the state
of each IRS element at any given time instant / within the observed coherence block. These
coefficients are binary, with a value of |8, ;| = 1 indicating an active (on) state of the nt"
IRS element, thereby enabling it to modify the phase of the incident signal, and |6, ;| =0
denoting an inactive (off) state. This binary framework for the IRS elements’ operation is
central to our understanding of how the IRS modulates the incident signals, enhancing the
system's overall communication performance.

Expanding upon our system model for IRS-assisted uplink communications, we incorporate
the conventional two-stage transmission protocol applicable within each coherence block,
extending over T symbols. This protocol characterizes the coherence block into two distinct
phases: a channel estimation phase that spans T < T symbols, followed by a data trans-
mission phase occupying the remaining T — T symbols. This structured approach ensures a
systematic allocation of resources towards both accurate channel estimation and efficient
data transmission. During the channel estimation phase, an arrangement is set forth where
each user k, across the spectrum of K users, is allocated a unique pilot sequence composed
of T symbols:

ar=lak1,...aks). k=1,..K (5.12)

Here, the pilot symbols, the norm of ay ;, is either zero or one, Vk, i, ensuring a straightfor-
ward modulation scheme for each pilot symbol transmitted by the users, Vk,i. One needs
to properly design user pilot symbols a,; and IRS reflection coefficients 6, ;'s so that the
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User 1 User 2 Access Point

Figure 5.2: Channel estimation for an IRS-Assisted loT users with finite block length.

AP can estimate the CSI. Therefore, we can propose a novel three-stage channel estimation
protocol for IRS-assisted multi-user communications based on [183, 189, 190].

Initial Stage: Direct Channel Estimation

The protocol initiates with the first stage, where 7; symbols, denoted by:
ag=lax1,...,axn]", k=1..K, (5.13)

are transmitted as pilot symbols. During this preliminary phase, the IRS assumes a passive
stance, with all its elements deactivated (6, ; = 0 for each element n, throughout the intervals
i=1,...,71). This strategic deactivation ensures the AP’s received signal is devoid of IRS-
mediated reflections, thereby isolating and accurately estimating the direct channels, hy p,,
from each user to the AP based on the received signals.

Second Stage: Reflective Channel Estimation of User ‘1’

Progressing to the second stage, a new set of 75 symbols, denoted by:
A=kt dkman] . k=1,..K (5.14)

is employed as the pilot sequence for each user k. Unlike the initial stage, here, all IRS
elements are activated (8,; =1 for all n, across i =Ty +1, ..., 71 +T2), setting the stage for
the reflective channel estimation. User "1’ is singled out to transmit non-zero pilot symbols,
while the pilot sequences for users '2' through 'K’ are nullified (a5 =0 for k=2,...,K).
This focused approach allows the AP, armed with the previously estimated hy p,, to adeptly
ascertain the IRS-reflected channels associated with user ‘1', symbolized as g1 = h'lL”nrl,Vn.
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Final Stage: Comprehensive Reflective Channel Estimation

The concluding stage introduces 73 symbols, denoted by:
A =[ak, i+ T+ 1 Akt k=1,.K, (5.15)

as the pilot sequence for each user k. In a departure from the previous stage, this phase
is dedicated to users ‘2’ through 'K', who transmit non-zero pilot sequences to the AP,
facilitating the estimation of the remaining IRS-reflected channels, thatis a'x =0. It appears
that (K —1)MN unknowns exist that need to be estimated in gk ,'s, kK > 2. Nonetheless,
the number of unknowns can be highly receded, drawing on the relationship between the
user-IRS-AP reflected channels of user ‘1" and the other users.

Finally, for the simple scenario without receiver noise at the AP, the minimum theoretical
overhead sequence length to perfectly estimate all the channel coefficients can be easily
calculated to be [183]:

K+ N+ max(K — 1, [(K — 1)N/M)). (5.16)

Specifically, it can be proved that K and N time slots are sufficient to estimate the direct
channels of all the users and IRS reflected channels of the user ‘1" in stage one and stage
two, respectively, while max(K — 1, [(K —1)N/M]) time slots are adequate for perfect chan-
nel estimation in the last stage. Surprisingly, the minimum overhead size reduces with M
generally. Such a result strongly contrasts with the traditional multi-user channel estimation
results without IRS, where the minimum overhead size is independent of the number of
receiving antennas at the AP [189, 190].

5.3.2 Discrete IRS Phase Shifts

The implementation of IRS in enhancing wireless communication networks introduces a
complex interaction between cost-efficiency and performance optimization. A critical aspect
of this interplay revolves around the realization that, due to hardware limitations, the phase
shifts facilitated by the reflecting elements of an IRS cannot feasibly exhibit continuous
variability [191]. Instead, these phase shifts must be quantized into discrete levels, a necessity
that aligns more closely with practical deployment scenarios and cost considerations, as
highlighted by numerous studies [192, 185, 193, 188, 194].

The transition from an idealized model with continuous phase shifts to a more realistic
framework incorporating discrete phase shifts brings forth certain performance implications.
Specifically, the quantization of phase shifts into a finite number of discrete states can lead
to a misalignment between the signals reflected by the IRS and those that bypass it, directly
reaching the receivers. This misalignment, in turn, manifests as a degradation in the overall
system performance.

The extent of this performance degradation, particularly in scenarios where the IRS comprises
a large number of elements (theoretically extending towards infinity, N — oo), is quantifiably
linked to the resolution of the phase shifters. The power loss associated with employing
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IRS elements equipped with b-bit discrete phase shifters can be mathematically expressed
as [188]:

b
1/(2?sin(%))2 (5.17)

Notably, the utilization of one-bit phase shifters results in a power loss of approximately 3.9
dB in comparison to a scenario with near-ideal continuous phase shifts.

This scenario unveils an exciting cost-performance tradeoff, wherein the resolution of the
phase shifters (2°) and the quantity of reflecting elements (V) emerge as critical variables.
Specifically, network designers are presented with the option to either increase the number of
reflecting elements while compromising on phase shifter resolution or, conversely, to reduce
the number of elements while opting for higher resolution shifters. This flexibility allows
for strategic system design choices that aim to balance the received power at the loT user
against the economic and practical realities of IRS deployment.

In essence, the parameters N and b serve as instrumental levers in the design and optimiza-
tion of IRS-assisted communication systems. By wisely selecting these parameters, system
designers can solve the tradeoffs between manufacturing costs, the complexity of the IRS,
and the desired level of communication performance. This nuanced approach to system
design implies the importance of considering practical hardware constraints in the pursuit of
enhancing wireless networks through IRS technology.

In our exploration of IRS-assisted wireless communication systems, we have bypassed the
incorporation of discrete phase shifts within the scope of our current study. This decision is
underpinned by a key consideration that directly influences the focus and outcomes of our
exploration in this chapter.

The inclusion of discrete phase shifts, despite their practical relevance and cost-efficiency in
real-world deployments, is deemed to offer minimal additional insight into the core objectives
of our study. Drawing upon comprehensive analyses provided in existing literature [192,
185, 193, 188, 194], it becomes evident that the adoption of discrete phase shifts would
invariably lead to a decrease in both the EE of the system and the number of users that
can be effectively admitted into the network. Moreover, these adverse effects are not
just speculative; they are quantifiable, with the extent of EE reduction and user admission
capacity being directly correlated to the granularity of the phase shift resolution and the
scale of the IRS deployment. Given this predictable outcome, we realize that the detailed
examination of discrete phase shifts would not significantly enrich the primary thrust of our
analysis of this chapter, which aims to determine the potential enhancements achievable
through IRS technology under idealized conditions.

5.4 Multi-Objective Problem Formulation of EE and Ad-
mission Control

In this section, we investigate the formulation of a Multi-Objective Optimization Problem
(MOOP) that seeks to concurrently maximize the total EE of the system and the number of
fairly admitted loT users. This ambitious goal necessitates a simultaneous optimization of
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the active beamforming strategies at the AP and the phase shifts at the IRS. The formulation
of this maximization optimization problem integrates a variety of constraints and objectives
aimed at refining the system’s performance in terms of EE and user admission control,
embodying a comprehensive approach to system optimization. Accordingly, this problem as
a MOOP can be mathematically formulated as follows:

P1: max_ &Eerr(uk, wg, ©) (5.18a)

uw,wg,©
max u

u,wg,© k;(: K

s.t.: Ri(ug, wi, ©®) > ukRE, Yk e K, (5.18b)
|©,0] =1, VYneN, (5.18¢)
Y ukllwill? < pmax, (5.18d)
Kkek
ux €40,1}, Yk e K. (5.18e)

where constraint (5.18b) ensures the reliability of each admitted MT C-type finite-blocklength
user, a key requirement for maintaining the integrity of communication within the system.
Constraint (5.18c) guarantees that the phase shift matrix, comprising N unit-modulus ele-
ments, adheres to the physical limitations and operational capabilities of the IRS, that is,
N unit-modulus elements in the diagonal phase shift matrix. Moreover, constraint (5.18d)
describes the transmission power budget limitation in which pmax is the maximum allowable
transmission power. This constraint is crucial for ensuring that the system's operations
remain within feasible and sustainable power consumption levels. Constraint (5.18e) indi-
cates that wy is a binary variable, where u = [u1, ..., uk] constitutes the optimization decision
vector, representing the admission status of all users within the system.

The optimization problem P13 is a non-convex MINLP due to the non-convexity of the ob-
Jective function and the constraints, as well as incorporating binary variables in the objective
and constraints. In general, finding an optimal solution for such a problem is impossible.
However, in the next section, we adopt an approach to find an efficient sub-optimal solution.

Despite the non-convex MINLP nature of P1, the subsequent sections will explore a method-
ological approach designed to approximate an efficient sub-optimal solution. This approach
will uncover algorithmic strategies to navigate the problem’'s complexity, aiming to identify
solutions that significantly enhance the system’s EE while maximizing user admission under
the specified constraints. Through this endeavor, we aspire to achieve a balanced and op-
timized operational paradigm for IRS-assisted wireless communication systems, particularly
in contexts characterized by finite blocklength communications and EE requirements.

3Please note P1 ensures user fairness for a subset of the users, i.e., the total number of admitted users.
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5.5 Proposed AO Solution

The optimization problem P1, characterized by its non-convex nature due to the highly cou-
pled optimization variables, presents significant challenges for direct solution methodologies.
Given the complexities inherent in P1, conventional optimization techniques may fall short in
offering feasible solutions. To tackle this complexity, we introduce a novel solution strategy
based on Alternating Optimization (AO), renowned for its efficacy in addressing problems
marred by non-convexity and variable coupling with manageable computational demands.

Transitioning to a Single-Objective Optimization Problem (SOOP)

Our methodology begins by transforming the MOOP into a more tractable Single-Objective
Optimization Problem (SOOP). This transformation is facilitated by the introduction of
weighting coefficients, which serve to merge the distinct objectives of the MOOP into a
unified objective function. These coefficients are carefully chosen to reflect the prioritization
or preference between the original objectives, enabling a balanced consideration of EE and
user admission within a singular optimization framework.

Decomposition into Sub-Problems

Following this consolidation into a SOOP, we further dissect the overarching problem into
two manageable sub-problems, each focusing on specific aspects of the optimization:

1. Active Beamformers and User Admission Optimization: The first sub-problem con-
centrates on optimizing the active beamforming strategies at the AP and determining
the admission status of potential users. To address the non-convexity and mixed-
integer nature of this sub-problem, we employ a combination of the Big-M method,
Semi-Definite Programming (SDP), and fractional programming techniques grounded
in the quadratic transform. This approach allows for an effective optimization of the
active beamformers while sensibly selecting the subset of users to be admitted, aligning
with the system’s capacity and EE objectives.

2. Phase Shift Optimization: The second sub-problem is dedicated to the optimization
of the IRS phase shifts, a critical component in maximizing the system's reflective
enhancement capabilities. The resolution of this sub-problem is achieved through the
utilization of the penalty method and the Successive Convex Approximation (SCA)
technique. These methods are proficient at navigating the unit-modulus constraints
associated with the IRS phase shifts, facilitating an iterative refinement process that
converges towards an optimal set of phase shift values.

Implementation and lterative Refinement

The AO approach operates by iteratively solving these sub-problems, progressively refining
the solution with each iteration. By alternately optimizing the active beamforming and user
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admission strategy and then the IRS phase shifts, the method effectively decouples the
originally intertwined variables, making the problem more tractable. This iterative process
continues until convergence criteria are met, indicating that further iterations yield negligible
improvements in the objective function.

Through this structured AO framework, we posit that a sub-optimal yet highly efficient
solution to Py can be attained. This solution strategy not only overcomes the formidable
barriers posed by the problem’s non-convexity but also ensures that the system's performance
is optimized across both EE and user admission dimensions.

5.5.1 First-stage: Optimizing w, with Fixed ©

At this stage, when we fix the phase shifts at the IRS, denoted by ®, our focus shifts to
optimizing the active beamforming vectors, wy, at the AP, alongside the admission control
decisions for the loT users. The utilization of SDP facilitates this optimization by allowing
us to represent the beamforming vectors in a semidefinite matrix form, with W), = wkw,’t’

and subsequently the channels, Hy = h¢hl!, Vk € K.

To effectively manage the product of the binary variable u, and the beamforming matrix
W), we introduce an auxiliary variable Wy. This is achieved through the big-M method,
which imposes additional constraints to overcome the complexities associated with binary
optimization variables. These constraints are outlined as follows:

0 = Wi = Pmaxlmti, Vk ek, (5.19a)
Wk—(l—uk)pmaxlmjijWk,VKEK. (5.19b)
In the subsequent phase of optimization, the binary nature of the variable uy is relaxed to a

continuous spectrum, facilitating a more tractable optimization process. This relaxation is
governed by the following constraints:

Y u— Y (uw)?<o, (5.20)
kekK kek
0<u <1, VkeKk. (5.21)

Also note that the data rate can be rewritten as: In the optimization of the active beamform-
ing matrices with the IRS phase shifts held constant, the data rate for each user, denoted
by Rx(Wy), is recast as the difference between two terms, Fr(Wy) and G (W) as follows:

Ri(Wi) = Fi(Wi) — G (W), Yk € K. (5.22)

Thus, the SINR 7y, crucial to determining the quality and reliability of the communication
link for each user, is subsequently formulated as:

Tr(he W)

Y Tr(h W)+ o7
ieK,iFk

Vk € K. (5.23)

Tk =

Given that the constraint (5.18b) in Py — belonging to the reliability constraint of each
admitted user based on their SINR levels — is inherently non-concave, we address this
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challenge by introducing auxiliary variables &x,Vk € K. These variables serve as a lower
bound to the SINR, facilitating a reformulation of the SINR constraint to accommodate
the optimization process. Consequently, the SINR in (5.23) is redefined in a manner that
enables its decomposition into a more tractable form, captured by the inequality:

fi (W)
0< & <y = 7K yrek, (5.24)
= k(W)

where fk(VVk) represents the numerator of the SINR equation, denoting the trace of the
product between the user's channel matrix and their corresponding beamforming matrix.
Meanwhile, gk(Wk) encompasses the denominator, accounting for the aggregate inter-
ference from other users plus the noise floor, 0%, for each user k. The nominator and
denominator of (5.24) can be expressed as:

fk(Wk) = Tr(thVk), Vk e K, (5.25)
gk(Wk)Z Z Tr(hkﬁf,‘)—l-O'i,VkGK, (5.26)
i€, i#k

respectively.

The optimization problem P; can now be restated with the introduction of a weighting
coefficient 0 < a < 1, which indicates the relative importance of EE versus user admission.
This weighted approach reinforces the multi-objective nature of our study, allowing for a
harmonized optimization that does not singularly prioritize one objective over the other
but seeks a balanced improvement across both dimensions. The constraints encapsulated
within the modified optimization problem denoted as P1g encompass a wide array of system
requirements, from ensuring minimum data rate thresholds for user connectivity to adhering
to the AP’s power budget. Moreover, the rank constraint on W) serves as a testament to the
solution’s feasibility within the physical constraints of beamforming technology. By exploiting
the lower bound in (5.24), SDP, big-M, and the introduction of coefficient 0 < o < 1 that
indicates the importance of the different objectives, the main optimization problem in the
first stage can be recast as:
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Pr:  max  aderr(Wi, tk)+(1—a) Z Uk (5.27a)
Ui Wi Wi &k keK
fi (W,
st:0<& < K( f), Vk € K, (5.27b)
k(W)
Ri(¢k) > RE,. Vk e K, (5.27¢)
rank(Wy) <1, Vk e K, (5.27d)
Z Tr(Wk) < Pmax, (5.27¢)
keK
0 = W = pmaxhmt, Vk ek, (5.27f)
Wi — (1= u) pmaxlm < Wi < Wi, Yk €K, (5.279)
Y u— Y (w)? <o, (5.27h)
kek keK
0<u<1, Vk €K, (5.27i)
where
Ri(€x) = Fi(&k) — Gk (&), Vk ek, (5.28)
in which
Fi(€k) = log(1+£k), Vk e K, (5.29)
1 32 )
G(€) = QM e[ = (1= (14+80) %) Yk e k. (5.30)
mq

P, is still a non-convex optimization problem. Addressing the inherent non-convexity of P,
presents a significant challenge, requiring sophisticated mathematical maneuvers to reach a
viable solution. In an effort to make this complex problem more tractable, we first reformu-
late the optimization problem into a canonical form amenable to DC programming. This
reformulation is a strategic step that enables us to apply convex approximation techniques to
the non-convex components of the problem, thereby simplifying the optimization landscape.

A key aspect of this approach involves addressing the constraint represented in (5.27b)
by employing the first-order Taylor expansion to approximate the non-convex terms, thus
converting them into a convex framework. Specifically, the constraint is re-expressed in
a manner that clearly expresses the relationship between the auxiliary variable &, and the
function gx(Wk), as follows:

kg (W) < (W)

= & A(Wi) < (W) — €0k, Yk €K, (5.31)
where _ _
AW =Y Tr(hW)), VkeK. (5.32)
i€, i#k

This representation in (5.31) shows the interaction between &, and the summation of the
trace operations across the non-self user beamforming matrices, denoted by Ax(Wj), within
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the system'’s operational context. The non-convex nature of (5.31), stemming from the
product of optimization variables, W; and &, Vi, k € KC, poses a considerable challenge.
However, we do this by decomposing this product into a DC form as follows:

E AR (W) = Pe(€x Wi) — Qi (&, W), Vk € K, (5.33)
where
- 1 - 2
Pk(gk,Wk) = 5 (karAk(Wk)) , Vk e I, (5.34)
Qi€ Wi) = %(&)2 +% (Ak(Wk))2 VkeK, (5.35)

in which P(£x, Wi) and Qi (€x, W) represent the convex and concave components, re-
spectively. By denoting Qx = {£x, Wik, Wk, ux} as a set of optimization variables, we have:

Uk(Q) = Pi(Q2k) — Qi (%), Yk € K. (5.36)

Thus, P> can be recast as follows:

To effectively address the challenges posed by the non-convex optimization problem P>, we
further refine our approach and introduce P3, a recast version that used the principles of DC
programming to facilitate a more tractable solution approach. Thus, the updated optimizing
problem can be given as follows:

Y Ri(&k)
P3:max o _kek (5.37a)
QY Tr(Wi)+ P+ NPy + PAP
kek
+(1-a) Z uk—>\< Z (uk—u,%)>
keK kek

s.t.: Uk(Qk) < fk(Wk, le) —Ekdi, Vk e IC, (537b)
Ri(€k) > ukRE,, Vke K, (5.37¢)
& >0, Vk e K, (5.37d)
rank(Wy) <1, Vk e K, (5.37¢)
Z Tr(Wk) < Pmax; (5.37f)
keK
0 = Wi = pmaxlmtix, Vk e K, (5.379)
Wk_(l_Uk)PmalejijWk,VKEK, (5.37h)
Y u— Y () <0, (5.37i)
kek kek
0<u,<1, Vk e, (5.37))

where X is a large constant that acts as a penalty factor.

The objective function in P3 seamlessly integrates the EE and user admission control objec-
tives, complemented by a penalty term regulated by X, to enforce user fairness and manage
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the binary nature of user admission decisions. The constraints in P3 are designed to en-
capsulate the requirements of the system. It should be noted that the objective function
and constraints (5.37b) and (5.37c) belong to the class of DC problems. Thus, the SCA
technique can be directly applied to approximate the non-convex problem in each iteration.
Indeed, the objective function and constraints (5.37b) and (5.37c) are approximated by a
more tractable one at a given local point. To this end, we use first-order Taylor expansion
to obtain a globally lower-bound of functions Gx(£x) and Qx(Qx), Yk € K. By denoting
V0 as representing the gradient with respect to [, the lower-bounds of these functions at
iteration t are respectively given by:

Gr(&x) < Gr(éx) = Gr(€k) +0{, Gr(€f)(€k —€R). Yk € K, (5.38)

Qi) = Qu(Qu) £ Qu(Q%) + 88, Qi (%) (% — )

+Tr (v;ivkc@k (92%) (Wi — W) ) VkeK. (5.39)
Therefore, we have:
Ri(€k) = F(€k) = Gk(&k).  VkeK, (5.40)
Uk(Qu) = Pe(Q) = Q(Q%),  VkeK. (5.41)
Then, P4 with any given local point at iteration t can be approximated as:
Y Ri(&)
Py max okt +(1-a) ) u (5.42a)
$ E kEK
—A(Z e~ (<u;>2—zu;<uk—uz>))
keK
s.t.: Uk(Qk) < i (W, ug) —ékai, Vk € IC, (5.42b)
Ric(€x) > ukRE,, Vk ek, (5.42¢)
&k >0, Vk € K, (5.42d)
rank(Wy) <1, Vk e K, (5.42¢)
Y Tr(Wi) < pmax (5.42f)
kek
0 = Wi = Pmaxlmtix, VkeK, (5.429)
Wi — (1= ) Pmaxhy < Wi <X Wi, Vk €K, (5.42h)
0<u <1, Vk e K, (5.42i)
where, _
E=Y Tr(Wi)+ P+ NPg+ PP (5.43)
kek

The optimizing problem P4 is still non-convex due to existence of a fractional term in the
objective function. A common approach to handling fractional objective functions, like
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the one in P4, is Dinkelbach’'s method. Dinkelbach’'s method, renowned for its efficacy
in addressing optimization problems with fractional objective functions, transforms such
functions into a more tractable subtractive form through the introduction of an auxiliary
variable. This transformation facilitates the iterative solution of the problem by alternating
between solving the transformed subtractive problem in an inner loop and updating the
auxiliary variable in an outer loop. While Dinkelbach’'s method guarantees convergence to a
global optimum under certain conditions, its applicability is limited to scenarios where the
transformed subtractive problem is convex and involves only a single fractional objective
function.

Nevertheless, suppose the transformed optimization problem in subtractive form is likewise
nonconvex. Consequently, only a suboptimal solution to the inner optimization problem can
be achieved with reasonable computational complexity, e.g., by employing the Weighted
Sum Mean Square Error (WSMSE) method or Successive Convex Approximation (SCA).
This is where the convergence of Dinkelbach's method cannot be assured. Furthermore,
Dinkelbach’'s method can only tolerate a single fractional objective function. For exam-
ple, Rk(Wy) in &err(Wy) is a sum of logarithms of fractional functions, and therefore,
Dinkelbach’s method cannot be applied.

Thus, we exploit the fractional programming procedure [195], which can handle the fraction-
al/multiplicative functions and even the function of fractional/multiplicative functions more
flexibly. Similar to Dinkelbach’'s method, fractional programming also introduces auxiliary
parameters to decouple the optimization variables and updates the optimization variables
and auxiliary parameters iteratively. However, the adopted quadratic transformation for
fractional programming is more flexible such that the resultant inner optimization problem
is usually convex. Therefore, the fractional programming method is guaranteed to converge
to a stationary point of the original optimization problem and enjoys a polynomial-time
computational complexity. In the following, we first present a solution methodology for the
optimization problem &.rr(Wy) based on the quadratic transformation [195, 196], which
can handle the severe variable coupling and can be readily used for developing a concrete
algorithm for resource allocation policy.

The objective function in P4 is in a format of concave-convex in which we use semidefinite
relaxation (SDR) to remove the rank-one constraint (5.27d). In order to solve P4, we use
the fractional programming method based on the quadratic transformation, which introduces
an auxiliary parameter to transform a fractional form function into an equivalent subtractive
form. To do so, we utilize the result of Corollary 1 in [195] as follows:

Corollary 1 Consider f as a non-decreasing function, then the sum-of-ratio problem

fn:
max fon(x) (5.44a)
X" Jonj(x)
s.t.: X€EX, (5.44b)
is equivalent to the following problem
maxXx 2mObj\/ fObj(x)_m%bngbj(x) (5.458)

X, mObj

s.t.: xe X, mop €R, (5.45b)
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where mop; is an auxiliary variable. The proof of the equivalence between (5.44) and (5.45)
is provided in [195]. When fop,;(x) is a concave function with respect to x in a convex set X,
the subtractive function 2mopj+\/fobj(X) — m(%bjgo/jj(x) would be a concave function with
respect to x. Consequently, the resulting problem in (5.45) is a convex optimization problem
for a given moy,;. Finally, we note that the optimal auxiliary variable is given by:

fob; (x)

79013].()() . (5.46)

Mopj =
Thus, we can develop an iterative algorithm with a polynomial-time computational com-
plexity to update x and moyp; alternatingly. However, the algorithm is only guaranteed to
converge to a sub-optimal solution of the main problem in (5.45) if the transformed problem
in (5.44) can globally be solved [195].

In the following, we demonstrate how to execute the quadratic transformation to achieve a
sub-optimal solution of P4. The problem P4 can be transformed into the following equivalent
optimization problem by adopting the quadratic transformation in (5.44) and (5.45):

Ps: max a(ZmObj /Z ﬁk(gk)—mébjE) (5.47a)
Q. mop; kel

+(1-a) Y u—x <ke,<”k_ ((uf)? - 2uf (uk_u;)))

ke

st Ue(Qu) < (Wi, ug) — €0z, Vke K, (5.47b)
Ri(€k) > ukRE,, Vk ek, (5.47¢)
& >0, Vk €K, (5.47d)
Z Tr(VVk) < Pmax: (5.47¢€)

ke
0 = Wk = pmaxl v, Vk €K, (5.47f)
Wi — (1= ui) pmaxlm = Wi 2 Wy, Vk € K, (5.479)
0<u <1, Vk € K, (5.47h)

where mpp; denotes the new auxiliary variable corresponding to the objective function of
the optimization problem in Ps and can be updated globally as:

k)e:/c Ric(€k)
Mobj = ——fF - (5.48)

The resulting subtractive function in (5.47) is concave with respect to the optimization
variables for given auxiliary variables. Generally, Ps yields a solution with a rank higher than
one due to constraint (5.27d). Therefore, to solve (5.47) for a given mop;, we use the
SDR to remove constraint (5.27d) 4. The resulting problem is now a convex Semi-Definite

4In essence, the quadratic transformation methodology provides a robust framework for tackling the
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Programming (SDP) problem that numerical convex solvers, such as CVX, can solve. Fi-
nally, the solution to the relaxed SDP problem is optimal if it satisfies constraint (5.27d),
i.e., rank(Wy) < 1.

To validate our methodology, we investigate the SDP relaxation’s tightness in the following
theorem.

Theorem 1 For a given pmax and moyp;, and by assuming that the channel vectors of all
users, hy, Yk € K are mutually statistically independent, the optimal beamforming matrices
W; of the relaxed version of the problem in Ps are rank-one, i.e., rank(Wy) <1, VkeK
with probability one.

Proof 2 The SDP relaxed problem is in Ps with respect to the remaining optimization
variables and satisfies Slater’s constraint qualification Therefore, strong duality holds, and
solving the dual problem is equivalent to solving the primal problem. Therefore, one can
prove Theorem 1 by exploiting the Karush—Kuhn—Tucker (KKT) conditions of Ps [197]. R

We can now rewrite the constraint in a mathematically tractable form via the DC method

represented as:
Wl —[W]2<0. (5.49)

Note that |[W||. = ¥;0; > [|[W ]2 = max;{c;} holds for any given W € HM*M 'where g; is

the i-th singular value of W. The equality holds if and only if W achieves rank one i.e.,
rank(W) =1 [2]. Now, we take the first-order Taylor approximation of |[W ||, as:

=¢(W)
IW o > WO+ Tr (Amar (WO ) Mo (W) (W =W)) . (5.50)

By resorting to (5.50), a convex approximation can be obtained for (5.49) which is given
by:
¢'(W) £ |[W]l.— (W) <0. (5.51)

As a result, by augmenting (]3t(W) to the objective function of Pg with 9 > 1 as a penalty
factor to penalize any non-rank-one matrix, the optimization problem in the (t+ 1)-iteration
can be written as follows:

optimization challenges presented in P4. By transforming the problem into Ps and iteratively solving for the
auxiliary variable moy;, we establish a concrete algorithmic methodology to achieving a sub-optimal solution
that effectively balances EE with the practical considerations of user admission and system constraints. This
approach illustrates the potential of fractional programming in optimizing complex communication systems.
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Ps : max o <2mobj Z Ri(€) — mébjE> +(1—a) Z I
§2 \ kex Kkex

~) ( Y o ((uf)? — 20 <uk—u;>)) —9(@ (W) (5522

kek

S.t.: Uk(Qk) < fir (W, ug) —$ko£, Vk e K, (5.52b)
Ri(€k) > ukRE,, Vk e K, (5.52¢)
€k >0, Vk €K, (5.52d)
Z Tr(Wk) < Pmax. (5.526)
kek
0 =X Wi = Pmaxdmtk, Vk ek, (5.52f)
Wi — (1= tk) pmaxlv = Wi X Wi, Vk €K, (5.529)
0<u <1, Vkek. (5.52h)

Consequently, Pg is a convex optimization problem and can be efficiently solved.

5.5.2 Second-stage: Optimizing ©

In the second stage of our optimization process, the focus is on the optimization of the
phase shifts at the IRS, denoted as ®, with the active beamformers Wy being held constant
from the previous stage. This stage of optimization specifically targets the maximization of
the data rate, a key performance indicator for the effectiveness of IRS-assisted communi-
cation systems. However, the optimization of @ is notably challenged by the unit-modulus
constraint, as expressed in constraint (5.18c), which presents the feasible set for the phase
shifts and significantly complicates the optimization process.

To address the complexities introduced by this constraint, we employ a strategic reparame-
terization of the problem. This approach involves defining a new vector v that encapsulates
the phase shifts at the IRS, with each element being the exponential representation of the
phase shift. Accordingly, we first define:

v=(e, . o) c cNx1, (5.53)
o=’ 7T e cCN+xT (5.54)

where T € C is a dummy variable with |7| =1, to accommodate the unit-modulus constraint
within our optimization framework in a more tractable manner. We note that the aug-
mented vector ¥ is defined to combine the phase shift vector v and the dummy variable 7.
By extending the dimensionality of the problem with the inclusion of T, we create additional
flexibility that can be exploited during the optimization process, thereby enhancing the po-
tential for finding a viable solution to the originally intractable problem. To facilitate the
solution design, we also define:

V= ,5,5/‘/ c C(N+1)X(N+1), (555)



102 CHAPTER 5. ENERGY EFFICIENT ADMISSION CONTROL IN IRS NETWORKS

which indicates that the matrix V' is semi-definite and satisfies rank(V) < 1. Thus, we
obtain:

~ |2 -
[(hf},@h -+, YWi|” 2TV XWX
=Tr(WiYy), Vkek, (5.56)
where
: T .« 17
X = [ (diag (nf] ) H)" b, ] Vk € K, (5.57)
Y =X VX, Vk € K.

In addressing the challenges posed by the non-convex data rate constraint and the new
objective function for the optimization of the phase shifts at the IRS, ®, we embark on a
strategic approach similar to that employed in the optimization of the active beamforming
vectors. This strategy involves the clever use of auxiliary variables, in this case, denoted as
(7). to facilitate the application of the SCA method, thus enabling the iterative refinement
of the solution towards optimality. The application of auxiliary variables serves to effec-
tively linearize the non-linear aspects of the optimization problem, thereby rendering it more
tractable. Specifically, the data rate for each user k, now denoted as Rk(7k), is expressed
as a difference between two terms: This means:

/?k(Tk) = Fk(Tk) — Gk(Tk), Vk e K. (558)

Given this foundation, the optimization problem concerning the IRS phase shifts can be
reformulated, taking into consideration the simplifications and assumptions applicable to this
stage of the optimization process. Specifically, contributions from user admission variables
U and total power considerations, which have been addressed in the preceding sub-problem,
are omitted from the objective function to focus solely on the optimization of @. Now, we
restate the optimization problem as follows:

P7:imax Y Re(7%) (5.59a)
VT kex

stV >0,V=0Q={"V} Vkek, (5.59b)
Ri(Tk) > ukRE,, Vk e K, (5.59¢)
Uk(Q) < (V) — €xo7, Vk e K, (5.59d)
rank(V) < 1. (5.5%¢)

Similar to Pg, P7 usually does not give a rank-one solution because of constraint (5.59¢).
By rewriting (5.59¢) as:
VI«—=lIV]2 <0, (5.60)

and owing to (5.50), a convex approximation, ¢*(V) <0, of rank-one constraint can be
made. Thus, supplementing ¢f(V) to the objective function of Pg with ¢ > 1 as a penalty
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Algorithm 4 Proposed Algorithm for IRS-Based Energy Efficiency and Admission Control
Maximization for loT Users With Short Packet Lengths

Input: Set méogj, Imax, and Dmax.

1: repeat
2. Calculate Gi(€x), Qr(€x, W), and ¢?(W) via a Successive Convex Approximation
(SCA) structure.

3:  Solve Pg for a given ®, and m(()dbjl) .
4 i |y T RO —mSy Y — E@) <
5: return Q = Q(9), Moy = mgdbjl)
\/ R
6: else Update mgdb)j = M end if.
7. d=d+1.
8: until d = Qmax B
9:  Calculate Gx(Y%) and ¢?(V') via an SCA structure.
10:  Solve Pg for the obtained W, uy, from the previous steps.
11:  i=i+1
12: until / = /1.

13: return 1, V.

factor to penalize any non-rank-one matrix, the optimization problem in the (t+ 1)-iteration
can be written as follows:

Pg:max Y Ri(T%) —((d°(V)), (5.61a)
V. Tk kex

S.t. ZTkZO,VEO,Qk:{Tk,V}, Vk e IC, (561b)

Ri(Tk) > ugRE,, Vk €K, (5.61c)

U(Q) < (V) — €02, Vk e K, (5.61d)

The optimization problem Pg, structured to address the phase shift optimization at the IRS,
©, with considerations for the non-convex constraints and auxiliary variables, mirrors the
analytical strategy employed in solving Pg. This mirrored approach underscores the versa-
tility of our algorithmic framework, which can overcome the complexities inherent in both
active beamforming and phase shift optimization within IRS-assisted M T C-enabled wireless
communication systems. The algorithmic implementation of this strategy is summarized
in Algorithm 4, a procedural blueprint that gives the iterative steps required to achieve
convergence to a locally optimal solution.
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5.6 Computational Complexity and Convergence Analysis

In the computational complexity and convergence analysis of our proposed algorithm, we
study the mathematical intricacies that define the computational demand of solving the op-
timization problems, specifically Pg and Pg. This analysis provides insight into the efficiency
and scalability of the algorithm, crucial aspects when considering its practical application.

The computational complexity of solving an SDP problem, which is central to our optimiza-
tion approach, is determined by several factors, including the size of the problem and the
desired solution accuracy. For an SDP problem characterized by m constraints and involving
an n x n Positive Semi-Definite (PSD) matrix, the computational complexity is generally
expressed as:

O (Vnlog(1/¢)(mn* + m?n® + m?)), (5.62)

where (>0 is the solution accuracy [2]. This formula shows the connection between the
problem size, the number of constraints, and the accuracy of the solution, offering a com-
prehensive view of the computational demand. Applying (5.62) to the optimization problem
Pes, with m= 6K+ 1 constraints and an n= M PSD matrix, yields the following complexity
order:

1
O1 = Olog <<> (6K +1) ((M)>®+ (6K +1)>°M?+ (6K +1)?), (5.63)
1
where (71 is the solution accuracy specific to Pg. This provides a quantitative measure of
the computational resources required to solve the problem, highlighting the impact of the
number of users (K) and the size of the active beamforming matrix (M). Similarly, for
the optimization problem Pg, which focuses on the phase shift optimization at the IRS, the
complexity can be formulated as:
1
0> = Olog <<> (4K +1) (N)*?+ (4K +1)2° N2 + (4K +1)?), (5.64)
2
with (> representing the solution accuracy for Pg. This expression determines the compu-
tational demands associated with optimizing the IRS phase shifts, emphasizing the role of
the number of IRS elements (N) and users (K).

The overall computational complexity of the proposed solution approach is thus a function
of the complexities of solving Pg and Pg, scaled by the number of iterations, liter, required
for the AO method to converge. This yields an aggregate complexity of:

Otot :O(/iter(ol+02))v (565)

offering a comprehensive overview of the computational demands of the algorithm across
both stages of optimization. Through this analysis, we gain valuable insights into the com-
putational implications of employing the proposed AO-based algorithm in IRS-assisted MT C-
enabled systems.

In the following, we also prove that our algorithm is convergent.

Proposition 2 The objective function value of P1 would be improved via this iterative al-
gorithm.
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Proof 3 Let us consider {W(f),u(f), @UH)} as the feasible solution set to Pg. Then, the
feasible solution set of Pg is a feasible solution to Py as well. Therefore, {WU) w0) @U)}
and {WUtD) U+ @UtD} are feasible to Py in the (j)-th and (j+1)- th iterations,
respectively. Now, we define fp (WU),uU), @), fo (©Y)), and fp, (W), ul)) as the
objective functions of problem P1, Ps and Pg in the (j)-th iteration, respectively. Thus, we
have

fpl(W(Hl)’u(jJrl)'@(Hl))

(2) 1)y & :

=, (OUT)) > £ (©1))

= fp, (WUTD 4UtD) @U)), (5.66)

where (a) follows the fact that p_rob/em Py is_equiva/ent to problem Pg for optimal W
and w, and (b) holds since fp,(®UT))>fp (V) according to sub-problem 2 (that is the
second-stage: Optimizing @ ). Similarly, for a given O, we have

fo, (WUHD) 4 U1 @)
(;) fP6(W(j+1)'uU+l)) (g) fp6(W(j),u(j))
= fo (W0 o), @U)). (5.67)

From the above two inequalities, we can conclude the following inequality holds

fe, (W(J+1) ' u(/”rl)’ @(,Hl))zfpl (W(J')’ u(j), @0)). (5.68)

Thus, we have shown that the objective function of Py is monotonically non-decreasing after

each iteration. | |

5.7 Numerical Results for the MTC-enabled IRS-aided Net
work

In this section, we demonstrate the proposed algorithm's effectiveness for maximizing EE
and loT user admission in IRS-enabled systems with short packet lengths. We consider a
simulation setup within a (100, 100) meter rectangular area. Here, the AP is positioned at
the coordinates (0,0) meters, and the IRS is at (50,0) meters, with the assumption that
all users are distributed randomly throughout this defined area. The model for path loss
employed in this study is 3gpp-complainant [55] and is given by: 35.3437.6log;q(dk)[dB],
with dj representing the meter-measured distance between the AP and loT user k.

For the purpose of achieving a fine-grained optimization, the AO method's convergence tol-
erance is set to 1072, and the thermal noise spectral density is —174 [dBm/Hz]. Moreover,
the decoding error probability, a critical parameter in the context of short packet commu-
nications, is standardized across users at €, = 10~/. Additional simulation parameters are
uniformly applied across all scenarios, including a total of K =20 loT users, M =5 antennas
at the AP, a packet length (mg) of 250 symbols, and a threshold data rate (R,) set at 1.6
[bits/Sec/Hz].
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Table 5.1: Simulation Parameters for Multi-user MT C-enabled IRS Systems.

Parameter Value

Area dimensions (100,100) meters

AP location (0,0) meters

IRS location (50,0) meters

Path loss model 35.3437.6log1o(dk) dB
AO convergence tolerance 1072

Thermal noise density —174 dBm/Hz
Decoding error probability, € 1077

Number of users, K 20

Number of AP antennas, M 5

Number of IRS elements, N 50

Minimum transmit power, pmax | 30 dBm

Block code length, my 250 symbols

Threshold rate, R, 1.6 bits/Second (Sec)/Hz

These simulation conditions are carefully chosen to reflect realistic operational environments
and constraints, providing a robust framework within which the performance and implications
of the proposed algorithm can be comprehensively assessed [165, 178]. The detailed setup,
as shown in Table 5.1, encompassing both the physical deployment of network components
and the algorithmic parameters, enables a thorough investigation into the algorithm’'s poten-
tial to significantly improve system performance in terms of EE and the capacity to support
a higher number of loT users within IRS-enabled wireless communication networks.

Fig. 5.3 illustrates the average EE as a function of varying maximum transmit power levels,
Pmax, With oo =1. To contextualize the performance of the proposed algorithm, we compare
it against three baseline schemes: The first baseline focuses on optimizing the network’s
data rate as per [165]. The second assumes arbitrary passive beamforming at the IRS, and
the third baseline envisions a scenario without IRS assistance (cf., Chapter 3). Across all
schemes, a common trend emerges where the EE initially rises with increasing pmax but
eventually plateaus. Specifically, in the first baseline scenario, a subsequent decline in EE is
noted, underscoring an insight that enhancing the data rate beyond a certain point, where
the system achieves peak EE, leads to increased overall network power consumption, thereby
diminishing EE.

This analysis further demonstrates the significant impact of phase shift optimization, illus-
trating that EE escalates with the increase of the reflecting elements at the IRS. Addition-
ally, Fig. 5.3 explores the correlation between the average number of admitted loT users
and pmax, When setting a = 0. An upward trajectory in user admission rates is observed as
Pmax €scalates, attributable to the network’s enhanced capability to support an expanded
user base while adhering to the strict quality requirements necessitated for loT users with
finite blocklength in MT C-enables networks.

Crucially, the figure shows the superior performance of the proposed scheme over the baseline
alternatives, attributed to the strategic deployment of IRS and the concurrent optimization
of active and passive beamforming matrices at the AP and IRS. This comprehensive com-
parison not only highlights the advantages of integrating IRS into the network but also
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Figure 5.3: EE and the average number of admitted users vs. pmax

illustrates the proposed scheme's efficacy in optimizing network parameters to achieve su-
perior performance metrics.

In a further evaluative step of Fig. 5.3, the proposed scheme's performance is benchmarked
against an idealized (and unattainable) performance upper bound represented by Shannon’s
capacity formula, achieved by setting the channel dispersion Vi in (5.8) to zero. This
comparison serves as a theoretical touchstone, emphasizing the practical efficiency and
effectiveness of the proposed algorithm in addressing the complex landscape of IRS-assisted
wireless networks for loT MTC-enabled applications. Through these comparative analyses,
the proposed algorithm'’s role in pushing the boundaries of what is achievable in terms of EE
and loT user admission in contemporary wireless systems is vividly observed.

5.7.1 Tradeoff between EE and the Average Number of Admitted
Users

Fig. 5.4 plots the tradeoff region between EE and the number of loT admitted users, across
a spectrum of values for the weighting coefficient 0 < a < 1, incremented in steps of 0.05.
This illustration brings to light a significant tradeoff between EE and user admission: as
EE is optimized, the number of users that can be admitted into the network conversely
diminishes. This phenomenon underscores a fundamental principle where the pursuit of
maximal EE inherently restricts the network’s ability to accommodate an increasing number



108 CHAPTER 5. ENERGY EFFICIENT ADMISSION CONTROL IN IRS NETWORKS

o] Du— : : :
—e— Proposed Solution N=80
A —&— Proposed Solution N=50
—6— Baseline Scheme
—6— Random IRS
8( —8— NO IRS
T  Dopgaadtee,
T 6
S
0]
2
S
~
(2]
+
S 4|
L
L
2
]
0 | | | | \ : 3
5 6 7 8 9 10 11 12 13 14

Number of Admitted Users

Figure 5.4: EE vs. the average number of admitted users for loT users with short packet lengths
in an IRS-assisted MTC network.

of users, establishing EE as a monotonically decreasing function in relation to user admission
rates. Another insight from this analysis is the distinct performance dynamics influenced by
varying a values. Specifically, when a is set towards higher values, the optimization leans
favorably towards EE, albeit at the cost of admitting a relatively limited user base. This
scenario implies that while the network may deliver high data rate services, it does so for a
narrower number of users. On the contrary, as a values are reduced, there is a noticeable
shift in optimization focus towards enhancing the number of admitted users. This adjustment
naturally entails a more inclusive network that can support a larger user base, adhering to
the minimum QoS standards required by users.

The modification of a effectively directs the optimization problem’s emphasis between max-
imizing EE and expanding user admission. Consequently, in scenarios where « is lowered to
prioritize user inclusivity, although the fairness within the network improves, it is observed
that EE performance experiences a decline. This exploration into the tradeoff region high-
lights the inherent challenges in balancing EE with user admission objectives and proves the
strategic role that the parameter o plays in navigating this balance.
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5.7.2 User Admissibility vs. User Serviceability

In this chapter, we aim exclusively towards enhancing the framework of an IRS-assisted
MT C-enabled system, specifically focusing on maximizing the number of users the network
can viably support. Central to our proposition is the strategic allocation of resources to those
users whom the system is capable of admitting, striving for fairness in distribution among this
subset. It is critical to understand that our algorithm does not purport to accommodate
every potential user®. Instead, our intention is rooted in determining the extent of user

support achievable, particularly through the lens of maximizing EE.

The above discussion presents two seemingly contradictory inquiries that cannot be concur-
rently addressed:

e The capacity of our designed network to fairly admit a certain number of users; known
as user admissibility.

e The network's ability to extend services to all potential users; referred to as user
serviceability.

In this chapter, we have answered the user admissibility question. It is imperative to recognize
that the attempt to maximize the total number of users the system can support does
not inherently guarantee the serviceability of all users. In scenarios where maximizing user
admissibility coincides with the capability to serve all users, such alignment represents a
special case rather than a standard expectation. This distinction underscores that, should the
network manage to provide service to every user, it effectively admits them all, establishing
a benchmark of user admissibility®. Further investigation of our system's design reveals
an embedded fairness in resource allocation, ensuring that admitted users receive equitable
consideration.

In what follows, we explain in more detail why our design is fair (i.e., we have inherent user
fairness) and explore the ways we could tackle user serviceability.

User Admissibility

Within the domain of MT C-enabled services, the necessity for short packet lengths inherently
aligns with the requirement for modest data rates among URLLC users. This foundational
aspect of MTC-enabled applications leads us to a preliminary conclusion regarding the eg-
uitable treatment of 'admitted’ M T C-enabled loT users within the framework of our study.
Given the unique constraints and needs of these users, fairness in resource allocation emerges
not just as an objective but as an intrinsic characteristic of our system design.

To critically assess and quantify this inherent fairness, our analysis employs Jain's fairness
index, a methodologically robust and universally recognized metric for evaluating fairness

5User fairness across time over all users is out of the scope of this chapter. We do not claim that we
support all users; rather, we want to answer the question how many users can be supported (in the milieu
of maximizing energy efficiency)

61f we can give service to all users, then we are admitting them all.
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in resource allocation scenarios [198]. Jain's fairness index is particularly relevant to our
discussion for its ability to deliver a quantifiable measure of how equitably resources are
distributed among users, including those within MT C contexts. The mathematical expression
for Jain's fairness index in our scenario is formulated as:

(X UkRk(Ukvwkv@))2
Kkek

| 7= .
T7Y ue ¥ (Re(uk, wy, ©))2
kel kel

(5.69)

This index operates within a range from 0 to 1, where a value of 1 means perfect fairness —
every user benefits from identical throughput levels — while a score of 0 denotes absolute
unfairness. Intriguingly, a fairness index value of 0.5 is indicative of a perfectly equitable
resource allocation among the users.

The crux and primary innovation of our study pertains to the maximization of the overall
number of admitted users while concurrently guaranteeing a minimum data rate for each
accepted user. In particular, the proposed problem formulation allows a network designer to
access all pertinent parameters, of which the most salient are the aggregate / achievable
count of admitted users and the energy efficacy provided through our methodology

The essence and novelty of our investigation lie in the strategic objective, as in Py, to
enhance the total number of users that can be admitted into the system, ensuring si-
multaneously that each admitted user is guaranteed a minimum requisite data rate. This
multi-objective role is well thought of in our problem formulation Py, which equips network
designers with the capability to evaluate critical system parameters effectively. These in-
clude the collective number of users that can feasibly be supported by the system, and the
level of EE achieved through the implementation of our proposed methodologies. Through
this approach, our study not only addresses the question of user admissibility but also sheds
light on the broader implications of resource allocation fairness, particularly as it applies to
MT C-enabled loT users within an IRS-assisted communication framework.

The implication of our findings is that by employing Jain's fairness index, fairness can be
ensured while achieving the highest possible number of admissible users. Specifically, our
results demonstrate that it is feasible to optimize resource allocation in a communication
network such that each user receives an equitable share of resources while concurrently
maximizing the total number of admissible users. In essence, our study establishes the
possibility of achieving both high system performance and fairness.

By examining the Pareto efficiency graph depicted in Fig 5.5, it is possible to infer that nine
users can be fully admitted into the network, with an EE of approximately 8 [bits/million
Joule (mJoule)/Hz]. Notably, the (8,9) point lies on the Pareto optimal boundary of the
graph, signifying that any point inside the Pareto region represents a feasible solution to the
optimization problem, albeit non-optimal.

Figure 5.5 displays the dynamics between the fairness indices achieved through our proposed
scheme and the number of users, particularly when the fairness constraint, as defined by
(5.69), is integrated into the primary optimization framework Py. The figure illustrates a
notable trend: with the increase of users, the arena of competition becomes increasingly
fierce. This phenomenon is attributed to the inevitable rise in users facing less favorable
channel conditions and those designated with lower priority levels, who subsequently face
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Figure 5.5: Jain's fairness index versus the total number of users in for loT users with short packet
lengths in an IRS-assisted MTC network.

challenges in securing access to communication services. The ambition is to enhance the
total number of users the system can feasibly support. It is imperative to acknowledge,
however, that while our focus is on maximizing user admission, the aspiration to optimize
fairness across the board or to guarantee service provision to every prospective user lies
beyond our design objectives. Despite this, our analysis reveals a compelling insight: the
algorithm we propose does not overlook fairness entirely but rather ensures a degree of
equity among the set of users it admits.

This balance illustrates a deliberate design consideration within our algorithm, aiming to
strike a compromise between broadening user admission and maintaining fairness among
those admitted. Such a compromise is reflective of the complex trade-offs inherent in
optimizing communication systems, especially those with the challenges of accommodating
a growing user base while striving to uphold a pinch of fairness.

User Serviceability

To address the challenge of ensuring service to all users within a network, a shift in perspec-
tive is required, moving away from merely maximizing the total user count. This transition is
crucial because in a scenario where all users are guaranteed admission, the goal of maximiz-
ing user numbers loses its relevance. The issue of user serviceability, highlighted earlier, can
be approached from multiple angles, drawing upon existing strategies within the literature
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to ensure service distribution over time.

One potential strategy involves redefining the optimization problem based on a Max-Min fair-
ness methodology. This approach focuses on equalizing the minimum service time necessary
for each user to receive adequate service, a concept that has been thoroughly investigated
in prior studies, such as in [199]. Alternatively, adopting a Medium Access Control (MAC)
layer perspective offers another pathway to achieving temporal user fairness. By assigning
time slots (or minislots) to MTC-enabled loT users, it becomes feasible to ensure that var-
ious user types are authorized their respective services in alignment with MT C-enabled loT
constraints, as explored in [200].

The Max-Min fairness approach provides another distinct viewpoint on network manage-
ment, diverging from the perspective centered on the optimization of total user admission.
Moreover, our current investigation, which seeks to optimize user admission alongside EE at
the Physical (PHY) layer, lays a foundational framework that can be effectively integrated
into MAC layer protocols. This integration is crucial for ensuring cross-temporal fairness
among all user types, as demonstrated in Fig. 2 of[200]. Such synergy between the PHY
layer algorithm and MAC layer scheduling underscores the applicability and relevance of our
study within broader communication system architectures, emphasizing the contribution of
our findings to enhancing network efficiency and fairness.

In summary, while our study deliberately sidelines the consideration of user serviceability to
maintain a focus on maximizing user admissibility, it presents a comprehensive framework
for understanding and addressing the complexities of equitable resource allocation. The
insights gleaned from our analysis not only contribute to optimizing network performance
but also underscore the potential for implementing our findings within integrated PHY and
MAC layer strategies, thereby reinforcing the importance of our contributions to the field.

5.8 Insights and Practical Implications of MTC-enabled
services for IRS-aided Networks

Thus far, our exploration within this chapter has centered around MT C-enabled, IRS-assisted
networks, focusing particularly on a DL multi-user MISO configuration with short packet
transmission. Our journey took us through the complexities of designing resource allocation
strategies that optimize active and passive beamforming, with the goal of enhancing EE
while also increasing the admittance of 10T users, all within the scope of meeting stringent
QoS criteria for each MT C-enabled user. Given the non-convex nature of the core problem,
our approach was hierarchical and structured; we initially segmented the main problem into
two distinct sub-problems, active and passive beamforming, before delving into the SCA
and penalty-based methodologies to untangle the intricacies of beamforming matrices. Our
simulations illustrated the key role of the IRS in improving system EE and facilitating QoS
compliance for users constrained by short packet lengths, marking an improvement over
traditional approaches.

In the ensuing sections of this chapter, we introduce and study Ultra-Reliable Low-Latency
Communication (URLLC) systems, a facet of modern wireless communication. URLLC
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can be thought of as an essential feature for various MTC services, including a myriad of
emergent and mission-critical applications [201]. In URLLC systems, reliability, and minimal
latency are of significant importance, which is not necessarily the same as conventional
requirements in MTC scenarios. This shift is necessitated by the evolving demands of
next-generation wireless systems. We develop a system model and analysis of how URLLC
services can benefit from IRS. Before that, let's talk about URLLC in a bit more detail.

5.8.1 Ultra-Reliable Low-Latency Communication (URLLC) in IRS-
aided Networks

The integration of IRS into the communication system helps to enhance reliability, reduce
packet retransmission, and minimize delay. Thus, the IRS can be a potential and cost-
effective solution to realize URLLC. To facilitate low-latency communications, the packet
size in URLLC must be extremely small [161]. This mode of operation, referred to as short
packet transmission’, does not align well with conventional Shannon's capacity theorem,
which assumes that coding is performed on an infinite blocklength [8]. However, URLLC
functions within a finite blocklength regime, which requires a different approach. Polyanskiy
et al. in [163] determined the achievable regime as a complex function of the Signal-to-Noise
(SNR) ratio, blocklength, and the probability of decoding errors.

As data traffic demand increases, so does the energy consumption of wireless networks.
Therefore, EE becomes a pivotal aspect of future network design [3]. In [178], Singh et al.
sought to maximize EE in downlink multi-user Multi-Input Single-Output (MISO) networks
by jointly optimizing precoders at the Base Station (BS) and the Decoding Error Probability
(DEP) with finite blocklength codes. Further, Nasir et al. developed a unique class of
conjugate beamforming and a new path-following algorithm to enhance URLLC rates and
EE in cell-free massive Multi-Input Multi-Output (cfm-MIMO) settings in [202]. However,
[178] and [202] only consider the downlink system, while a more comprehensive full-duplex
system is not accounted for. Ghanem et al. closed this gap in [203, 165] and aimed to
maximize system EE through a joint effort of power control and sub-carrier assignment in
downlink and uplink communication, ensuring the Quality of Service (QoS) requirements for
users in both directions are met.

Nonetheless, not all these strategies, as referenced in [3, 178, 202, 203, 165], are exclusively
applicable or can be extended to IRS-assisted URLLC services. As such, it is necessary to ex-
amine IRS-assisted URLLC networks in their own context. Hashemi et al. authors presented
the performance analysis of the average achievable data-rate and error probability over an
IRS-aided URLLC transmission with/without phase noise in [168]. Considering non-linear
energy harvesting, the end-to-end performance of the IRS-assisted wireless system was ana-
lyzed in [204] for industrial URLLC applications, and the approximate closed-form expression
of the block error rate was derived. Xie et al. studied an IRS-assisted downlink multi-user
URLLC system and jointly optimized the user grouping and the blocklength allocation at
the BS, as well as the reflective beamforming at the IRS for latency minimization in [90].

The majority of current research in the field falls still short of thoroughly examining the

7"We extensively use this in the previous sections of our studies on MTC-enabled services.
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advantages of utilizing the IRS platform in URLLC networks with the aim of optimizing
EE [205, 8, 111, 167, 3, 206]. The IRS can assist URLLC systems in lowering the antic-
ipated worst-case Signal-to-Interference-plus-Noise Ratio (SINR) in applications requiring
low latency. Furthermore, it would be intriguing to assess whether the Quality of Service
(QoS) is upheld in the context of short packet transmission in an IRS-supported URLLC
system. In this chapter, we aim to design a resource allocation algorithm for a downlink
URLLC-enabled IRS system, wherein a multi-antenna BS serves multiple single-antenna
URLLC receivers via a smart, reconfigurable reflector. As a result, our primary focus in
the following sections is on enhancing the total EE in the proposed network, which offers
valuable insights into the system’s design. To extend our study of MTC to URLLC, we do
the following:

e We formulate a non-convex EE problem, subject to the minimum required data-rate
for each URLLC user and unit-modulus constraints at the IRS.

e We employ an AO algorithm to solve the EE maximization problem, optimizing both
active and passive beamformers at the BS and IRS, respectively. Using an innovative
iterative rank relaxation and SCA method, we approach the IRS rank-one constrained
problem. We then apply the Dinkelbach algorithm and a penalty-based approach to
obtain a suboptimal solution.

e We use simulation to indicate that the integration of IRSs and a multi-antenna BS
enhances the performance of URLLC users with short packet transmissions.

Building upon the foundation of MTC-enabled IRS-aided networks in our earlier discussions,
we now introduce a system model incorporating URLLC services in an IRS-assisted network.

5.9 URLLC-enabled System Model and Problem Formula-
tion

We consider a downlink MISO multi-user URLLC-enabled IRS-assisted system, represented
in Fig. 5.6, which comprises an IRS with N elements, a BS equipped with M antennas, and
K users, each with a single antenna. The group of IRS elements, BS antennas, and users
are respectively denoted by the sets N ={1,...,.N}, M ={1,...M}, and K={1,...,K}.
Additionally, we suppose that By bits of information are assigned to user k. In this setup,
the BS transforms these information bits into a block code in time slot /, characterized by
a length of my symbols. We decode the k-th user block code as Xk ;, with / being part of
the set £L=1{1,2,...,my}. Following these assumptions, the transmission signal emanating
from the BS can be expressed as

s(]= Y, wkwrVIEL, (5.70)
kel

where wy | € CM*1 represents the beamforming vector for user k. The channel links exhibit
time invariance (slow fading). Additionally, we assume that the BS possesses full access to
the Channel State Information (CSl) and has comprehensive knowledge of all URLLC users’
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User 3

User 1 User 2 Base Station

Figure 5.6: lllustration of a multi-user IRS-assisted MISO downlink network comprising one BS and
K URLLC users employing finite block length transmissions. h is the channel matrix between the
BS and the IRS, hjrs 1 denotes the channel response vector from the IRS to user 1, and hgs 1
indicates the channel between the BS and user 1.

delay requirements. As a result, our proposed algorithm is positioned as the theoretical
upper limit of performance when contrasted with strategies devised under the constraints of
partial or no CSI availability [83, 165, 174, 9]. The baseband equivalent channel responses
for BS-to-IRS, IRS-to-user k, and BS-to-user k are denoted as h € CN*M  hgg\ € CN*1,
and hgs k € CMx1 respectively. Also, we define the matrix of reflection coefficients at the
IRS as W, = diag(ary j&/P1, ap e/®21, . ap i @/®n0), where a,; € [0,1] and ¢, € (0,27],
Vne N, VI € L are the reflection amplitude and phase shift of the n-th reflection coefficient
at the IRS during time slot /, respectively. Now, by defining the combined channel link seen
by the k-th URLLC user as:

hy 2hfts  ®h+hgs,, VkeKVIeL, (5.71)
the SINR of that user can be expressed as:
hHw |?
M= | kH""} 5 VkeK.VIeL, (5.72)
Y hwi] +of
i#k, i€

where ai represents the noise variance received at user k. In the context of URLLC systems,
ensuring low-latency and high-reliability wireless communication requires finite and short
blocklength transmissions. Thus, an accurate estimate of the achievable data-rate for each
user can be delineated as follows [163]:

Ric(wi,, 1) = U (wi 1, ¥)) = Vi(wi,1, ¥)), Yk K, (5.73)
where

U (wi,, ) =Y logo(1+T ), Yk €K, (5.74)
leL
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Viwi,, ¥) =Y Biv/Drs, Vk ek, (5.75)
leL
QM (e)
Bk = W Vk e K. (5.76)

Here, €, refers to the decoding error probability, my, as defined earlier, is representative of
the blocklength, and Ay ; the channel dispersion, computed as:

1
A= (log,e)?[1————— | VkeK,VIeL. 5.77
k1= (logs e) ( (1+|_k’/)2> ( )

To ensure users’ Quality of Service (QoS) regarding the received number of bits, the relia-
bility, and the latency, a minimum data-rate denoted by Rmin,x Which should be satisfied for
each user as follows:

Ri(wk,1. ¥1) > Ruink, Yk € K. (5.78)

Next, we describe the EE as the ratio of the total system data-rate over the associated
network power consumption in [bits/Joule/Hz]:

Y Ri(wek,, )
Kek

Y Y kPPt NPy PBS'
kekleLl

Nerr (Wi, ¥)) (5.79)

where Ps represents the static power consumption necessary for sustaining the basic circuit
operations of the IRS, while P, is the dynamic power expended per reflecting component,
and P. denotes the circuit power at the BS.

Following this, we begin by formulating a resource allocation problem to optimize energy
efficiency while accounting for feasibility constraints in a downlink MISO IRS-aided URLLC
system with short packet transmissions. Subsequently, we propose an iterative algorithm
to work out this optimization problem. Our objective is to maximize the total EE of the
system under consideration. We aim to achieve this by concurrently optimizing the active
beamformers at the BS and the phase shifts at the IRS. Consequently, the task of maximizing
the overall energy efficiency of the system can be mathematically articulated as follows:

' )

Py : max Nerr(wk,1, ¥))
!

Wi,

s.t. i Ri(wk, 1, ¥1) > Rmin k. Yk € K, (5.80a)
|0 =1, Vne N VIEL, (5.80b)
Z Z ||wk,/||2 < Pmax; (5.80c)
leL ke
wg,1 =0, Vk e IC,VI > Ty, (5.80d)

\

where (5.80a) is the minimum data-rate requirement (Rmin k) of each URLLC user k. The
constraint (5.80b) seeks that the diagonal phase shift matrix contains N unit-modulus el-
ements along its main diagonal. The constraint (5.80c) defines the limitation of the BS
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transmission power budget, with pmax signifying the maximum permissible BS transmission
power. The constraint (5.80d) is imposed to safeguard the real-time URLLC service func-
tionality, ensuring that user k receives service within the first T, time slots to satisfy its
delay requirements.

Given the non-convex nature of the objective function and constraints, the optimization
problem Pg is non-convex and NP-hard. As a rule, finding an optimal solution for such
problems is typically non-trivial and out of the question. However, in the following section,
we employ a strategy to find an efficient polynomial time suboptimal solution.

5.10 Proposed Solution: A Novel Rank Relaxation Method

Problem Pg poses a significant challenge due to its non-convex nature and the strong cou-
pling of optimization variables. As such, there is a lack of a standard, well-structured
method to solve Pg. In response to this, we propose an Alternating Optimization (AO)
approach based on Successive Convex Approximation (SCA) with reasonable computational
complexity aimed at securing a suboptimal solution. This AO approach involves two distinct
non-convex sub-problems. The first sub-problem focuses on determining the optimal active
beamformers at the BS, while the second sub-problem concentrates on optimizing the phase
shifts at the IRS. For the latter, we incorporate a modified objective function to eliminate
feasibility concerns. In more specific terms, we first optimize the beamforming vectors at
the BS and then design the phase shifts at the IRS alternatively, taking into account the
previously found beamforming vectors at the BS. Moving forward, we adopt the SCA tech-
nique to initially derive a lower bound for Ry (wy j, ¥/), which will subsequently be utilized
when addressing each subproblem.

Lemma 2 Let (j) denote the subscript associated with the feasible solution procured in the
J-th iteration of the SCA algorithm. A lower bound approximation of Ry(wy ;, ¥,) is given

by:

Ric(wi,1, ¥)) > Ri(wie,, ) = Y ﬁﬂi(wk,/,@/), (5.81)
leL
RO (@it 1) 2 v by + 20k R V) aft +o?
(Wi, ) Y, 10k, 1 +20k,1 Z a7 h %k T 0k
ik, ek

) _H
Ak, 1Y% k.1

+ &kl
(bo) ‘ak K, /‘ )

VkeK\VieL, (5.82)

+ 2R
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where
aki =hllw; Vi ke KVIeL, (5.83)
b= Y [nfwi |+ vk ek VieL, (5.84)
ieK
| 2
P 09226) VkeK.VIEeL, (5.85)
o/ (r) " +2rd)
Y I G )
Yk, | = 0] Vke K \VlieLl, (5.86)
b
<b(J) ‘akk,’ ) kil
2
’C‘Ej)k /‘

£ = log, (1 + r(kJ),)
( ‘ak K, /‘ )
Bk <2A5<j,)/ + (logs €) ) O, ,b(J)
o 2(1+rd)

In the (j+ 1)-th iteration, the data-rate function Rk,(wk/ ) exh/b/ts concavity with
respect to each variable, reaching its boundary at the point (“’/93 ‘Il )

VkeK,VieL. (5.87)

Proof 4 According to the data-rate equation in (5.73), we can drive a lower bound on
Uk (w1, W) and an upper bound on Vi (wy 1, ®;). In order to approximate the non-convex
logistic function, we utilize the MM algorithm [207]. This is achieved by constructing a
surrogate function using a first-order Taylor approximation, which is expressed as follows:

Ue(@) ~ U (@) + VU (a¥).(a—aP)) 2 (a), Vk € K, (5.88)
Vi(b) = Vi(bY) + Vp Vi (bY)).(b —bY)) £V (b), VK € K, (5.89)
where a,b = {wy,;, ®,} and j is the iteration number. Moreover, a¥) and bY) denote the

solutions of the problem at (j)t" iteration. Based on (5.83)-(5.87), we first rewrite the
SINR formula as follows:

2
9.k S Yk eK,VIeL (5.90)

bk, —lak, kil

Equivalently, we can rewrite the channel dispersion as:

Ay = (log, )2 1—<bk’b|:‘lk“> VkeK,VleL. (5.91)
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Subsequently, we have:

Z/[k Wil ‘I’/ Zlog ( ‘a;kl| >

leL kil
= Zuk,l(wk,/,‘l'/), Vk e K, (5.92)
ieL
Vw1, ¥1) = Y B/ Dr.s
leL

= ka',(wkv/,lIl/), Vk e K. (593)
leL

Thus, employing the MM technique allows us to derive the following lower limit for Uy (w1, ®):

‘ao) ‘2

k. k.l
U, ((wi,1, ¥) > — >~ b1
b0) <bo> 0 ‘)

kk/

0 LH
4R (Ja)”’a"k’2 VkeK.VIeL, (5.94)
by ‘akkl’

where )
a(J)
K.kl

&, =log, <1+FU) ” (bm ‘ ‘>
k.l Op k.l

VkeK,VIeL. (5.95)

Similarly, we use the first-order Taylor approximation to derive the following upper limit for
Vi (w1, ®):

log, e 1
Vi (wk, 1, ¥) < Bk ( = )Jﬁk (1_(1+F )2>,
’/Ak,/ K,
Vke K,VlelLl. (5.96)

Now, by defining Zx,; = 1/(1+Ty ;) and according to [3], we can rewrite:

1 =2
— == 5.97
(14T)? ! (5.97)
> 022, - (Z0)? (5.98)
2 1

B (1+F(kj,)/> (1+T) (1+F(i',)/)2,W€’C’WE£Y (5:%9)

where the inequality holds due to convexity of (Zx.;)%. The term 1/(1+Ty,) in (5.99) is
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non-convex due to its fractional form. We rewrite this term as follows and then apply MM:

(@) 0 2
1 _ bk — \akyk,/|2 S (bk,/ - ’ak,k,/’ ) br,s
T e T
I,#kiielca?ﬁ,/aﬁ’k,/ﬂLoi
+2%R : 0 NVkek\VleLl, (5.100)
bk/

where the inequality holds due to the convexity with respect to the a; ,; and by ;. Thus, we
arrive at an upper bound for as follows: Vi ((wk.;, ¥):

(log, €)?Bk (b%)/ - ‘a%,/ 2) b

Vie(wi,), ) <

- - N2
(r0y2 +2r0) 6]
i#kZ[E,CaffZ,/aﬁ’kﬁoi
—2R{ X 5 +ef  Vkek,VieL,
bk,/
(5.101)
where
o (289) + (1092 €)2) B
k. = -
2\/8Y)
| 2
+ (loga &)” Bi VkeK,VleL. (5.102)

. . 2 .
2(1+1)/(r8) " +2rd)
Ultimately, the lower bound of the data-rate function in (5.73) can be approximated as:

Ric(wi, ¥) 2 Y U f(wi,, ®) — Vi (wi, 1, ®)),Vk € K. (5.103)
ie

This completes the proof. |

The lower bound presented is more manageable compared to the original data-rate function
Ri(wk., ®)) in (5.73). However, this bound still involves coupled optimization variables.
To address this, we implement the AO approach. Specifically, we optimize wy,; and ¥, by
alternatively refining each variable while keeping the others constant.

5.10.1 Step One: Optimizing €2, ; with Fixed W,

In this sub-problem, we presume that the passive reflecting elements at the IRS, i.e., ¥,
are fixed, and we proceed with designing the active beamformers, wy;, at the BS. By
employing the principles of Semi-Definite Programming (SDP), we derive the following:
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Q= wk,/w,’j, S Sf\(’ and H, = hkh,’j € Sﬂf, Vk € K. Leveraging on the aforementioned
SDP relaxation, we can rewrite the SINR in (5.72) as follows:

Tr(thQky,)

Yy Tr(thQ/'/)-i-Ui’
iekC,ik

Mk = VkeK,VieL, (5.104)

Consequently, the data-rate function defined in (5.73) can be reshaped as:
Ric(,1) = Un (k1) = V(1) VK € K. (5.105)

With the aid of the SDP transformations, the EE optimization problem Pg can be reformu-
lated as follows:

P10 : max Nerr(Qk.1) (5.106a)
Q)

S.t.: Rk(ﬂk’/) > Rmin,kka e, (5106[3)
Q= 0, Vk € K,VI €L, (5.106¢)
rank(ﬂkv/) <1, Vke KVl eL, (5.106d)
Z Z Tr(nk,l) < Prmax. (5.1066)
leL ke
Tr(ka,) =0, Vk e VI > Tyg. (5.106f)

It is important to note that the constraint (5.106b) in P1o does not exhibit concavity. To
circumvent this non-concavity, we employ the outcome from Lemma 2. A proposed surrogate
lower bound of Rk (L ) is introduced, where it is guaranteed that Rx(Qy ;) > Ry (/).
Hence, we can reexpress P1g as follows:

k): Ric(Q1)
P11 :max 7 Q)= 5.107a
11 Q) neff( k,/) gtot(ﬂk,/) ( )
s.t.: ﬁk(ﬂk'/) 2> Rminy ks Vk e K, (5.107b)
Qp =0, Vke K, VIeL, (5.107¢)
rank(Q ) <1, Vk e K,VIeL, (5.107d)
Y ¥ Tr(Q%) < Prax. (5.107¢)
leL ke
Tr(Q ) =0, Vk € ICVI> Ty, (5.107f)
where
Eot( Q)= Y, Y Tr(Qu )+ P+ NPy + PE>. (5.108)
leL ke

The numerator of the objective function and constraint (5.107b) exhibit the form of convex-
concave functions, which introduces favorable properties to the optimization problem. Nev-
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ertheless, despite this advantageous characteristic, the overall problem remains non-convex
due to the presence of the non-convex rank-one constraint (5.106d) and the fractional ob-
jective function. As a result, resolving this optimization problem necessitates the application
of specialized techniques that can effectively address these non-convexities. Our forthcom-
ing focus firstly centers on resolving the non-convex rank-one constraint (5.106d), which
emerges within the context of our optimization problem. Fortunately, an innovative method
has been proposed in [208], specifically devised to address these types of rank constraints.
We hereby direct our attention to the ensuing proposition.

Proposition 3 Consider a nonzero positive semidefinite beamforming matrix, denoted as
Q€ Sﬁr/’ , where M represents the dimensionality of the matrix. We assert that €y ; is a rank
one matrix if and only if the inequality wy /Ip—1 — UTQMU > 0 holds true, where wy ; =0,
ly_1 denotes an identity matrix with dimension M —1, and 5 € RM*(M=1) corresponds to
the eigenvectors corresponding to the M —1 smallest eigenvalues of €2y ;.

Proof 5 Assuming the nonnegative eigenvalues of €y ; are arranged in descending order
as [km; Kpm—1;...; k1], we can exploit the relationship between an eigenvector's Rayleigh
quotient and its associated eigenvalue. Consequently, the matrix w Ip—1 —UTQ;{,,U,
Vk € VI € L, takes on the form of a diagonal matrix, with its diagonal elements set as
[k — KM—1: Tk | — KM—2;...; Wk — K1]. In light of this, we observe that €2 possesses
M —1 smallest eigenvalues all being zero if and only if the conditions wy jIp—1 — UTQMU >
0 and wy,; =0, Yk € K,VI € L, are satisfied simultaneously. Consequently, € ; qualifies as
a rank one matrix under these conditions [208]. |

According to proposition 3, we can replace the rank constraint (5.107b) with a positive
semidefinite constraint:

@iy — 0@ Q5@ = 0, vk € K,V € L. (5.109)

Given the unavailability of U(Q)T, we resort to the SCA method and employ the smallest
eigenvectors of 2 ;. To achieve the goal of ultimately having wy ; = 0 while facilitating the
attainment of an initial feasible point, we introduce a penalty term for wy ; in the objective
function. Thus, at SCA iteration (q), the following convex problem is addressed:

Pio: max  flerr(p ) — (@ Y ) wi, (5.110a)

$bis Wi IEL kek
S.t.: ﬁ,k(ﬂk,/) 2 [Riin e Vk e K, (5.110b)
Q- 0, vkeK,VieL, (5.110¢)

T
@i dy—1— 0D Q59D =0 vke K VIieL, (5.110d)
Z Z Tr(2%.1) < Pmax. (5.110e)
IEL keK

Tr(Q%)) =0, Vk €KV > Ty, (5.110f)
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We emphasize that the penalty factor's updates follow an interior iterative sub-algorithm
with the formula ¢(®) = min(ug(q’l),ﬁmax), where v represents a positive coefficient factor,
and Ymax denotes the maximum allowable penalty factor.

The objective function in P15 is a fractional function, rendering the optimization problem to
be still non-convex. To tackle this final issue, we adopt a strategy to handle fractional pro-
gramming problems. Specifically, we employ the widely recognized Dinkelbach method [209],
with (d) as its iteration, to address the fractional form of the optimization problem. Denot-
ing 7i%¢¢(£2,1) as the optimal energy efficiency point within the feasible solution set defined
by its constraints, we then transform the problem into a non-fractional optimization problem
for further resolution. Thus, the problem can be restated as follow:

P13 . maX Z Rk(ﬂ(d)) Q(d)gtot Q(d) §(d) Z Z Wk, (5.1118)
1 Pkl kek IEL kEK
s.t.: Rk(Qk'/) > Rmin.k Vk e IC, (5111b)
Q= 0, VkeK,VleL, (5.111¢c)
@iy — 0@ @ 5@ = 0, vk e KVl € L, (5.111d)
Z Z Tr(ﬂk,l) < Pmax. (5.1116)
IeL keK
Tr(2% ) =0, Vke VI > Ty, (5.111f)
where ., ;
o = max 7% (), (5.112)
o)
and <(?) is the new penalty factor update rules:
¢ = min(rsl@1 90 X é’tot(ijjl)). (5.113)

Finally, the convexity of the objective function in P13 with respect to the active beamforming
variables can be demonstrated through a formal proof based on the following proposition.

Proposition 4 The optimal energy efficiency, denoted as ﬁ:ff(ﬂz,), serves as a means to
derive the resource allocation policy if and only if

max Z ﬁk(giffl)) _ Q(d)ftot(ﬂf,) —_c@ Z Z Wiy =

Qi kek IeL kek
Y Ru( ) — 0" Et(Q) <P Y Y @i, =0, (5.114)
ke leL ke

for Y rex ﬁk(ﬂ;,) >0 and Eot (2 ;) > 0, where | provides the optimal solution to P13.

Proof 6 Let's denote p* be the optimal solution, corresponding to the optimal resource
allocation policy Q’,Z ; of the objective function in P13, that is:

Y Ri(Qu)

* ke/(:i _ )
= max S w 5.115
¢ o Erot (k1) lgﬁk;C ! ( )
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The optimal EE can then be calculated as follows:

kécfzi(ﬂ’;',) ()
Q* = Q@r 7or VS 9 Wk,
gtot(ﬂk,l) Z Z

leL kel
L Ry )
ke

_ (@ Z Z
S Wk, |- (5116)
St(c‘,jt)(ﬂkv,) IEL keK

It becomes readily apparent that:
Z Ri(Ry ) — 0" Erot (s ) —(@ Z Z @k, 1Erot () <0, (5.117)
kek leL kek

Thus, it can be inferred that:
Y Rie(Q )~ 0" Euot( )~ DY Y @i Eror () =0, (5.118)
kek leL kek

Therefore, we have:

max Y Ri(Q ) — 0* Exor(Rcr)
el kex

DY Y whiEeor () =0, (5.119)
IEL kEK

and this can be attained through the resource allocation policy. Thus, this concludes the
proof. [ |

The optimization problem P13 is now a convex problem and can be efficiently solved by
standard convex optimization solvers such as CVX [210]. Ultimately, we detail our proposed
algorithm in Algorithm 5.

5.10.2 Step Two: Optimizing W,

In the second sub-problem, equipped with the optimal active beamforming matrices wy
from the preceding subproblem, we progress with the optimization of the passive reflecting
elements at the IRS, denoted by ¥,. Given that the semidefinite matrix wy ; is provided,
the optimization problem in Pg shifts towards the maximization of the data-rate. The
major hurdle in optimizing the phase shifts at the IRS arises due to the constraint (5.80b).
Particularly, the constraint (5.80b) imposes a unit-modulus constraint, which presents a
significant challenge in the quest to solve the problem. As such, we start by defining e =
(e, . e/n)H c CNX1 and é = [e 9] € CINHDXL where 4 € C is a dummy variable
with |9 = 1. To aid in crafting the solution, we further define E = éé" ¢ C(N+1x(N+1),
Consequently, we derive the following:

2
|(hfts B h+hEs Qe |” 2 Tr(EZ i  Z)
:TF(QkV/Yk), Vk e K, (5120)
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Algorithm 5 Iterative SCA-based Resource Allocation Algorithm for Energy Efficient Multi-
user IRS-Assisted URLLC Systems Based on a Novel Rank Relaxation Method

Input: Set d = 0 for the Dinkelbach procedure, set the maximum number of iteration Dmax,
initialize the beamformer matrix Qy ; = Q%,, initialize <9, set Omax > 1, v > 1, and set
the tolerance e = 1073,
1: repeat
2 Calculate ﬁk(wk',,\ll,) for a given ¥,.
3:  Calculate the rank-one relaxation constraint in (5.109).
4
5

Solve P13 for old—1),
if | ¥ Ri() — ol@ Do (D)
KeK
—~ @y ¥ wl<e
IEL keK

6 return ;= Qf(f!,), oF = Q(dfl)-
7 else o(9) = 70(Q\%), end if.
8. Update (D = min(vs(d=1 9.,,).
9 d+d+1.
10: until d = Dyax.
11: return ;= Q.

where
.
zZ, = [(diag (hfts i) H)" hgs,k} , Vk ek, (5.121)
Y, =2/ EZ,, Vk e K. (5.122)

In a manner akin to P13, we address the non-convex constraint (5.80a) and the objective
function. To achieve this, we employ Lemma 2 and subsequently rewrite the data-rate

function as: .
R (W) =Uk(¥)) — Vi (¥)),Vk € K. (5.123)

Now, we restate the optimization problem Pg as follows:

P14 : max Z ék(\I’/)

EY yex

s.t.: Ri(®)) > Rmink, Yk €K, (5.124a)
diag(®)) = 1y41, VIE€ L, (5.124b)
rank(E) <1, (5.124c¢)
U, =0, vieL, (5.124d)
E=0. (5.124e)

J

Following a similar approach as in P14, and drawing on the insights from proposition 3, we
can substitute the rank constraint (5.124c) with a positive semidefinite constraint:

Cly—TO T 7@ =0, vieL. (5.125)
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where T(9) is an N x (N +1) matrix at the (g)-th SCA iteration with its columns corre-
sponding to the smallest N eigenvectors of W¥,. Furthermore, to sustain a rank of one for
W, equation (5.125) must hold true, assuming ¢; = 0. Hence, by incorporating {; as a
penalty term into the objective function of P14, we write the subsequent convex problem:

P15 : max Z Ri(®)) — 39 Z ¢ (5.126a)
EY ek lec

st Ri(®)) > Riink, Yk ek, (5.126b)
diag(¥)) = 1.1, vieL, (5.126¢)
Gy —T@O @@ =0, vier (5.126d)
U, -0, vieL, (5.126¢)
E=0. (5.126f)

where (9 is a sequences of increasing weights. The optimization problem P15 now can
be efficiently solved just as P13 [210]. The solution of these two sub-problems yields the
suboptimal solution of Pg.

Proposition 5 The objective function of Py is ensured to be monotonically non-decreasing
throughout the iterations of the proposed algorithm.

Proof 7 Let's denote the objective functions of Py, P13, and Pis respectively as Tlp,,
Tpys, and Tlp,. Also, in consideration of {Q; ,, W7} and {ﬂi]l,lIl‘f*l} as the feasible
solutions of Py in the s-th and (s — 1)-th iterations respectively, we can establish the following
inequalities:

_ipg(ﬂi,l' /5) = -IP13 (ﬂi/ /S)
> —IP13(‘I’/S_1) = —ng( i,/"Ijls_l)' (5127)

-lPQ(Qi,/’ ‘Il}s_l) = -LD15(QIS<,/' 7)
> T (5,1 = Tr (1 27). (5.128)

By utilizing inequalities (5.127) and (5.128), we can guarantee the improvement in the value
of the objective function of Pg after every iteration. [ |

Ultimately, the final iterative AO algorithm that solves subproblems is presented in Algorithm
6.
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Algorithm 6 Proposed Iterative AO algorithm Toward Energy Efficient Multi-user IRS-
Assisted URLLC Systems Based on a Novel Rank Relaxation Method

Input: Set s =0, maximum number of iteration Smax, and initialize the beamformer matrix
and phase shifts as Q4 ; = Qf | and ¥; = ¥), respectively.
1: repeat
2:  Solve problem Py3 for given W7, and obtain the
optimal solution Q7 , based on Algorithm 5.
3:  Solve problem Py5 for given €2f ;, and obtain the
optimal solution W7.
S+ s+1.
until s = Siax
: return {Q} |, ¥7} = {QF |, P7}.

o ok

Table 5.2: Simulation Parameters for Multi-user IRS-Assisted URLLC Systems.

Parameter Value

Area dimensions (100,100) meters
AP location (0,0) meters

IRS location (50,0) meters
Path loss model 35.3+37.6l0og;p(dx) dB
AO convergence tolerance 1072

Thermal noise density —174 dBm/Hz
Decoding error probability, €, 10~7

Number of users, K 4

Number of AP antennas, M 5

Number of IRS elements, N 20

Minimum transmit power, pmax | 30 dBm

Block code length, my 250 symbols
Threshold rate, R, 1.6 bits/Sec/Hz

5.11 Numerical Results for the URLLC-enabled IRS-assisted
Network

This section provides simulation results to investigate the efficiency of the proposed algo-
rithm in downlink MISO URLLC systems enabled IRS, utilizing finite blocklength codes.
A rectangular region with dimensions of (100,100) meters is considered. The BS is po-
sitioned at (0,0) meters; the IRS is located at (50,0) meters and all users are scattered
randomly within the boundaries of this rectangle region. The path loss model is expressed as
35.3+37.6log1(dx) [dBm], where di refers to the distance in meters between the BS and
the k-th URLLC user. The convergence tolerance for the proposed AO algorithm, which is
based on rank relaxation, SCA, and the Dinkelback method, is set at 1072 It is assumed that
the thermal noise density stands at —174 [dBm/Hz]. In addition, the maximum probability
of decoding error for URLLC user k, represented as €, is set to be 10~7. Furthermore, the
simulation parameters are configured with K =4, M =5, and Rpinx = 1.6 [bits/Sec/Hz],
in accordance with the methodology outlined in references [8, 3]. All simulation parameters
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Figure 5.7: Impact of tolerable decoding error, €y, on the EE in an URLLC-enabled IRS-assisted
network.

are also summarized in Table 5.2.

Fig. 5.7 visualizes the relationship between mean EE and various maximum decoding error
probability thresholds, denoted by €, max, While maintaining a constant block code length of
250 symbols (mg = 250). The graph highlights a noticeable upward trajectory in EE as the
tolerance for decoding error widens. This enhancement in EE can be directly linked to the
inverse relationship between Q~!(ex) and €k, where an increased allowable decoding error
probability leads to a reduced rate loss Vi (wk,;, ¥/) as specified in (5.73). Consequently, this
dynamic facilitates the fulfillment of minimal data-rate requirements at lower transmission
powers, effectively boosting EE. Furthermore, the graph illustrates an incremental gain in
EE with an increase in the number of IRS’s reflecting elements, showcasing the significant
impact of IRS size on system efficiency.

In addition to showcasing these trends, the figure conducts a comparative analysis with
two foundational models for further context. The first baseline scheme adheres to a static
beamforming approach at the IRS, while the second baseline scheme operates under the
assumption of an IRS-free environment. The empirical evidence, as delineated in the figure,
unequivocally demonstrates the enhanced performance of our proposed approach over the
IRS-less baseline scheme 2. This enhanced efficacy is attributed to the strategic deployment
of IRS technology coupled with the synchronized optimization of both active and passive
beamforming matrices at the BS and IRS, respectively. When comparing against baseline
scheme 1, our method exhibits an improvement, thereby emphasizing the critical value of
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Figure 5.8: Impact of the blocklength, my, on the EE in an URLLC-enabled IRS-assisted network.

IRS integration and optimization within the system. This detailed comparison validates
the superiority of our proposed methodology and reinforces the role of the IRS in elevating
the EE of URLLC-enabled wireless communication systems, particularly under the stringent
constraints of short packet transmissions and variable decoding error probabilities.

Fig. 5.8 illustrates the impact of the blocklength size, denoted as my, on the achievable EE
at a constant €, = 10~7. With an increase in my, the EE initially experiences a moderate
boost, followed by a slow elevation until it plateaus. In comparison to the scenario with an
IRS, the scenario without it consistently exhibits a lower EE, independent of the quantity
of reflecting elements. Smaller N values necessitate higher transmit power to meet QoS
standards, leading to a reduction in EE. This reduction arises from the amplified interference
in the data-rate function due to multi-user interference in the SINR function, resulting in an
increase in transmit power, a decrease in data-rate, and consequently a negatively pruned
EE.

Fig. 5.8 illustrates the impact of blocklength size, represented by my, on the EE of the
system, maintaining a consistent decoding error probability of €, = 10~7. The figure shows
a relationship between my and EE: as my increases, there is a discernible, albeit moderate,
uplift in EE, which gradually ascends to a stable plateau. This pattern highlights the balance
between blocklength size and system efficiency, where longer blocklengths, up to a certain
threshold, contribute to enhancing EE.

The contrast between scenarios with and without the deployment of an IRS is starkly de-
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picted. Invariably, configurations lacking an IRS lag in EE performance across all tested
blocklengths, underscoring the IRS’s role in energy optimization. Notably, the presence
of fewer reflecting elements, denoted by smaller N values, compels the system to elevate
transmit power levels to adhere to Quality of Service (QoS) criteria, inadvertently impact-
ing EE negatively. This effect is primarily attributed to the escalated interference within
the data-rate function, a consequence of multi-user interference affecting the SINR, which
necessitates an upsurge in transmit power. Such an increase, while aimed at maintaining
service standards, paradoxically diminishes data-rate efficiency and, by extension, truncates
EE.

This phenomenon demonstrates a critical insight: the size of my and the strategic deploy-
ment of IRS elements play crucial roles in achieving optimal EE. Especially in multi-user
environments where interference is a significant concern, the IRS emerges as a vital tool for
mitigating adverse effects on EE. Through careful management of blocklength and leverag-
ing the benefits of IRS technology, URLLC systems can help overcome the complex interplay
between QoS demands and EE, optimizing performance across these metrics.

5.12 Conclusion

This chapter delved into the resource management problem within downlink multi-user con-
figurations, facilitated by Intelligent Reflecting Surfaces (IRS) for enhancing both Machine-
Type Communication (MTC) and Ultra-Reliable Low-Latency Communications (URLLC)
systems. Central to our investigation was the strategic design of resource allocation mecha-
nisms through active and passive beamforming, aimed at optimizing Energy Efficiency (EE)
across these network models.

In the first part of this chapter which was dedicated to MT C-enabled networks, our analysis
focused on achieving a dual objective: maximizing EE while also broadening user admittance,
framed within the context of a Multi-Objective Optimization Problem (MOOP). This ap-
proach was tailored to address the scalable nature of MT C networks, which are characterized
by their need for efficient connectivity across a multitude of devices.

Transitioning to URLLC systems, the complexity inherent in meeting URLLC standards
necessitated a more focused objective, concentrating solely on maximizing EE. This refine-
ment acknowledges the strict latency and reliability demands of URLLC applications, which
significantly influence the formulation and optimization of resource allocation strategies.

Both the MTC and URLLC models were designed with a keen emphasis on meeting the
diverse Quality of Service (QoS) requirements of different user types, incorporating the
challenges associated with short packet transmissions. Given the non-convex nature of the
primary problem, we employed the Alternating Optimization (AQ) technique to decompose
the optimization problem into two distinct, more tractable sub-problems: optimizing the
active beamformers at the transmitter and adjusting the phase shifts at the IRS.

Further advancing our methodological approach, we introduced an innovative iterative semi-
definite and rank relaxation strategy, coupled with the Successive Convex Approximation
(SCA) technique and a penalty-based methodology, to effectively tackle each sub-problem.
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Through simulation studies, we evaluated the efficacy of our proposed relaxation algorithms,
highlighting the IRS's capability to significantly enhance EE and enable both MTC and
URLLC systems to meet, and in many cases exceed, the set QoS standards—thereby out-
performing existing conventional strategies.

The insights gained from our research illuminate the potential of IRS technology not just
as an adjunct to existing networks but as an evolutionary mechanism that can significantly
elevate system performance. These findings lay a robust foundation for future explorations
into rank-constrained resource allocation strategies within IRS-aided systems. As we look
ahead, the groundwork established here opens avenues for further investigations into the
deployment of IRS technology, aiming to refine and extend the applicability of resource
management techniques in the era of intelligent wireless communications.
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 Chapter _F R

Joint Offloading and Resource
Allocation in Uplink MEC-IRS Networks

N this chapter, we delve into the utilization of a Mobile Edge Computing (MEC) server

placed at an Access Point (AP) side (or 5G Node B (gNB) side) to meet the stringent
demands of delay sensitivity and reliability in multiuser Machine Type Communication (MTC)
scenarios. The strategy involves offloading computational tasks to the MEC server in order
to significantly reduce the latency for low-power loT devices. Intelligent reflecting surfaces
(IRSs) are employed to support the offloading process. These IRSs play a crucial role
in enhancing the robustness of offloading, improving spectrum efficiency, and broadening
network coverage. They achieve this by altering the propagation of incident radio-frequency
waves through the adjustment of phase shifts using passive reflecting components.

This chapter represents a pivotal shift in focus from previous discussions, which were predom-
inantly centered around downlink scenarios, to an in-depth exploration of uplink dynamics
within the realm of MEC and multiuser MTC. Specifically, it highlights the strategic em-
ployment of a MEC server at an AP to tackle the critical challenges of delay sensitivity
and reliability that are paramount in multiuser MTC environments. By offloading computa-
tional tasks in the uplink to the MEC server, the approach significantly alleviates latency for
low-power loT devices, thus optimizing the network's performance.

Consequently, our investigation zeroes in on the optimization of joint radio resource allo-
cation and edge offloading decisions in a multiuser IRS-aided MEC network. This network
is characterized by a multi-antenna AP that receives information symbols from a collection
of Internet of Things (loT) users, with these users transmitting short packets. Specifically,
our objective is to minimize the overall power consumption of the system by formulating it
as an optimization problem, taking into account various constraints. These include ensur-
ing the Quality of Service (QoS) for MTC-enabled loT users, adherence to transmit power
feasibility, limitations on capacity, and restrictions related to IRS phase shifts.

The challenge lies in the non-convex nature of the problem we have formulated, which
complicates the task of finding an effective solution. In response to this, we introduce a
novel, efficient iterative algorithm. This algorithm leverages Successive Convex Approxi-
mation (SCA) techniques, combined with a penalty-based method to manage unit-modulus
constraints that arise due to the passive reflecting elements present at the IRS. Through sim-

133
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ulation, we demonstrate the enhanced efficiency and performance of our proposed algorithm
when compared to other existing baseline methodologies. This proves the IRS's potential
in substantially improving the efficiency and reliability of edge computing in multiuser MTC
environments.

This chapter is based on :

J. Jalali, A. Khalili, R. Berkvens and J. Famaey, “Joint Offloading Policy and Resource
Allocation in IRS-aided MEC for loT Users with Short Packet Transmission”, in 2023
IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, Hong Kong,
Oct. 2023, pp. 1-7. https://doi.org/10.1109/VTC2023-Fall60731.2023.10333867
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6.1 Introduction

N THE landscape of modern technological advancements, the proliferation of Internet

of Things (MTC) applications has been remarkable, propelling the need for support-
ing an array of computation-heavy and latency-critical applications. Among these are
cutting-edge domains such as autonomous driving, Augmented Reality (AR), Virtual Re-
ality (VR), and Unmanned Aerial Vehicles (UAVs), which are cited extensively in the litera-
ture [211, 212, 213]. These innovative applications are designed to facilitate instantaneous
interactions, whether between humans and machines or among machines themselves, thereby
underpinning the essence of Machine Type Communication (MTC). As we stand on the cusp
of the 6th-Generation (6G) of wireless networks, there is a pressing need to ensure these
networks are robustly equipped to support a myriad of loT devices, enabling them to perform
real-time computations, communications, and control tasks seamlessly.

However, loT devices often face significant constraints due to their inherent design consid-
erations, which prioritize cost-effectiveness and compactness. These constraints typically
manifest as limited battery life and less powerful processors. Thus, one of the paramount
challenges for forthcoming loT networks is enhancing the computational capabilities of these
devices. Such an enhancement is crucial for them to efficiently manage heavy computational
loads while adhering to stringent latency requirements [214]. While cloud computing has
been a traditional recourse, offering abundant computational resources, it often falls short
by introducing considerable computational latency. This latency is primarily attributed to
the physical remoteness of cloud servers from the devices [215].

In response to these challenges, especially for mission-critical and time-sensitive applications
spanning healthcare, autonomous driving, and tactical internet operations, Ultra-Reliable
and Low-Latency Communication (URLLC) has emerged as a beacon of hope. URLLC is
a specialized MTC service category tailored to meet the demanding reliability and latency
specifications envisioned for future 6G networks [216]. It is distinguished by its capacity to
achieve exceptionally low decoding error rates, below 1072, and to meet latency requirements
as stringent as 1 ms. Nevertheless, it is important to acknowledge that the conventional
Shannon capacity formula may not be entirely adequate for characterizing the performance
within the URLLC-driven, short packet communication regime of loT systems [3]. This
recognition paves the way for exploring novel approaches and solutions to fulfill the ambi-
tious goals set forth for 6G networks, ensuring they are capable of supporting the dynamic
landscape of loT applications with their evolving demands.

To address the challenges posed by computational latency within the loT networks, mobile
edge computing (MEC) emerges as a robust solution, offering a strategic alternative to
alleviate network congestion and significantly reduce latency when compared to traditional
cloud computing solutions [217]. This innovative approach involves the strategic placement
of computing servers at the network's edge, such as within cellular Base Stations (BSs),
gNBs, or WiFi Access Points (APs). By doing so, MEC facilitates the immediate offloading
of both data and computational tasks directly from loT devices to the nearest MEC server.
This not only facilitates the data processing workflow but also enhances the quality of
experience for end-users by minimizing delays and optimizing data throughput [218].

In the realm of MEC, the nature of tasks to be offloaded can vary widely, necessitating a
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classification system based on their specific dependencies and the possibility of partitioning.
This differentiation gives rise to two primary offloading paradigms: partial offloading and
binary offloading. Each paradigm requires a delicate approach to optimize the allocation
of computational and communication resources. The ultimate goals of these optimizations
include minimizing energy consumption [219], reducing computation latency [220, 221],
maximizing computation throughput [222], and boosting the overall energy efficiency of
the system [223]. However, the effectiveness of these offloading strategies [219, 220, 221,
222, 223] can be adversely affected by wireless channel attenuation that occurs during
data transmission between APs and loT devices, potentially hampering the efficiency of the
offloading process [224].

To overcome this challenge and ensure optimal offloading efficacy, the deployment of mas-
sive Multiple-Input Multiple-Output (m-MIMQ) technology stands out as an enhancement
strategy within MEC systems. m-MIMO technology amplifies the signal strength and im-
proves the reliability of wireless connections, thus ensuring that the data offloading from
loT devices to MEC servers is not only feasible but performed with the highest efficiency.
By employing m-MIMO, the system can counteract the detrimental effects of wireless chan-
nel attenuation, ensuring that the computational tasks are offloaded and processed with
minimal latency and maximum reliability [225]. This technological synergy between MEC
and m-MIMO paves the way for a new era of loT network operations, where computational
latency is significantly reduced, and the network’s capacity to handle increasingly complex
and latency-sensitive applications is greatly enhanced.

While the integration of m-MIMO technology into MEC systems significantly enhances
offloading efficiency, it is accompanied by notable challenges, including increased energy
consumption and the financial burden associated with sophisticated hardware requirements.
In response to these challenges, the concept of Intelligent Reflecting Surfaces (IRSs) emerges
as a groundbreaking and cost-effective approach to amplify spectral and energy efficiency
across forthcoming mobile network generations [226].

An IRS is characterized by its innovative digitally-controlled meta-surface, which is comprised
of a controller and numerous low-cost passive reflecting elements. These elements are dis-
tinctive because they operate without the need for any Radio-Frequency (RF) chains, thereby
sidestepping the energy and cost implications associated with traditional active elements.
Through precise manipulation of the phase shifts of each element under the guidance of the
IRS controller, it is possible to dynamically modify the wireless propagation environment.
This capability enables a range of beneficial outcomes, such as enhanced signal strength or
diminished interference, customized to specific network requirements [8, 10, 3].

Furthermore, IRS technology significantly upholds task offloading efficiency within MEC
networks by leveraging substantial passive beamforming gains. By optimally positioning
IRSs in proximity to loT devices, it is feasible to counteract the severe signal attenuation
that often occurs due to distance challenges or Non-Line-of-Sight (NLoS) conditions. Such
strategic deployment not only extends the effective service range of MEC systems but also
ensures a more reliable and efficient communication link between loT devices and MEC
servers. This enhancement is pivotal for realizing the ambitious goal of equipping future loT
networks with superior computational capabilities, enabling them to support a plethora of
advanced, real-time applications [227].
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Fundamentally, IRS technology represents a paradigm shift in how wireless networks can opti-
mize environmental interactions to improve performance metrics. By harmonizing with MEC
architectures, IRSs unlock new possibilities for achieving unparalleled efficiency and cover-
age, thus setting a new benchmark for the deployment of high-performance, energy-efficient
loT networks specialized for the demands of the next-generation wireless communication.

In this chapter, our focus is on the joint uplink resource allocation design for IRS-assisted
URLLC MEC systems operating with finite block-lengths. The essence of our study is
captured through several key contributions, which are elaborated as follows:

e Our first major contribution involves a thorough examination of the ‘joint’ radio re-
source allocation and edge offloading decision-making process within an IRS-enhanced
MEC network. This network architecture features a multi-antenna AP tasked with
receiving information symbols from a set of MT C-enabled loT users with finite block-
length transmission. Central to our approach is the development of a sophisticated
resource allocation algorithm. This algorithm is crafted to minimize the overall system
power consumption, adhering to strict constraints related to peak transmit power and
QoS requirements while taking interference into account

e The complexity of the problem is further underscored by its non-convex and Mixed Inte-
ger Non-Linear Programming (MINLP) nature, presenting a challenge to conventional
solution strategies. To navigate these complexities, we adopt a two-step methodolog-
ical approach. Firstly, we utilize Successive Convex Approximation (SCA) techniques
to iteratively approach the problem’s solution. Secondly, we integrate a penalty-based
framework specifically designed to address the unique unit-modulus constraints asso-
ciated with the passive reflecting elements of the IRS. This innovative combination of
strategies enables us to obtain a suboptimal solution that closely aligns with the ideal
objectives of the system.

e Our investigation concludes with a series of simulation studies designed to validate the
theoretical models and proposed solution strategies. These simulations vividly illus-
trate the transformative potential of integrating IRS technology within MEC-assisted
URLLC frameworks. The results unambiguously demonstrate that the strategic de-
ployment of IRS, in tandem with multi-antenna APs, is a potent enabler of both low
latency and high reliability. This is a significant milestone, heralding a new era of
performance capabilities for URLLC systems in the context of edge computing.

This chapter is organized as follows: Section 6.2 introduces the system and channel models.
Section 6.3 formulates the proposed resource allocation problem. The resource allocation
algorithm design policy is presented in Section 6.4. Section 6.5 evaluates the performance of
the proposed schemes using computer simulations, and conclusions are drawn in Section 6.6.

Notations: We use the following notations in this chapter. Matrices are represented by
capital boldface letters, vectors and scalars by small boldface and small normal face letters,
respectively. | denotes an identity matrix, and C**Y represents a x x y complex-valued
matrix. The superscript (-)/ denotes the conjugate transpose of a matrix, and (-)" denotes
the transpose of a matrix. The notations E[-], tr(-), and diag(-) are used to denote statistical
expectation, trace, and diagonalization operator, respectively. Vf(+) represents the gradient
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of the function f(+), and %(;) is the first derivative of f with respect to g evaluated at g = a.

|x] denotes the 2-norm of vector x. The notation CA/ (i, X) represents the distribution of a
circularly symmetric complex Gaussian (CSCG) random vector with mean p and covariance
matrix 3, where ~ indicates “with the distribution of.”

6.2 System Model for a MEC-enabled Uplink IRS Network

This section presents the system and channel models in the IRS-assisted Orthogonal Fre-
quency Division Multiple Access (OFDMA) MEC system for loT users with short packet
lengths. In particular, we consider a single-cell multi-user uplink communication that com-
prises an AP associated with a MEC server, equipped with Nap antennas Fig. 6.1. The
primary function of this AP is to facilitate edge computing services by capturing uplink
transmissions from K single-antenna URLLC users. These users are denoted by the index
k and collectively form the set £ ={1,..., K}. The transmissions from these users to the
AP can be direct or mediated through an IRS. The IRS itself is comprised of M passive
reflecting elements, each characterized by specific phase shifts and amplitudes.

To quantitatively describe the operational dynamics of the IRS, we introduce ® = diag(51 elo,
Boel®2 .. Bpel®M) as the matrix of reflection coefficients. In this representation, B, €
[0,1] and o, € (0,27, for each m e {1,..., M}, signify the reflection amplitude and phase
shift of the m-th reflective element at the IRS, respectively®.

The system’s bandwidth is partitioned into N orthogonal sub-carriers, each identified by the
index set N'={1,..., N}. The bandwidth allocated to each sub-carrier is denoted by Bs,
which in turn defines the symbol duration 75 = B%- In terms of temporal structure, the
uplink frame is segmented into L time slots, enumerated by the set £L={1,2,...,L}. For
analytical rigor, we assume the availability of perfect channel state information (CSI) of the
entire system at the AP, serving as a theoretical performance benchmark.

The system is designed with a keen awareness of the delay requirements for all users, with
the AP being privy to this critical information. This ensures that only users whose delay
requirements are potentially feasible within the current resource block are considered for
system admission. Furthermore, each user is associated with a computational task, denoted
by (B, Dx), where By represents the task size in bits, and Dy specifies the computation time
in time slots, also referred to as the service delay. This comprehensive modeling framework
lays the foundation for optimizing the performance of IRS-assisted OFDMA MEC systems,
ensuring the seamless provision of edge computing services to loT users with strict latency
requirements.

6.2.1 Signal and Channel Models

In an uplink scenario, each loT user independently sends its own signal to the network's AP.
The signal that arrives at the AP within time slot / on subcarrier n is characterized by the

INotably, for the sake of maximizing reflection efficiency, it is generally assumed that the amplitudes of
all passive elements are set to one, i.e., Bm =1, for all m, as proposed by Basar et al. [160].
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Figure 6.1: Multi-user IRS-assisted URLLC MEC system with one AP, and K loT users with finite
block-length transmission. The single-antenna MT C-enabled loT users offload their tasks in the
uplink to an MEC, directly or via IRS, using a single multi-antenna AP with an edge server.

equation:

yll,n] = i vV pkll, n](Fn]®hg[n] +a,[n)ukll. n]+z[l,n], VIeLN¥neN, (6.1)
k=1

where hy[n] € CM*1 and g [n] € CNAPX1 are the IRS-user and AP-user channel vectors of the
k-th user. Also, F[n] € CNap>*M @ ¢ CM*M "y [/ n] € C, and pg[/, n] are AP-IRS channel
matrix, phase shift matrix of the IRS, transmit symbol of user k on subcarrier n in time
slot /, and the power of user k on subcarrier n and time slot /, respectively. Furthermore,
z[/,n] € CNAP*1 is the received noise vector at the AP with CA/(0,02ly,,), and we assume
E{|ukll,n]|?} =1, Vk, I, n. The received signal vector on n-th subcarrier via adopting receive
beamforming is given by:

a[l,n] =VH[I, nly[l,n], VieLVneN, (6.2)

where V[/, n] € CNaPXK is a matrix whose k-th columns are given by [wg[n]] € CNaPX1 Wk, n.
As a result, the signal-to-interference plus noise ratio (SINR) of user k on subcarrier / can
be expressed as:

[wf [l )| pill. n]

P PP 5 —, VkeKVIeLVneN, (6.3)
L (i Il [n])[|” p [/, n] + 62

Yill, n] =

where

hiln] = F]®hy[n] +a,ln],  VkeK,VIeLVneN, (6.4)
5% = o2 |wl[1,n]|%, Vk e K,VI€ L. (6.5)
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6.2.2 Achievable Rate with Short Packet Transmission

Utilizing the SINR values calculated for each 10T user, we can now analyze the computation
of achievable data rates, which is essential in the context of MTC-enabled systems where
low-latency communication is of significant importance. The constraints of such systems
inherently involve the necessity for finite and short blocklengths in transmissions, diverging
from traditional models that assume infinite blocklengths where Shannon's capacity formula
would apply directly. Given these conditions, the achievable rate for each user, considering
the finite blocklength regime, can be expressed through an accurate approximation as follows:

Rk(pk, @, zk) = F(pk, 2, 2x) — G(pk, P, ), Vk €K, (6.6)
where
L N
Fe(pr. ®. 1) =), Z log, (1+xk[l, n]yk[l.n])), VkeK, (6.7)
|=1n=1
L N
Gu(pi ®. @) =Q ey | X Y xull.nlVill nl,  VkeK. (6.8)
I=1n=1

When formulating an optimization problem for resource allocation in loT networks, partic-
ularly those utilizing MEC and IRS, the role of subcarrier assignment indicators becomes
crucial. These indicators, denoted by xk[/,n] in (6.7) and (6.8), play a pivotal role in de-
termining the allocation of subcarrier n in time slot / to user k. To elaborate, if subcarrier
n during time slot / is assigned to user k, then xx[/,n] = 1; otherwise, it is set to 0. This
binary representation forms the foundation of the subcarrier allocation mechanism within the
network, ensuring that each subcarrier's assignment is explicitly defined. For comprehensive
optimization, the power allocation pg[/, n] optimization variables for each user k, across all
time slots / and subcarriers n, are aggregated into a vector px. Similarly, the subcarrier
assignment indicators are collected into a vector xy, thereby facilitating a structured ap-
proach to resource management within the network. This vectorized representation not only
simplifies the mathematical treatment of the optimization problem but also enhances the
clarity of the computational model being employed.

Additionally, within the context of communication reliability, decoding error rates are sym-
bolized by €, reflecting the probability of erroneous interpretation of the transmitted data
for user k. Moreover, the concept of channel dispersion, denoted as Vi[/, n], quantifies the
variability of the channel capacity around its mean, especially in scenarios involving short
packet transmissions. The mathematical expression for channel dispersion incorporates the
inverse of the Gaussian Q-function, @~1(+), a statistical tool used for mapping the relation-
ship between the error probability and the channel’s SINR. The channel dispersion Vi[/, n] is
calculated as:

Vil n] = a2 (1 — (4l n])*2) . VkeK\VIeLYneEN, (6.9)

where a=log,(e). To meet the user’s delay requirements, all symbols of user k are assigned
to the first Dy time slots.
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6.2.3 Offloading decision

In this section, we study the decision-making process regarding ‘task offloading’ in loT
networks, particularly those incorporating mobile edge computing MEC and IRS. A new
aspect of our discussion revolves around the introduction and examination of the binary
decision variable sk, which plays an essential role in determining the offloading strategy for
each loT user. This variable serves as an indicator for the edge offloading decision for each
loT user. Specifically, when s, =1, it means that user k opts to offload its computational
tasks to the edge server; conversely, a value of O indicates a preference for local processing.

The QoS for each loT user k, is a concern, especially with regard to service delay Dy.
To ensure adherence to QoS standards, D, must not surpass an established acceptable
maximum threshold, Tmax, within any given time slot. It is assumed for the purposes of
this model that the data processing duration is short and that the response time delay is
negligible, thereby facilitating a seamless user experience.

When the decision is made to process data locally, the computation’s energy demands are
predominantly governed by the Central Processing Unit (CPU)'s power consumption. This
consumption is complex, encompassing dynamic power, short circuit power, and leakage
power, as detailed in the research findings presented in [228]. Further studies have demon-
strated that the CPU's power consumption at optimal operating frequency correlates directly
with (g—i)‘, with ¢ representing the power scaling factor [229]. This relationship forms the
basis of the proposed model to estimate local execution power consumption: Therefore, we
adopt the following model to estimate the power consumption of local execution:

(Bk)*

£ =(1 *Sk)B(Dk)c :

Vk e K, (6.10)

where B is a constant value that depends on the application parameter. On the other hand,
loT users have the option and flexibility to offload their data processing tasks to the edge
server via the uplink, should the need arise. Therefore, the power required for loT user's
offloading transmission data to the edge server can be stated as follows:

&N = Y X sexll.nlpll, nl+ skpeir. Yk EK. (6.11)
IeLneN

where p., is the constant circuit power consumption during transmission. Consequently,
the total power consumption of the system in the uplink is represented by the sum of local
and offloading power consumption, given by:

gtotal _ Z (g/(()ﬂ"_gllf)c)' (6.12)
ke

This comprehensive analysis not only describes the power consumption dynamics associated
with edge offloading and local processing decisions but also emphasizes the importance
of such decisions in optimizing the performance and sustainability of loT networks. In the
following section, we will focus on developing strategies to minimize this power consumption,
thereby enhancing the efficiency of these networks.
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6.3 Problem Formulation

In this section, we aim to construct a joint optimization framework that addresses both
resource allocation and offloading decisions within loT networks that benefit from the ad-
vancements of MEC and IRS. The main objective is to minimize the overall power con-
sumption while simultaneously ensuring that the QoS requirements of MTC-enabled loT
users with short packet length transmission are met. This optimization ambitiously seeks
to balance the uplink transmit power, adjust the IRS's phase shifts, and smartly allocate
subcarriers, alongside making informed decisions about data offloading. The formulation of
this optimization problem is precisely presented as follows:

Pr: min oW (6.13a)
p,P,s,x
s.t.: Dg < skTmax, Vke K VleL, (6.13b)
L N
Y X el nlpkll, n] < sepk.max. Vke K, (6.13c)
/I=1n=1
|Pmm| =1, VYme M, (6.13d)
0<any, <2, VYme M, (6.13e)
K
Y xlln <1, Vk e K.VIEL, (6.13f)
k=1
sk €{0,1}, Vke,\VieL, (6.139)
xk[l,n] € {0,1}, VkeK,VlieLVneN. (6.13h)

In this formulation, the sets of variables p, «, s, and ® embody a comprehensive collection
of optimization parameters, crucial for fine-tuning system performance. These variables
are utilized to optimize the system performance and make decisions related to power allo-
cation, subcarrier assignment, offloading decisions, and phase shifts of the IRS elements,
respectively.

In P1, the constraint (6.13b) is imperative for ensuring that the service delay experienced by
each user upon offloading computational tasks does not exceed a predetermined maximum
threshold, denoted by Tmax. The condition (6.13c) effectively restricts each user's transmit
power to a specified maximum limit, pmax, €nsuring energy-efficient operation. The con-
straint (6.13d) imposes the unit modulus constraint on the IRS elements, while constraint
(6.13e) restricts that each reflecting element can be adjusted according to its phase. Ad-
ditionally, (6.13f) mandates that each subcarrier is exclusively assigned to a single user to
avoid interference. Lastly, the constraints (6.13g) and (6.13h) represent the binary nature
of the subcarrier assignment and offloading decision variables.

The problem P; is a challenging non-convex Mixed Integer Non-Linear Problem (MINLP)
with interdependent optimization variables, non-convex phase shift constraints, and binary
variables. Solving such non-convex optimization problems optimally is a complex task. How-
ever, we propose an efficient solution using the SCA method and a penalty-based approach
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to tackle the unit-modulus constraints because of passive reflecting elements at the IRS,
which offers a sub-optimal yet computationally efficient approach.

6.4 Solution of the Optimization Problem

In addressing the solution to the optimization problem outlined in Py, our approach initiates
with a strategic simplification of the delay threshold constraint, denoted by (6.13b). This
initial step converts the constraint into a format that eases mathematical manipulation and
subsequent analysis. Such a transformation is not only methodical but essential, as it lays
the groundwork for a more linear and manageable exploration of the problem and solution
space.

Given that the achievable data rate for each user k within the network is intricately linked
to two pivotal factors — the size of the transmitted bitstream and the experienced delay —
it becomes imperative to precisely define the relationship between these elements and the
user's data rate. To this end, we derive an expression that correlates the aforementioned
parameters with the achievable data rate, thereby facilitating a direct connection to the
user's operational parameters as captured in the following equation derived from (6.6):
By

Rk(pk,‘I’,wk):Fk, Yk e K. (6.14)
To continue the solution process for the optimization problem initially presented as P1, we
propose an alternative formulation, denoted as P». This reformulation contains a revised
constraint that is more amenable to analytical treatment, thus facilitating a more efficient
resolution pathway. Accordingly, reformulated problem can be given as follows:

Pr: min g8 (6.15a)
p.P,s,x
s.t.: Rk(pk,@,wk)ZSkBk, Vk e IC, (615b)
L N
Y X Xl nlpll. 1] < skpkmax. Vk e, (6.15¢)
/I=1n=1
|®mml =1, Yme M, (6.15d)
0<any<2m, Yme M, (6.15¢)
K
Y xllnl <1, Yk e K, VIEL, (6.15f)
k=1
sk €{0,1}, Vke KVleL, (6.159)
xk[l,n] € {0,1}, Vke kK, VleL,VYneN. (6.15h)

In this redefined context, the transformed constraint (6.15b) ensures that the offloading
traffic for each user k satisfies a minimum data transmission requirement of By bits. This
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adjustment is critical for maintaining the integrity of QoS standards across the network,
particularly in scenarios where offloading is deemed beneficial or necessary.

Secondly, addressing the complexities associated with binary variable interactions, notably
the multiplication of two binary variables in P, necessitates a strategic simplification. To
this end, we impose a maximum value constraint on xx[/, n] by setting xk[/,n] < sx. This
maneuver effectively reduces the complexity of terms involving the product of s and xk[/, n],
thereby simplifying the complexity.

With these modifications, P, emerges as a refined optimization problem that retains the core
objectives of minimizing total power consumption and adhering to QoS prerequisites, yet
is framed in a manner that enhances tractability and solution feasibility. This restructured
approach paves the way for deploying sophisticated analytical techniques, such as SCA, to
navigate the challenges inherent in solving non-convex MINLPs, thereby inching closer to
identifying a viable and efficient solution. Thus, the optimization problem stated in equation
P> can be reformulated as follows:

. ; ctotal __ &ofl loc
Ps: ,min_ FoEl = kE (&M +£2°) (6.16a)
€K

L N

sit.r Y Y plln] < prmax. VK EK, (6.16b)
I=1n=1
L
Y. pill, 1] < skprmax: Vke K, YneN, (6.16¢)
I=1
X[/, n] < sk, Vke K, Vle LYNneN, (6.16d)
(6.13c) — (6.13h), (6.15b),

where

&M = Y Y sl nlpill nl 4 sepeir. VK EK.

I€LneN
To effectively address the inherent non-convexity arising from the multiplication of xx[/, n]
and pgl[l,n], a key step in our optimization strategy involves introducing a new variable,
Bkll. n] = xk[l, nlpk[l, n]. This innovative approach is beneficial in handling of the product
term, thereby simplifying the complexity of the optimization problem. Utilizing the well-
established big-M method [129], which is a common technique for linearizing product terms
involving binary variables in optimization problems, we incorporate additional constraints
into our revised problem P3. These new constraints effectively linearize the non-convex
term, thereby rendering the optimization problem more tractable (getting even closer to the
solution but not quite there). The modified optimization problem, inclusive of these new
constraints, is presented as follows:
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Ps: min E°R =Y (&M +£0) (6.17a)
PP 2 kek
S.t.: ék(pk,ﬁk,@,wk)ZSkBk, Vk € IC, (617b)
L N
Z Z Pill, n] < Skpk,max: Vk ek, (6.17¢)
I=1n=1
Brll, n] < xk[l, NPk max. VkekK,Yle LYneN, (6.17d)
prll, n] < pkll, nl, VkeK,Vle LYneN, (6.17e)
Brll, 1] > pkll, n] — (L= xk[/, ) Pk.max, VK EK, VI € LYnEN, (6.17f)
Bkl n] >0, VkeK.\VleLNneN, (6.179)
(6.13d) — (6.13h), (6.16b) — (6.16d),

where ~
EN=YY Bull.nl+skpeir,  VkEK. (6.18)
I€ELneEN
Moreover, we have:
Ri(pk. Br. . @k) = Fie(pic. Brc. @, i) — Gu(pic, Br. @, i), V€K, (6.19)
where
h /
Al n] = [ wi el |” el . VkeK.VIELVnEN, (6.20)
J;ﬁkHWk [n]h;[n]) || Bjll, n] + &2
L N
Fi(pi.Dr. ®, ) Z Z 0ds (L+A4«[1, n)), Vk e K, (6.21)
B L N )
Gk (pk, Dk, ®, k) :aQ_l(Ek) Z Z (1—(1+’7k [/,n)~ ), Vk e K. (6.22)
|=1n=1

Furthermore, Py represents the collection of optimization variables px[/, n],V/, n.

Next, we deal with the relaxation of integer variables (the | in MINLP) by considering their
continuous counterparts. In our system model, this relaxation involves transforming the
binary nature of certain variables — binary subcarrier allocation and offloading decision
variables — into continuous variables that lie within the range from zero to one. Such a
transformation makes employing conventional optimization techniques that are better suited
for continuous rather than discrete variable spaces possible.

To outline the boundaries within which our optimization should operate, and to ensure the
integrity and feasibility of solutions, we introduce additional constraints into the optimization
problem. These constraints are crafted to define the feasible regions for the newly contin-
uous variables, ensuring that the solutions remain realistic and applicable to the practical
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scenarios envisaged in our loT network optimization (getting very close to the solution).
The imposition of these constraints is articulated as follows:

Ps: min &R ( f )
p.p.P,sx k=1
K L N
o (Z y Z (xk[/ n] — Xk[/,n])2)> (6.23a)
k=11=1n=1
s.it.: 0<sc <1, Vke K,VIeL, (6.23b)
0< xk[l,n] <1, Vke K VleLVneN, (6.23¢)
i (Sk—(sk)2) <0, (6.23d)
k=1
K L N
YY) (Xk[/,n] —(Xk[/,n])Q) <0, (6.23¢)
k=1/=1n=1
(6.13d) — (6.13f), (6.16b) — (6.16d), (6.17b) — (6.179).

where A1 and A» are penalty factors that need to be greater than one.

To facilitate the optimization of phase shifts in our IRS-assisted network, we convert the
SINR function, (6.20), into a formulation that is more attractive to mathematical ma-
nipulation. The application of Semi-Definite Programming (SDP) emerges as a strategic
approach to achieve this objective. SDP is a powerful optimization framework that allows
for the optimization of a linear objective over the cone of positive semidefinite matrices,
making it particularly suitable for handling problems involving quadratic forms and linear
matrix inequalities. By leveraging SDP, we can transform the SINR function into a form
that not only retains the essence of the original problem but also simplifies the process of
optimizing the phase shifts of the IRS elements. The transformed SINR function under the
SDP framework can be represented as follows:

|wi[n]hg n]H Tr(Uk[n YUY [nIWi[n]), VkeK,VneN, (6.24)
where
Uk[n] :[(FH[n]diag(th[n]))T g’;[n]]T, Vk e KK, VYneN, (6.25)
W, [n] = wy[n]w{/[n], VkeK,YneN, (6.26)
Y = ww! e cMHD*M+1), (6.27)
w= [0 x| e CM+Dx1, (6.28)

In (6.28), 7 € C is a dummy variable with |»|?> =1, and g = [¢/%1,&/%2, ., e/oam|i ¢ cMx1,
To simplify the complexity and facilitate the solution of Ps, we introduce a set of auxiliary
variables xk[/, n],Vk € K,V € £,Yn € N. These auxiliary variables are designed to set a lower
bound on the SINR equation (6.20). This approach not only simplifies the mathematical
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representation of the SINR constraint but also ensures that it becomes more amenable to
the optimization techniques we intend to apply. Therefore, we have:

0 < xkll,n] <Akll, n] & Ck["”], Vke KY€ LNnEN, (6.29)
Dk[/,n]
where
Ci[l, n] = Tr(Zy[n]W i [n]) B[!, ], VkeK,VI€LYnEN, (6.30)
K
Dill,n] =Y. Tr(Z;[n]Wi[n]) B[/, n] + 52, VkeKVI€LVNnEN, (6.31)
J#k
with
Zy[n] = Ug[n] YU [n], Vg ={kj}.VkeK. (6.32)

Consequently, the achievable rate in (6.17b) can be restated as:

Ri(x) = Fi(x) — Gr(x).  VkeKk, (6.33)
where x is the collection of optimization variables xx[/, n],V/, n.

To further refine the approach towards solving Ps, we introduce an additional layer of
optimization variables, denoted by Zx[/, n],Vk € K,VI € L,VYn € N. These slack optimization
variables are utilized to set an upper bound on the denominator of the SINR approximation
as expressed in equation (6.29). This deliberate move simplifies the handling of the SINR
constraint by decoupling the interactions within its denominator and numerator, thereby
rendering the optimization problem more tractable?>. The incorporation of Zx[/, n] into our
optimization framework leads to the following reformulation:

xkll, nZk[l, n] < Ckll,n], VkeK,VleLvVneN, (6.34)
Zk[l, n] > D[l n], VkeK.VleLNneN, (6.35)
where Z,[/, n] can be thought of the k's user interference on time slot / and subcarrier n. By

referring to the objective function of Ps as £t the revised optimization problem (which
is a touch away from the solution) is formulated as follows:

2Transforming fractional problems, like those involving SINR, into non-fractional forms simplifies solving
them by enabling the use of more straightforward optimization techniques. This approach improves solu-
tion efficiency and accuracy, making complex problems more tractable. By introducing slack variables and
employing techniques such as the big-M method, we essentially decouple the numerator and denominator
of this ratio, thereby simplifying the SINR constraint into a more tractable form. This approach aligns with
the goal of making the problem more amenable to optimization algorithms, enabling us to apply advanced
mathematical tools and techniques.
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Ps: _min £t (6.362)
p.5.®.5.2,x YT

S.t.: /:_k(Xk)_Gk(Xk) > 5k By, Vk e K, (6.36b)
diag(Y) = 111, (6.36¢)
T =0, (6.36d)
rank(Y) <1, (6.36¢)

(6.13d) — (6.13f), (6.16b) — (6.16d), (6.17b) — (6.179),
(6.23b) — (6.23¢), (6.34), (6.35).

\

The optimization problem Pg remains non-convex due to the non-convex nature of (6.34),
(6.35), and the rank constraint (6.36e). This non-convexity presents significant challenges in
the pursuit of an efficient solution. Notably, constraints (6.34) and (6.35) are characteristic
of Difference of Convex (DC) problems, a category well-documented in literature [3, 8, 129,
9]. This identification is crucial as it opens avenues for applying DC programming strategies
to navigate the problem’s complexity.

Moreover, the bilinear term x|/, n]Z[/, n] on the left-hand side of (6.34) further compli-
cates the optimization by introducing an additional layer of non-convexity. Despite this
complexity, there's a silver lining: this product term can be reformulated as the difference
of two convex functions. Such a reformulation effectively translates both (6.34) and (6.35)
into a DC problem framework. This transformation not only demystifies the path to ad-
dressing the non-convexity but also significantly enhances the feasibility of devising a potent
and efficient resource allocation algorithm. The DC representation thus serves as a linchpin
in our strategy, enabling a more nuanced and tractable approach to solving the optimization
problem presented by Pg. This, the DC form of (6.34) and (6.35) can be expressed as
follows:

st(xkll, nl Z[l, n]) = s2(xk[] n]L Zie[1 n]) <
(s3(, Bl n]) = sa (X, B[] 1))
VYkeKVleLlLvneN, (6.37)

K
Y (ss(X, B[l n]) =56 (X, B[l n])) + 62 < Ik[l, n],
J#k
VkeK,VlieLVneN, (6.38)

where
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st(xkll, . Zill, nl) = 0.5(xk !, n) + Z[1, n])?, (6.39)
Yk e K,VIeLNYneEN,

s2(xkll. ). Zil, n]) = 0.5(xk[!, n])? +0.5(Z [/, n])?, (6.40)
Yk e K,VIeLNVYneEN,

se(X, Bo[l, n]) = 0.5(Bs[, n] + Tr(Z; [n]W,[n]))?, (6.41)
V{¢, 9} = {{3,k}.{5.j}}.Vk e K,VI € LNn€E N,

s (. Boll, n]) = 0.5(Bll, n])? +0.5(Tr(Z; (Wi [n]))? (6.42)

V{C, 9} = {{4,k}.{6,j}} .Yk € K.VI € LYnEN,.

Both sides of (6.37) and the left-hand side of (6.38) are not convex. To address the non-
convexity of the left-hand side of (6.37), we apply the SCA technique, which involves using
a first-order Taylor expansion to obtain a convex approximation of the non-convex terms as
follows:

S Ockll X1l Zill ) 28 n)) = 0.5(x (1, n)?

1 n) el ] = >0, ) +0.5(Z (1, n))?

+ 21 )Tl ) = Z 11, ),

VkeK,\VleLvneN. (6.43)
Similarly, to address the non-convexity of the right-hand side of (6.37) and the left-hand side

of (6.38), we also employ the SCA technique. Thus, we can approximate these non-convex
terms as follows:

(0, Byl 1], XD, 51, n]) = 6 (0D, 51, n))

+ Tr(Vy (gc(‘r(i), ﬁg)[/, n])H(-r _ .r(l)))

+ TV (e (X, B0 ) (B ) = 5710, ),

V{¢, 9} = {{4,k},{6.j}}.VI € LVneN, (6.44)
where Vr (sc(Y By . nl) and Vi (sc( X, By . n]) are the gradients of (X By 1. 1]). (6.42)

with respect to Y and pg, respectively. Therefore, (6.37) and (6.38) can be approximated
as follows:

a1 Ol nl Zell ) — @ el nl X1 ) Zill ] 2871, )

< (3. Bl ) = &(X Bell, n, XD, 5011, ), (6.45)
K .

Y (ss(X. il ) =& (X, ;[ n, XD, 511, n])) + 62

J#k

<Illl,n], VkeKVleLNVneN. (6.46)

Unfortunately, Pg is still not convex. However, the convexity of Pg hinges on the rank of Y.
Typically, Pg yields solutions with a rank higher than one. To overcome this last challenge, we
reformulate constraint (6.36e) utilizing the DC method, resulting in the following expression:

ITI*~lx)*<o. (6.47)



150 CHAPTER 6. RESOURCE ALLOCATION IN UPLINK MEC-IRS NETWORKS

Algorithm 7 Proposed Iterative SCA Algorithm for Offloading and Resource Allocation in
an Uplink IRS-assisted MEC Network

Input: Set iteration index i = 1, and maximum number of iteration Tmax, randomly initialize
pY, p°, @0, 0, 20 X0 YO and penalty factors [A1, X2,0]7 = 13
1: repeat
Calculate (6.43) and (6.44)
Solve P for given p(), p(), &) () 2 () and
'I'(’V), and retain the intermediate solution
4: Seti=i+1and pl) =p*, p() =p* &) = &*
s =g* () = z* x() =x* and Y =1*
until / = Trhax
return p*, p*, ®*, s*, =¥, x*, Y*

SN

Note that | X||* = ¥, 7i > || X||?> = max;{7;} holds for any given Y, where 7; is the i-th
singular value of Y. The equality holds if and only if X achieves rank one i.e., rank(Y) =1
[3]. Now, we take the first-order Taylor approximation of || Y||? as:

=k(Y)

1012 = 10O 4 Tr (A (TO) Mo (Y0) (1 = 71)). (6.48)
By utilizing (6.48), we can obtain a convex approximation for (6.47), expressed as:
RE(Y) £ (|0« — w(Y) <O0. (6.49)

Finally, the optimization problem is formulated by adding () to the objective function of
Pe with a penalty factor § > 1 to penalize non-rank-one matrices. The modified optimization
problem with convex objective function and constraints (we arrived to a soltuion) can be
written as follows:

7

Pr: min EPRI_§(RH(T)) (6.50a)
p,p,®,s,2,x,YT

(6.13d) — (6.13f), (6.16b) — (6.16d), (6.17b) — (6.179),
(6.23b) — (6.23€), (6.36b) — (6.36d), (6.45), (6.46).

\ 7

The optimization problem P; can be effectively solved by utilizing well-established convex
optimization packages like CVX [9, 8, 129, 3]. Finally, we outline our proposed algorithm in
Algorithm 7.

6.5 Performance Evaluation

In this section, we present the simulation results that verify the performance of our proposed
IRS-assisted OFDMA uplink URLLC MEC system, adhering to the simulation parameters
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provided in Table 6.1, unless specified otherwise. The simulation environment is designed,
positioning the network's center at the coordinate origin (0,0) meters, with the AP strate-
gically placed at (0, —100) meters and the IRS at (50,0) meters. Furthermore, the network
hosts five MT C-enabled 10T users (K =5), whose locations are randomly distributed within
a circle of 4 meters radius centered at (25,0) meters.

To accurately model the signal propagation within this environment, we adopt a path-loss
model expressed as L(d) = ag(d/do)~¢, where ag = —0.001 represents the signal attenuation
at a reference distance dy = 1 meter, d denotes the link distance, and £ is the path-loss
exponent. Specific to our setup, the path-loss exponents for the AP-IRS, IRS-user, and
AP-user links are respectively configured to 2.2, 2.2, and 3.4. This setup assumes Rician
fading across all communication links, characterized by a Rician factor of 3 dB, to closely
mimic realistic signal propagation scenarios and evaluate the performance of our system
under practical conditions.

In our simulation framework, we address the small-scale fading by adopting distinct models
for different channel links. Specifically, we model the fading between the AP and the users
using Rayleigh fading, which is typical for environments where the LoS component is absent
or negligible. Conversely, for the channels connecting the AP to the IRS and the IRS to the
users, we employ a Rician fading model. The Rician model is characterized by a Rician factor
of 10, indicating a significant LoS component in these links, which is common in scenarios
where the IRS is strategically placed to enhance the communication link’s quality.

The choice of fading models is crucial for accurately representing the physical environment’s
impact on the transmitted signals. Rayleigh fading is ideal for urban environments where
obstacles frequently obstruct the direct path, while Rician fading models scenarios with a
clear dominant path but accompanied by scattered multipath components.

The comprehensive simulation results we present are the culmination of averaging over
multiple realizations of both path loss and multi-path fading effects. This averaging process
ensures that the outcomes reflect a robust understanding of the system’s performance across
various propagation conditions, thereby providing insights that are both reliable and indicative
of real-world operational scenarios. The consideration of these fading models enhances the
fidelity of our simulations, ensuring they capture the essential characteristics of wireless
transmission in diverse environments.

6.5.1 Performance Bound and Benchmark Schemes

To rigorously evaluate the effectiveness of the resource allocation algorithm we propose, we
undertake a comparative analysis against a suite of benchmark schemes, each designed to
highlight different aspects of system performance under varied conditions:

e Lower bound: To obtain a lower bound on the system performance, Shannon's ca-
pacity formula is adopted in problem P1, i.e., Vk[/, n],Vk, (6.8), is set to zero. The
resulting optimization problem is solved using a modified version of the proposed al-
gorithm.

e Method A: This is the proposed Algorithm 7.
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Table 6.1: Simulation Parameters for Offloading and Resource Allocation in an Uplink IRS-assisted
MEC Network

Parameter Value

Total number of reflecting elements, M 50

Total number of uplink time slots, L 4

Total number of subcarriers, N 32

Bandwidth of each sub-carrier 30 kHz

Noise power density -174 dBm/Hz
Maximum transmit power of each user, px max 23 dBm
Circuit power consumption of user k, pcjr 50 mW
Packet decoding error probability, €, 1076

Number of bits per packet (bitstream size), Bx | 160 bits

e Method B: In this scheme, we adopt random phase shifts for the IRS elements and
optimize the users’ power allocation and offloading decisions.

e Method C: In this approach, we maintain a fixed sub-carrier allocation for offloading
while optimizing other variables using SCA.

e Method D: We remove the IRS from the system in this scheme. We consider the
uplink power allocation and passive beamforming based solely on the direct link between
the AP and the user.

6.5.2 Simulation Results

Fig. 6.2 illustrates the relationship between system power consumption and packet error
probability, highlighting the impact of acceptable error rate and joint resource optimiza-
tion on power consumption. Notably, power consumption demonstrates a monotonically
decreasing behavior as packet error probability increases. This trend is primarily due to the
characteristics of the complementary error function employed in the normal approximation
for the data rate function, i.e., (6.6), which naturally declines as packet error probability
escalates. Therefore, embracing a higher packet error probability threshold can significantly
diminish the required transmit power to adhere to the latency demands of MTC-enabled
loT applications. Consequently, this means as the packet error probability increases, the
influence of the dissipation part in the normal approximation fades away.

This depiction also reveals that, in scenarios adhering to the lower bound on performance
(lower bound), power consumption remains unaffected by packet error probability variations.
This is because of the foundational assumption of zero packet error probability inherent
in Shannon’s capacity formula, where channel dispersion Vi[/,n], Vk € K,V € L,¥n e N,
(6.8), is nullified. The discernible gap between the lower bound and the outcomes of our
proposed algorithm (Method A) represents the necessary compromise to satisfy the rigorous
delay and reliability requisites of ultra-reliable low-latency communication with short packet
transmissions.

Incorporating IRSs into the system architecture not only paves the way for remarkable power
efficiency enhancements but also significantly boosts energy conservation. Nonetheless, it
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Figure 6.2: Average power consumption [dBm] vs. packet decoding error probability in an IRS-aided
network.

is important to weigh the computational demands and the initial outlay required for IRS
implementation. Increasing the number of reflecting elements (M) enhances the passive
beamforming gain, thereby reducing the transmit power of loT devices and facilitating effi-
cient offloading.

The performance of the scheme utilizing random IRS beamforming (Method B) is inferior to
that of a system utilizing an optimal beamforming vector (Method A), but it still surpasses
the performance benchmarks set by strategies reliant on fixed sub-carrier allocation (Method
Q). It is important to note that deploying IRSs plays a crucial role in maximizing the capa-
bilities of MEC servers. By dynamically modifying the wireless propagation environment in
real-time, IRSs help ensure that users are not forced to allocate more power due to poor
channel conditions. This allows for efficient offloading of user tasks to edge servers rather
than having to compute the tasks locally. Furthermore, deploying IRSs helps guarantee that
transmissions are completed within the desired delay, meeting the latency requirements of
the system. This comprehensive analysis accentuates the pivotal role of IRSs in enhancing
system performance, facilitating effective task offloading in MEC landscapes, and ensuring
that the network’s energy consumption is optimized.

Fig. 6.3 presents an in-depth analysis of how varying task sizes (commonly known as bit-
stream sizes), influence the overall power consumption within the system. It is observed
that with the increase in the task sizes, there is a corresponding increment in power con-
sumption across all schemes. This trend is primarily attributed to the increased demand
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Figure 6.3: Average power consumption [dBm] vs. the task size [bits] in the uplink of an IRS-
assisted OFDMA URLLC MEC network.

for higher SINRs and the subsequent necessity for elevated transmit power levels to sustain
reliable communication. Significantly, the incorporation of IRSs into the system architec-
ture markedly enhances the SINR values by introducing additional LoS connections. This
enhancement allows the system equipped with IRS technology (method A) to efficiently
manage and support larger task sizes with reduced power consumption compared to config-
urations without IRS capabilities (method D).

The effectiveness of the proposed algorithm is further demonstrated through its superior
performance relative to the alternative strategies that employ non-optimized subcarrier allo-
cation and random IRS phase shifts (methods B and C). By strategically leveraging the SINR
improvements offered by the IRS, the proposed algorithm substantially minimizes power con-
sumption. This is achieved through the optimization of data offloading decisions, subchannel
allocation strategies, and transmission power settings, demonstrating the algorithm’s capa-
bility to adaptively balance the system’s power requirements.

Furthermore, these results highlight the critical decision-making process involved in selecting
between offloading computational tasks to the edge or processing them locally, especially in
scenarios characterized by the transmission of larger data sets. The proposed algorithm’s
approach to resource allocation demonstrates its potential to significantly influence power
efficiency, making it a vital tool for managing the energy demands of IRS-assisted OFDMA
URLLC MEC systems. This detailed examination determines the transformative impact of
IRS technology on enhancing network performance, particularly in facilitating energy-efficient
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management of increasing computational demands, especially when processing huge data
sets.

6.6 Conclusions

This chapter studied the process of designing a resource allocation algorithm for an uplink
multiuser IRS-aided MEC system. Centered on addressing the strict requirements for end-
to-end transmission delay and reliability, crucial for MT C-enabled loT users, our exploration
continued toward a comprehensive joint resource allocation and offloading decision scheme.
This scheme, distinctively characterized by its focus on short packet transmission, leverages
the IRS's capability to significantly enhance the communication channel, thereby ensuring
improved levels of reliability through the provision of virtual LoS links. The IRS was deployed
to enhance the communication channel and to increase reliability by providing virtual LoSs.

To navigate the complexities of this study, we formulated an optimization problem aimed
at minimizing the average system power consumption, all while adhering to URLLC MTC-
enabled user's QoS constraints. This formulation revealed the problem’s inherent non-convex
MINLP nature, underscoring the substantial challenges encountered in the quest for an op-
timal solution. In response to these challenges, we engineered an efficient, low-complexity
algorithm. This algorithm, which integrates SCA techniques alongside an iterative rank min-
imization method, demonstrated remarkable proficiency in converging to a local optimum.

The simulation results presented serve not only as a testament to the proposed algorithm's
effectiveness but also illuminate the significant, practical benefits of integrating IRS technol-
ogy within MEC systems. Particularly noteworthy is the IRS’s invaluable role in extending
coverage and facilitating task offloading for multiple energy-constrained URLLC devices,
thereby heralding a new era of enhanced network performance and efficiency.

As we move to the next chapter, we aim to investigate the application of IRS technology
within the millimeter-wave (mmWave) spectrum. This forthcoming discussion promises
to unravel the potential of the IRS to revolutionize communication in the high-frequency
mmWave bands, offering insights into novel strategies for overcoming the challenges posed
by this spectrum while maximizing the benefits of IRS-enhanced communication networks.
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 Chapter ¢/

Active IRS for mmWave Wireless
Networks

NTELLIGENT REFLECTING SURFACES (IRSs) have emerged as a revolutionary tech-

nology capable of substantially enhancing the efficiency and performance of various appli-
cations by intelligently manipulating signal propagation paths. By acting as low-cost passive
devices, IRSs can adjust the scattering, refraction, and reflection characteristics of radio
waves, thereby significantly reducing interference at one or more selected receivers. In this
chapter, we explore the concept of an active IRS-assisted Multiple-Input Single-Output
(MISO) system within the context of a millimeter-Wave (mmWave) wireless network. This
setup allows for signals transmitted from the Access Point (AP) to be reflected by the IRS,
facilitating their reception by the user. To fully leverage the advantages of IRS-assisted
wireless networks, it is crucial to optimize not just the phase shift at the IRS but also to
take advantage of amplitude variation (now the elements are ‘active’) through the use of
cost-effective hardware.

Until now, in previous chapters, our discussion has centered on the lower frequency range,
specifically Frequency Range 1 (FR1), which encompasses frequencies from 450 MegaHertz
(MHz) to 6 GHz. This range, utilized by current cellular networks, supports traditional
cellular bands and strikes a balance between coverage and capacity. We have established
a fundamental comprehension of how IRSs operate within these spectrums. Shifting our
focus to a higher frequency domain, the significance of Frequency Range 2 (FR2) becomes
apparent in appreciating the utility of IRSs. FR2, which extends from 24 GHz to 52 GHz,
delves into the mmWave spectrum. This range is distinguished by its potential to deliver
substantially higher data rates and bandwidth, courtesy of larger available frequency blocks.
However, this comes with the trade-offs of reduced transmission distances and an increased
vulnerability to physical obstructions. In this chapter, we want to answer the question of
whether Active IRS is useful for FR2.

Thus, in this chapter, we formulate the system sum rate maximization problem to opti-
mize both the active and passive beamformer at the AP and the IRS, considering amplitude
control at the IRS from the limited available power with low-cost hardware. To tackle
this complex problem, we introduce two low-complexity algorithms. In particular, the first
sub-problem utilizes the Weighted Minimum Mean Square Error (WMMSE) methodology to
enhance beamforming at the AP, while the second is approached through Successive Convex
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Approximation (SCA). Our numerical results show the advantages of active IRS configura-
tions, demonstrating their superior performance in comparison to passive IRS setups.

This chapter is based on:

JJalali, A. Khalili, A. Rezaei and J. Famaey, “Is Active IRS Useful for mmWave
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7.1 Introduction to IRS-assisted mmWave Networks

To meet the growing demand for high-speed multimedia access, it's crucial to significantly
enhance the capacity of existing wireless networks through the integration of diverse wireless
technologies and network architectures. Recent investigations have highlighted the potential
of ultra-dense networking and massive Multiple-Input Multiple-Output (m-MIMQO) systems.
Furthermore, the adoption of innovative techniques, such as exploiting the millimeter-wave
(mmWave) spectrum, has been identified as a promising approach to satisfy the burgeoning
capacity requirements [230]. Notably, the use of mmWave bands and the incorporation of
additional antenna elements, coupled with the deployment of Radio Frequency (RF) chains
operating at exceedingly high frequencies, pose challenges related to increased hardware
costs and elevated energy consumption in practical mmWave systems. Consequently, there
is a pressing need for novel strategies that address both spectral and energy efficiency to
ensure the sustainable development and deployment of future wireless networks [18, 231].

In response to these challenges, intelligent reflecting surfaces (IRS) have emerged as a
critical technological innovation, facilitating the creation of smarter radio environments.
This cutting-edge technology employs an array of artificial reflecting elements, such as low-
cost printed dipoles, to reflect incident RF waves in specific directions while minimizing power
consumption. These reflecting elements are controlled by an intelligent mechanism, enabling
the manipulation of signal propagation without introducing additional thermal noise. This
attribute of IRS, leveraging passive reflection beamforming, ensures significantly lower power
consumption compared to traditional Amplify-and-Forward (AF) relays, thereby offering an
efficient and sustainable solution for the evolution of wireless networks [91, 232].

Recent research on IRS-aided communication systems has predominantly concentrated on
refining IRS parameters to enhance the performance of outdoor communication networks
[64, 60, 233]. Notably, [64] delves into an IRS-assisted single-cell multi-user Multiple-
Input Single-Output (MISO) setup, focusing on optimizing the induced phases for both
passive and active beamformers. This optimization aims to amplify the overall received
signal power for users equipped with single antennas. The studies presented in [60, 233]
extend this approach by striving to boost both energy and spectral efficiency within an
IRS-aided multi-user MISO framework. They achieve this through the development of a
transmit power allocation strategy at the Access Point (AP) and the adjustment of IRS
phase-shifts, specifically tailored for scenarios where zero-forcing precoding is applied in the
digital domain.

While a substantial body of literature has addressed IRS-based networks [136, 174], only
a select few have explored the manipulation of reflection amplitudes within IRS systems
[231, 234]. The investigations in [231, 234] are particularly groundbreaking, evaluating the
impact of amplitude variation in networks characterized by imperfect Channel State Informa-
tion (CSI). By employing advanced optimization techniques, such as penalized Dinkelbach
and block successive upper-bound minimization algorithms, these studies succeed in fine-
tuning reflection coefficients to maximize data transmission rates. This meticulous control
over reflection amplitudes facilitates notable performance enhancements when compared to
traditional full reflection/phase-shift control methods.

Answering whether to go with passive or active IRS deployment in the next generation of
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wireless communication networks led to significant recent attraction in the field [235, 236,
237, 238, 239]. Research in [235] prioritizes the strategic placement of IRS elements to
optimize data rates in a system comprising a single-user, Single-Input Single-Output (SISO)
configuration alongside an active or passive IRS and a single-antenna AP. In the context
of the upcoming sixth-Generation (6G) wireless communications, [236] advocates for active
IRS as a pivotal 6G technology, capable of mitigating multiplicative fading. This study
provides a comprehensive comparison between active and conventional passive IRS models
to identify performance limitations. Additionally, [237] explores the optimization of user data
rates in a multi-user MISO downlink network, incorporating different types of IRSs as integral
components of the 6G ecosystem. A practical design for active IRS, aimed at minimizing
outage probabilities within a SISO framework with full CSI knowledge, is examined in [238].
Lastly, [239] focuses on a resource allocation problem, aiming to reduce the transmit power
requirements of an AP within an active IRS-enhanced communication network. Here, active
IRSs are leveraged to amplify the reflected signal by harnessing an additional power source,
demonstrating the potential of active IRS deployment in future wireless networks.

The advent of mmWave technology presents a compelling avenue to significantly enhance
throughput in wireless networks, leveraging its capability to support higher frequency bands.
Despite its promise, the mmWave technology is not without its challenges, primarily due
to its short wavelengths, which lead to diminished signal propagation and increased ab-
sorption by physical obstructions. In this context, IRS emerges as a potential solution to
mitigate some of the limitations associated with mmWave communication networks, poten-
tially enhancing performance by intelligently managing signal propagation [84]. However,
the integration of IRS with mmWave technology is not straightforward and can introduce
complexities, such as resource inefficiencies [86]. While IRS technology can amplify signals
for certain users, it may inadvertently escalate destructive interference for others, underlining
the dualistic nature of its impact on network performance.

Addressing these challenges necessitates a nuanced approach, particularly focusing on the
control of reflection amplitudes by IRS. Our objective centers on evaluating the benefits
of amplitude control within IRS-equipped networks, especially against traditional methods
that predominantly utilize full reflection capabilities. To achieve this, we introduce a novel
optimization algorithm aimed at maximizing the data rate of the network, tailored to the
unique characteristics of the mmWave communication channel. This approach employs a
Weighted Minimum Mean Square Error (WMMSE) methodology for optimizing transmit
beamforming with a fixed IRS configuration. Subsequently, we apply Successive Convex
Approximation (SCA) techniques to adjust both the amplitude and phase shift of the IRS
elements, assuming a predetermined transmit beamforming setup.

The core of our analysis is demonstrated through comprehensive simulation results, which
underline the efficacy of amplitude control in maximizing the utility of IRS-assisted wireless
systems. Specifically, our findings highlight the significant potential of employing ampli-
tude control strategies within mmWave networks. By finely tuning the reflective properties
of IRS elements, we can not only overcome some of the inherent drawbacks of mmWave
communication but also unlock new dimensions of network performance optimization. This
approach marks a pivotal step towards realizing the full potential of IRS technology in en-
hancing mmWave wireless networks, offering a promising pathway to overcome the complex
challenges posed by high-frequency wireless communication.
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We summarize the main contribution of this chapter as follows:

e Introduction of IRS in mmWave Networks: The chapter discusses the integration
of IRS with mmWave communication systems, highlighting IRS as a novel solution
to address the inherent challenges of mmWave technology, such as limited signal
propagation and absorption by obstacles.

e Optimization of IRS Parameters: It introduces a new optimization algorithm de-
signed to maximize the network data rate specifically for mmWave channels. This
algorithm uniquely focuses on the amplitude control of the IRS elements, aside from
the traditional phase shift control, to enhance network performance.

e Utilization of Advanced Optimization Techniques: The chapter details the applica-
tion of WMMSE for transmit beamforming optimization when IRS settings are fixed.
Additionally, it employs SCA for the fine-tuning of both amplitude and phase shifts of
IRS elements, providing a dual approach to optimization.

e Simulation Results and Performance Gains: Through comprehensive simulation,
the chapter demonstrates the efficacy of controlling the amplitude of IRS reflections.
This is particularly shown to significantly enhance the performance of IRS-assisted
mmWave wireless networks, suggesting that amplitude control is a promising avenue
to fully exploit the potential of IRS technology.

e Application of IRS in mmWave VR Systems: \We then expand the scope of IRS
applications by exploring its integration into mmWave-based Virtual Reality (VR) sys-
tems. This includes optimizing the placement and radiation patterns of IRSs to en-
hance user experience and system efficiency in VR applications.

e IRS Location and Radiation Pattern Optimization: A significant contribution is
the detailed optimization of the location and radiation patterns of IRSs, improving the
performance and immersive quality of mmWave VR systems, marking a novel approach
in the field.

These contributions collectively advance the understanding of how IRS technology can be
effectively deployed in mmWave networks to overcome their limitations, providing valuable
insights into the optimization of network performance through intelligent reflective surfaces.

This chapter is structured as follows: Section 7.2 introduces the system model for an
active IRS-aided mmWave network. Section 7.3 formulates the sum data rate maximization
problem and resolves it using an AO algorithm. In Section 7.4, preliminary results are
presented for the active IRS network to explore scenarios where an active IRS is superior
to a passive one. Section 7.5 provides insights and practical applications, with a special
focus on a VR use case. We study location optimization and resource allocation for the
IRS-assisted VR network in Section 7.6. Section 7.7 formulates the sum data rate problem
for the IRS-assisted VR use case, with the solution provided in Section 7.8. The complexity
of the resource allocation problem for this use case is analyzed in Section 7.9. An evaluation
setup is deployed, and results for the IRS-assisted VR network are analyzed in Section 7.10.
Finally, Section 7.11 concludes the chapter.
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Figure 7.1: An IRS-assisted multi-user MISO mmWave wireless communication system. The AP is
equipped with Nt-antennae and serves K single-antenna mobile users in the downlink. The active
IRS has M reflecting elements in the AP’s LoS signals.

Notations: Throughout this chapter, the following notations are used. The capital bold
face letters are used to denote matrices while using the small bold and small normal face
to denote vectors and scalars, respectively. | represents an identity matrix, C**¥ isa x X y
complex-valued matrix. The superscript (-)" is the conjugate transpose of a matrix, and
transpose of a matrix is expressed as (-)". The notations E[-], tr(-), and diag(-) are used
to denote the statistical expectation, trace and diagonalization operator, respectively. V(+)
reads as the gradient of the function f(-) and agiga) is the first derivative of f with respect
to g at g = a. |x] is the 2-norm of vector x. CA (s, X) gives the distribution of a Circularly
Symmetric Complex Gaussian (CSCG) random vector with the mean p and covariance
matrix X, where ~ means "with the distribution of.” In(-) represents the natural logarithm
of its argument, and R{-} signifies the real part of the argument.

7.2 System Model of an IRS-assisted mmWave Network

In this section, we focus on the design of a communication network that benefits from
the inclusion of an IRS to aid a MISO multi-user setup. As shown in Fig. 7.1, an AP,
equipped with N; antennas, is tasked with managing downlink communication to K users
in this network. These users are collectively represented by the set L ={1,..., K}, which
enumerates them in such a way that each user is distinctly identified.

Central to our discussion is the deployment of an active IRS, which comprises M elements
capable of modifying the phase and amplitude of incoming signals; this ability essentially
makes these elements act as phase shifters and amplifiers. The location of the IRS is
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strategically chosen to be in the Line-of-Sight (LoS) of the AP — such as on a building's
facade — to facilitate optimal signal reflection towards the the users. The set of these
reflective elements is denoted by M ={1, ..., M}.

A distinguishing feature of the IRS in this scenario is its ability to dynamically switch between
modes that allow reflection and modes that do not, catering to various operational phases
like downlink transmission and channel estimation. This adaptability is crucial for optimizing
the network’s performance across different communication phases. Additionally, the model
presupposes the availability of perfect Channel State Information (CSI) both at the AP and
the IRS and operates under a flat-fading channel model assumption. This model simplifies
the analysis by assuming uniform channel characteristics across the transmission band.

We use the term 'active’ to describe the IRS’s capability in adjusting both the phase and
amplitude of reflected signals, enhancing its utility in the network by providing a more subtle
control over signal propagation. The IRS is not active in the sense that it has its own data.
This ability is encapsulated in the channel matrix G € CM*Nt which represents the complex
interactions between the AP's antennas and the IRS's reflective elements. Understanding
this matrix is key to harnessing the full potential of IRS-assisted communication, enabling
signal enhancement and interference mitigation strategies that are responsive to the unique
requirements of the IRS-aided network's users.

In our system model, the communication between the IRS and each user k is characterized
by a reflecting channel vector f, € CM*!, representing the complex path from the IRS's
reflecting elements to the mobile user. Concurrently, the direct channel vector linking the
AP directly to user k is denoted as g, € CNt*1, capturing the LoS and any multi-path effects
between the AP’s antennas and the user. To manipulate the signals reflected by the IRS, we
employ a phase shift matrix @ = diag (61,62, ...,0p), where each 6, = e/®m corresponds to
the phase shift introduced by the m-th element of the IRS. Here, ¢, represents the phase
shift angle for each element, ranging within [0,27), and j is the square root of —1, denoting
the imaginary unit. This phase shift matrix is crucial for steering the reflected signals in
desirable directions to enhance communication quality.

Additionally, we introduce an amplitude control matrix A =diag (a1, as, ..., o), which gov-
erns the reflection amplitude of each IRS element. The amplitude values o, are adjustable
within the range of [0, max], i.€., @m € [0, @max], allowing for fine-tuned control over the
signal’s strength as it is reflected towards the users. This amplitude control is pivotal for
optimizing the IRS's impact on the network, enabling a balance between signal enhancement
and interference management.

Contrary to the assumptions made in prior works [86] that considered IRS devices to operate
under full reflection (i.e., am =1 for all m), our study explores the joint optimization of both
amplitude and phase shift controls at the IRS. This dual-parameter optimization approach
is aimed at unleashing the full potential of IRS technology, facilitating a more nuanced
and effective enhancement of signal propagation and reception in the wireless network.
By adopting this comprehensive control strategy, we endeavor to maximize the benefits of
IRS-assisted communication, making the reflected signals meet the specific needs of the
network's configuration and the users it serves.
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7.2.1 A Simplified mmWave Channel Model

Full CSI knowledge helps disclose the upper bound of the performance gain [136]. To accu-
rately characterize the mmWave communication channel, we employ the Saleh-Valenzuela
model, a well-established representation that captures the essence of mmWave propaga-
tion [240]. This model is a statistical channel model primarily used to represent the propa-
gation characteristics of radio waves, encapsulating the complex interactions between trans-
mitted signals and the environment, including the effects of path loss, multipath propaga-
tion, and the specific spatial characteristics unique to mmWave frequencies. The simplified
Saleh-Valenzuela mmWave channel matrix G is given by:

A
G=1/Nex MY vilelram(wi)on,(6)), (7.1)
=0

where, A, represents the total number of paths, including the LoS and NLoS paths. (;
and (, are the transmit and receive antenna gains, respectively. Additionally, <y, stands for
complex gain of /-th path, ¢;, and 6; are the angles of arrival and the angle of departure
for the i-th path, respectively [240]. Also, the array response function of the IRS can be
expressed as:

_ L1 jon(d/n)sin(e)
anle) =7 [e J (7:2)
1 . .
aNt(e) — - [6127r(d/>\)sm(9)] (7.3)

where X and d denote the mmWave wavelength and the antenna spacing, respectively.
Therefore, the channel gain from the IRS to the user k is:

fio = VM Cviam(p),  YkeK. (7.4)

Since mmWave links are notably prone to obstructions, the direct channel gain between
the AP and each user in the network can be significantly weakened. This susceptibility
to blockages is a critical factor in designing and optimizing communication systems in the
mmWave spectrum. Given this context, the formulation of the transmitted signal at the AP
is essential for understanding system performance and is expressed as follows:

K
X = ZWkSk, Vk e K, (75)
k=1

where s, denotes the transmit data symbol intended for the k-th user and wy € CNt*1 s the
transmit beamforming vector associated with that user. The beamforming vector directs
the transmitted signal’'s energy toward the intended user, thereby optimizing the signal’s re-
ception and mitigating interference with other users. Furthermore, the aggregate transmit
data vector for all K users in the system is defined as s = [s1, ..., Sk], containing the data
symbols for each user. It is important to note the assumption of normalized power for the
transmit data symbols, which is mathematically represented as IE[ssH] = 1. This normaliza-
tion implies that the expected value of the outer product of s and its conjugate transpose
s equals the identity matrix I, indicating that the transmit symbols are uncorrelated and
have unit power. This assumption simplifies the analysis and design of the communication
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system, allowing for clearer insights into the effects of beamforming and channel conditions
on system performance. Consequently, the signal received by mobile user k is a result of
both direct and reflected transmission paths. The formulation of the received signal can be
expressed as follows:

vi = (gl +f'/AOG) x + fi/A@ng + n,  VkEK. (7.6)

Here, the received signal yj at user k is a sum of several components:

e The first component, g,’jx, represents the direct signal from the AP to user k, con-
sidering the direct channel vector gf.

e The second component, f,f’A@Gx, models the signal that is reflected by the IRS before
reaching user k. This involves the reflecting channel vector fﬁ, the amplitude control
matrix A, the phase shift matrix @, and the AP to IRS channel matrix G.

e The third component, f/jAGnd, accounts for the noise introduced by the IRS, charac-
terized as dynamic noise ng, which includes the noise arising from both the input signal
and the inherent noise of the IRS’s electronic components due to the amplification
noise power [241].

e The last term, ng, represents the ambient noise at the receiver of user k, also known
as static noise.

Both noise terms ng and nx are modeled as Additive White Gaussian Noise (AWGN)
with a circularly symmetric Gaussian distribution, denoted by ng NCN(O,Ugth) and ng ~
CN(0,0%), respectively. Here, 03 and o7 represent the variance of the dynamic and static
noise components, illustrating the stochastic nature of these noise sources within the com-
munication environment. Now, we quantify the quality of a received signal in relation to the
background noise and interference from other signals. For user k in an IRS-aided mmWave
network, the received Signal-to-Interference-plus-Noise Ratio (SINR) can be comprehensively
described by considering both direct paths and paths reflected by the IRS. Accordingly, the
SINR at the receiver k can be expressed as:

(g} + /A0 w, *

Yk = e Vk e K. (7.7)
Y |(af+f/ABG)w| +a2 |fHAB| + o2

i=1,i#k

This SINR formulation comes in handy in understanding how the IRS's reflective capabilities

can significantly influence the received signal quality by not only enhancing the desired signal

but also by potentially increasing the interference and noise levels. We develop our problem

formulation next based on this SINR formulation.

7.3 Sum Data Rate Problem Formulation for the IRS-
assisted mmWave Network

In this section, we maximize the total sum data rate by optimizing the corresponding transmit
beamforming matrix W = [wy, ...,w] € CVe*K at the AP and reflection coefficients at the
IRS. The associated optimization problem is formulated as:
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K
Py :W’rgifam kgle (7.8a)
K
s.t.: IWi|? < Prax (7.8b)
k=1
0<0,<2m, Yme M, (7.8¢)
0<am<amax, VmeM, (7.8d)
K
Y [AOGw,|* +03|AB|* < Pa, (7.8e)
k=1

where

Rk =In(1+vk)

. |(aff +£[/AOG) w,|*

P 5 5 Vk e K, (7.9)

/:in¢k|(gf+kaAeG)w,| +02|fAB|" + 02
Within the realm of wireless communication system optimization, the challenge often lies in
addressing non-convex optimization problems, where the objective function and constraints
do not adhere to convexity principles. Such is the case with the optimization problem
denoted as P1, characterized by its non-convex nature. This complexity arises from the
inherent structure of P1’s objective function and its constraints, which defy straightforward
solutions In Py, the constraint labeled as (7.8b) sets a cap on the total transmit power
emanating from the AP, establishing a threshold at Pnax for the maximum permissible
transmit power. This limitation is crucial for adhering to regulatory standards and managing
interference within the network. Further, the constraints specified in (7.8c) and (7.8d) define
the flexibility afforded by each reflecting element on the IRS. Specifically, these elements can
be individually adjusted in terms of their phase (©) and reflection amplitude (A) coefficients.
This adaptability introduces a significant degree of freedom into the optimization problem,
thereby facilitating enhanced performance gains across the wireless network. Finally, the
constraint (7.8e) implies that the power amplified by an active IRS is constrained not to
surpass a specified maximum allowance, denoted by Pa. This limitation ensures that the
IRS operates within safe and efficient power levels, optimizing the system’s overall energy
consumption and performance.

Given the non-convexity of P; due to the non-convex functions in the objection and con-
straints, finding an optimal solution presents a formidable challenge. To navigate this com-
plexity, we advocate for an iterative strategy that alternates between optimizing power allo-
cation and phase shifts. Initially, with a given reflection coefficient ® and amplitude control
A, the algorithm seeks the optimal transmit beamforming vector W. Subsequently, it recal-
ibrates to find the best values for W given fixed @ and A. This iterative loop continues until
the solution stabilizes at an optimal value for the objective function. The ensuing segments
of this section will delve deeper into the mechanics of this iterative algorithm, elucidating
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its procedural steps and underlying logic.

7.3.1 Optimization with respect to the Transmit Beamforming

Given the reflection coefficient matrix ® and the amplitude control matrix A, the optimiza-
tion problem P1 can be simplified. This adjustment focuses the problem on optimizing the
transmit beamforming vectors, represented as W, at AP within the constraints of the pre-
determined © and A. This scenario allows for a targeted optimization strategy, aiming to
enhance the network’s performance by adjusting the AP’s transmission parameters to har-
monize with the static configuration of the IRS. Thus, for given © and A, the optimization
problem P17 is reduced to:

K
P> : max Z R (7.10a)
W=
K
st.o Y [wel|? < Prax, (7.10b)
k=1
K
Y IAGGw,|* +03|AB* < Pa, (7.10c)
k=1

where Rx =In(1+yx) with the SINR, yx, given by:

hi'w 2
Y= —x [/ VkeKk, (7.11)
Y |htw, |’ + 02 |fHAB|° + o2
i=1,i#k
in which
hi! =g}/ +f/AHO"G, Vk €K (7.12)

denotes the combined channel from the AP and the IRS to the k-th user.

To address the complexity of optimizing the original problem Py with the refined focus as
outlined in P2, we employ the Weighted Minimum Mean Square Error (WMMSE) algorithm.
The main idea of the WMMSE algorithm is to "“transform the objective of maximizing the
weighted sum rate into an equivalent problem of minimizing the weighted sum mean square
error.” This transformation facilitates the use of Alternating Optimization (AO) techniques,
enabling an iterative refinement of the solution by optimizing over one set of variables at a
time while keeping others fixed.

The application of the WMMSE algorithm begins with the assumption that the signal in-
tended for user k, sk, is decoded with the help of an equalizer ug. Consequently, the
estimated signal at user k is derived through this decoding process. The iterative nature of
the WMMSE algorithm allows for sequential adjustments to the transmit beamforming vec-
tors, equalizers, and weight matrices, progressively converging to an optimal or near-optimal
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solution that enhances the network’s overall performance. Therefore, by assuming the signal
sk Is decoded by using the equalizer uy, the estimated signal at user k becomes:

Sk = U Yk, Vk e K. (713)

Given the assumption that the signals s, and the noise nj are independent across all users
k in the set K, the Mean Square Errors (MSEs) for estimating the transmitted signals can
be quantified. The MSE for user k, denoted as ex, measures the expected value of the
squared difference between the estimated signal 5, and the actual transmitted signal s.
Mathematically, this is expressed as:

ek:E[|§k—sk|2] Vkek. (7.14)

Based on this definition, the MSE for each user k can be computed using the following
formula:
ex = |uk|? Bk — 2R {ukhflw, } +1,Vk € K, (7.15)

where By is defined as:

K
2 2 2
Bi = |hfwi|"+ Y [hfw,|" + 03 [f/AB|" + 07 Yk € K. (7.16)
=1
The parameter By accumulates the power of the signal intended for user k, the interference
from other users, and noise impacts, including the noise amplified through the IRS (03) and
ambient noise at the user (07).

To achieve the optimal reception quality, the Minimum Mean Square Error (MMSE) equalizer
for user k, denoted as yMMSE  is derived by minimizing the MSE with respect to the equalizer

setting. The optimal MMSE equalizer is given by:
yWMSE =with B, VkeK, (7.17)

This expression is obtained by setting the derivative of e, with respect to yi to zero, i.e.,
g—;’; =0, assuming that all transmit beamforming vectors W are held fixed. This optimization
step ensures that the equalizer is tuned to minimize the impact of interference and noise,

thereby enhancing the accuracy of the signal estimation at each receiver.

Incorporating the optimal MMSE equalizer obtained earlier, (7.17), into the MSE formula,
(7.15), refines our understanding of the system's performance. This insertion allows for the
derivation of the MMSE for user k, which is represented as follows:

el™MSE — min ek:g;l(sk_\h;'wk}z),wezc. (7.18)

This equation highlights the minimized error achievable through the application of the MMSE
equalizer, thereby optimizing the reception quality at each user's receiver. Furthermore, this
minimized error directly relates to the SINR for user k, which is expressed as:

Y= (eMEYTT 1 wkek (7.19)

Consequently, the rate of communication for the k-th user, denoted Ry, can be recalculated
as [242]:
Rie=—In(ef™°F),  vkeKk, (7.20)
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which illustrates the relationship between MMSE, SINR, and the achievable rate within this
communication system. Beyond this, the concept of an augmented Weighted Mean Square
Error (WMMSE) is introduced to further refine the system’s optimization process as follows:

Ek:pkek—ln(pk),VkelC, Vk e K. (721)

where pi represents the weight assigned to the MSE of the k-th user. This weighted
formulation allows for an additional layer of optimization by adjusting px to balance the
emphasis on error minimization and rate maximization across users, ultimately enhancing
the overall system performance through a more nuanced optimization approach.

To find the optimal equalizer, which aligns with the MMSE equalizer, we begin by setting
the derivative of the augmented WMMSE with respect to the equalizer uy to zero, that is
g% =0. This process yields the optimal augmented WMMSE value for the MMSE equalizer
as:

Ex (J/;L\AMSE) = pref™>E —In(py), (7.22)

Following this, to determine the optimal weighting factor for the MMSE, py, we now take
the derivative of the augmented WMMSE with respect to the weight p, and set it to zero.
The optimal weight of the MMSE is achieved as follows:

MMSE
98 ) g; ) =0 p} = (In2.ef™E) " vk ek, (7.23)
k

Finally, motivated by the data rate WMMSE relationship in (7.23), the optimization problem
P is transformed into:

K
. : MMSE
Ps: min ;;::1 [oxer In (ox)] (7.24a)
K
s.t.: Wi l|? < Prax. (7.24b)
k=1
K
Y |AGGw,|*> + 03|AB|* < Pa. (7.24¢)
k=1

The optimization problem involves determining the optimal transmit beamforming weights
and the set of equalizers and weights to minimize the WMMSE. Specifically, p = [o1. ..., ok ]
represents the MSE weights for each user, and w = [u1, ..., uk] is the equalizer coefficients.

It can be easily shown that when we minimize P3 with respect to p and wu, respectively,
the MMSE solutions (pMMSE = 4MMSE) including the corresponding MMSE weights and
equalizers can be achieved. While fixing {p,u}, the optimization problem P3 is now changed
into a Quadratic Constrained Quadratic Programming (QCQP) problem at the point W.
Thus, a standard convex optimization package like CVX can be employed to solve the
optimization problem efficiently [174, 243, 129, 151, 1].
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7.3.2 Optimization with respect to the Active IRS Parameters

In this subsection, we focus on the optimization of the active IRS parameters, specifically
targeting the IRS’s reflection coefficients, i.e., the phase and the amplitude, with a given
transmit beamforming matrix W. When the transmit beamforming matrix is found from the
previous subproblem, P1, we adapt the initial optimization problem of P, to address this
new focus of finding ® and A with fixed W. The objective now shifts towards fine-tuning
the IRS's reflection capabilities to further enhance the system’s performance. Thus, we
redefine Py as:

K
Ps: max Z Rk (7.25a)
e =
K
st.r ) |[AOGw|? +03|ABI% < Py (7.25b)
k=1
0<6,<2m, VYme M, (7.25¢)
0<am< amax VYme M. (7.25d)

To enhance clarity in mathematical expressions, let's introduce a matrix = that directly
represents the combined effects of amplitude adjustments and phase shifts applied by the
active IRS. Consequently, this matrix which is the product of A and ® can be expressed as:

=2 diag(a1e/®1, ..., ape/®m). (7.26)
Furthermore, for each reflecting element m, we define X, = ame/®, Vm € M, and aggregate
these individual element settings into a vector x = [x1,....xm]" . This vector x represents
the configured state of the IRS in terms of both amplitude and phase adjustments for each of
its elements. With these definitions in place, we can now represent the interaction between
the transmitted signal, the IRS, and the receiving user k more compactly. Specifically, the

effective channel through the IRS for user k can be represented as:

fI=Gw, 2 o'y, Vk €K, (7.27)
awy £ 5, VkeK, (7.28)

where ’
i = (diag (f{) Gwy) ", Yk e K. (7.29)

This is, (7.29), the effective channel from the AP through the IRS to user k, after being
reflected and phase-shifted. The optimization problem P4 incorporates these simplified
representations. By introducing a slack variable (i, can be formulated as follows:
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K
Ps: max Z logs(1+ (k) (7.30a)
X ¢ =1
H ~ |2
+
st - W’ﬁxz gk|2 > (e Yk EK, (7.30b)
T v+l +o3ixP +of
!
K
Y IZEwi >+ 03I= < Pa. (7.30¢)
k=1
IXm| < am, Yme M, (7.30d)
0<6p,<2m, VYme M, (7.30e)
0 <am < Amax, Vm e M, (730f)

7

where ¢ = [(1,....Ck]T. To tackle the non-convexity issue presented by constraint (7.30b),
we introduce a slack variable, denoted as T, into our optimization framework. This allows
us to reformulate (7.30b) into two separate inequalities, enhancing the tractability of the
problem. The redefined constraints leverage T and {x to express the original non-convex
condition in a more manageable form. Specifically, we can represent the relationship between
T, and ( as follows:

~ |2
Y [+ 8|+ ogIxI> + 0k < Ty Yk €K, (7.31)
i#k
|l x+ 8> = Thcr Vk € K, (7.32)
where
1 2 1 2 2
Tilk = E(Tk+fk) - E(Tk+4k)v Vk e K. (7.33)

This transformation results in two new constraints for the optimization problem, effectively
replacing the original non-convex constraint (7.30b). Among these two new constraints,
the first one, (7.31), is convex and straightforward to handle. However, the second con-
straint, (7.32), maintains a non-convex nature, posing a challenge for direct optimization.
To convert (7.32) into a form amenable to convex optimization techniques, we employ
the Successive Convex Approximation (SCA) algorithm. The SCA method based on the
difference of the two concave function approaches as follows [174, 129, 151]:

2%{(¢£’x“’1 +§k>”¢ﬁx} w1 g > (7.39)
ST G = S (P + (D))

— (T, = (TEY — (¢ ¢k — (¢, vk € K.

This method effectively addresses the non-convexity by approximating (7.32) as a difference
of two concave functions, a strategy that simplifies the optimization process. The adaptation

involves iterative updates, where x[t'], TEf,], and C,[fl] denote the solutions obtained in the
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[t']-th iteration of the algorithm. Through this iterative procedure, we are equipped to solve
the ensuing convex problem, progressively refining our estimates to converge towards an
optimal solution for Ps.

This step-by-step approach, articulated within the framework of SCA and facilitated by
the introduction of slack variables, enables the effective solution of the original non-convex
optimization problem, paving the way for achieving optimal system performance through
strategic IRS parameter adjustment. Now, we solve the following convex problem:

7

K
Pe: max logo(1+ 7.35
6 o &%y kg,l 92(1+Ck) ( )
K
s.t.: Z |Zwi|? +03|Z)? < Pa, (7.36)
k=1
IXml| < am, Vme M, (7.37)
0< 0, <2m, Vme M, (7.38)
0<am < amax Yme M, (7.39)
Y |l x+ai|” +03IxI> +02 < Tw, VkeK, (7.40)
i£k

/ / 2
2%{(¢ﬁx“1+§k>”¢ﬁx}—\wﬁx“]+§k) >
1 1 / /
5Tkt €)% = S (TR + (IY)

— ()T = (T)ED) = () (¢ — (€)ED), vk ek,
(7.41)

. 7

It is important to highlight that the solution quality of the original optimization problem is
expected to improve or, at the very least, remain consistent (monotonically non-decreasing)
following the application of this iterative algorithm [2]. Consequently, this makes the problem
well-suited for standard convex optimization software packages, such as CVX [175]. This
approach ensures efficient computation and facilitates the practical implementation of the
optimization solution.

7.4 Simulation Results for the IRS-assisted mmWave Net-
work

In this section, we present the numerical results obtained from simulating an IRS-assisted
mmWave communication network. The simulation setup considers an AP located within a
rectangular area of dimensions 50 x 50 meters. The AP is positioned at the origin (0,0)
meters, while the IRS is strategically placed at (30,0) meters. All mobile users are assumed
to be randomly distributed within this rectangular zone. The IRS under consideration is
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Figure 7.2: Average sum data rate versus the number of reflecting elements.

equipped with 60 reflecting elements to modulate the incident signal effectively. The simu-
lation scenario includes K = 6 users to evaluate the network’s performance comprehensively.
The maximum allowable transmit power from the AP is restricted to Pmnax = 30 dBm, whereas
the active IRS is constrained by a maximum power allowance of Py = 13 dBm.

The path loss model employed for the simulations follows the equation 35.3+37.6log;o(dx)
dB, where d, denotes the distance between the AP and user k in meters. The channel's
bandwidth is set to 500 MHz, with a system parameter for the number of paths A = 5.
The transmit power antenna gain ((¢) is 9.82 deciBel-isotropic (dBi), and the receive power
antenna gain ({;) is 0 dBi. The interference power y; adheres to configurations detailed in
[86]. To ensure precise results, the convergence criterion for the iterative AO processes is
established at 1072. Additionally, the static noise power observed at each user is set to 02 =
—114 dBm, and the dynamic noise variance, accounting for the noise contributions from the
IRS'’s electronics and processing, is 062, = —110 dBm, as described in references [240, 239].
This setup aims to provide a realistic and comprehensive understanding of the potential
benefits and challenges associated with deploying IRS technology in mmWave networks.
Moreover, all statistical results were derived by aggregating data from a comprehensive
series of simulation trials, each producing numerous random realizations of the mmWave
channel gains.

Fig. 7.2 illustrates the relationship between the average weighted sum data rate and the
number of reflecting elements in the system. It is observed that the average sum rate exhibits
a positive correlation with the number of reflecting elements. This trend can be attributed
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Figure 7.3: Average sum data rate versus the number of iterations.

to the enhanced communication paths facilitated by a larger array of reflecting elements,
which, in turn, bolsters the system’s overall performance gain. However, a noteworthy ob-
servation is the relatively marginal performance improvement when utilizing random phase
shifts, especially in comparison to configurations with no IRS. This phenomenon underscores
the significance of optimizing the phase shift parameters at the IRS to harness its full poten-
tial in communication systems. Moreover, the comparison between active and passive IRS
implementations reveals the superior efficiency of active IRS in augmenting communication
performance. This advantage becomes particularly pronounced with an increase in the num-
ber of reflecting elements. Our proposed scheme distinguishes itself by not only optimizing
the phase shifts at the IRS but also by fine-tuning the amplitude reflections. The beneficial
impact of amplitude control becomes increasingly apparent with a higher number of users.
This is attributed to the exacerbation of multiuser interference within mmWave channels,
necessitating amplitude control as a means to mitigate such adverse effects. Furthermore,
the results indicate that an active IRS is capable of mitigating the " multiplicative fading”
phenomenon, thereby achieving significant gains in the sum data rate. This analysis proves
the critical role of both phase and amplitude optimization in leveraging IRS technology to
enhance mm\Wave communication networks.

Figure 7.3 presents the convergence behavior of our proposed algorithm across various user
counts. The plot reveals that the algorithm typically converges within approximately 10
iterations. Furthermore, an interesting trend is observed where the sum data rate esca-
lates with an increase in the number of users. This finding suggests that our proposed
scheme efficiently scales with user count, enhancing network capacity and demonstrating
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the effectiveness of the algorithm in managing multiuser environments.

7.5 Insights and Practical Applications

So far, we introduced an optimization framework aimed at enhancing the performance of
mmWave wireless communication systems by strategically designing the reflection coeffi-
cients of an IRS in this chapter. Specifically, we considered a scenario involving an active
IRS-assisted MISO mmWave system, with the goal of maximizing the network's data rate
through the dual approach of optimizing the AP’s beamforming strategy and the IRS’s reflec-
tion coefficients. The optimization problem was tackled through an iterative process, where
the first sub-problem pertaining to beamforming was addressed using the Weighted Minimum
Mean Square Error (WMMSE) technique. Subsequently, the second sub-problem related to
the IRS's coefficients was approached with the Successive Convex Approximation (SCA)
method. The simulation results provided compelling evidence of the superiority of active
IRS over its passive counterpart, particularly in its ability to mitigate performance degra-
dations attributed to multiplicative fading phenomena. These results showed the potential
of active IRS technology to significantly improve the efficiency and reliability of mmWave
communication networks. Looking ahead, our future research will explore the implications
of active and passive IRS deployment in mmWave channels under conditions of imperfect
or full Channel State Information (CSI) knowledge. This endeavor could include the devel-
opment and analysis of codebook designs for AP beamforming, aiming to further refine the
performance enhancements achievable through sophisticated IRS configurations.

In the next section, we proceed by exploiting the insights gained from our study so far
towards a practical use case within IRS-supported networks, specifically focusing on IRS-
aided mmWave networks for Virtual Reality (VR).

7.5.1 Practical Use Case: IRS-aided mmWave Network for Virtual
Reality

Next-generation VR technology promises unprecedented levels of user immersion and support
for intricate multiuser Virtual Experiences (VEs). Given the cost-effective and passive nature
of IRSs, we study the optimal design of a multi-user IRS-assisted VR network in the remainder
of this chapter. Specifically, we explore the strategic deployment of an IRS within a confined
space as a function of the dynamic trajectories of fully immersed VR users. The core
objective will be to maximize the sum data rate across all VR users, enhancing the overall
quality and responsiveness of the VR environment.

To achieve this, we focus on optimizing several key components within the network:
e The active beamforming strategies at the AP efficiently direct the signal toward the
IRS and subsequently to the users.

e The precise placement of the IRS within the indoor environment to ensure optimal
signal reflection and coverage.
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e The adjustment of IRS phase shifts and radiation patterns to maximize signal reception
quality for VR users, accommodating their movement and interaction within the space.

Operating within mmWave frequencies, known for their high bandwidth and susceptibility
to blockages, presents unique challenges and opportunities for indoor VR applications. To
navigate the complexities of this multi-faceted optimization problem, we introduce an AO
algorithm. This algorithm decomposes the problem into manageable sub-problems, each
solvable in an optimal manner:

1. Active Beamforming at the AP: Utilizing Maximum Ratio Transmission (MRT)
techniques, we derive optimal beamforming vectors that maximize the signal power
directed toward each user through the IRS.

2. IRS Phase Shifts (Passive Beamforming): A quadratic transformation approach
is employed to calculate optimal closed-form solutions for IRS phase shifts, ensuring
efficient signal reflection towards users.

3. IRS Placement: We identify the most effective locations, globally optimal, for IRS
elements within the indoor space to enhance signal path and coverage.

4. Radiation Pattern Optimization: An analysis of monotonic optimal radiation pat-
terns is conducted to further refine the IRS’s ability to support dynamic user positions
and orientations.

We conclude this use case by providing simulation results to demonstrate the significant
impact of strategic IRS resource allocation and placement on enhancing signal stability and
maximizing throughput for each VR user. This comprehensive approach not only addresses
the inherent challenges of mmWave communication within indoor environments but also
unlocks new potentials for immersive and interactive VR experiences. Let's dive into the VR
world!

7.6 Location Optimization and Resource Allocation of IRS
in a Multi-User Indoor mmWave VR Network

VR is anticipated to transform our digital interactions in various domains such as health-
care, tourism, education, entertainment, and occupational safety [244]. VR systems are
poised to accommodate multiple fully immersed users who can freely navigate their VE in
an indoor environment. To enable cost-effective indoor VE deployment, the deployment of
IRS on the walls as a function of users' trajectory is a potential solution [245]. An IRS
comprises large arrays of passive reflecting elements on a reconfigurable planar surface, ca-
pable of independently modifying the phase of an incoming signal before reflecting it towards
its intended receiver. This capability of the IRS can significantly benefit VR users facing
considerable path loss or blockages in the direct link, a common challenge in environments
operating within the mmWave frequency band. The IRS introduces additional propagation
pathways — namely, reflected channels [10], enhancing signal reach and reliability for bet-
ter VE. Furthermore, the IRS offers added degrees of freedom through the phase shifts of
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its reflective elements, which can be strategically manipulated to minimize interference and
optimize signal quality [3]. Notably, IRSs are envisioned to be passive, cost-effective, and
flexible solutions, making them ideally suited for indoor VR streaming setups. They can
serve as ‘soft” environmental boundaries, seamlessly integrating into the indoor architecture
to support immersive VR experiences without intrusive hardware installations [246].

Prior research has illuminated the significant benefits that IRSs bring to multi-user wire-
less communication systems, notably enhancing data transfer rates and reliability — a
critical aspect for bandwidth-intensive and latency-sensitive applications like VR applica-
tions [3, 247, 248, 249]. Chaccour et al. demonstrated how IRS technology could sig-
nificantly boost the sum data rate and ensure the reliability of data transfers within VR
environments. This advancement is particularly crucial in VR contexts where immersive
experiences demand high data throughput and low latency to maintain user immersion and
interaction fidelity [247]. Jalali et al. explored the optimization of IRS design focusing on
energy efficiency and admission control maximization. Their work is particularly relevant for
Internet of Things (loT) applications, which often involve transmitting short packets — a
scenario where IRS can play a vital role in ensuring efficient and reliable communication [3].
Besser et al. introduced an innovative phase hopping algorithm for IRS-supported systems
aimed at enhancing data transfer reliability. Their approach is notable for its operation with-
out the need for CSI, simplifying the implementation and reducing the overhead typically
associated with adapting to channel variations [248]. Zhou et al.'s investigation into a la-
tency minimization problem in a multi-user secure IRS-aided VR delivery network addresses
the challenge of imperfect CSI. Their work shows the importance of optimizing communi-
cation networks to support latency-sensitive applications like VR, ensuring that immersive
experiences are not degraded by delays or security concerns [249].

These studies collectively emphasize the revolutionary role of IRS in boosting the capabilities
of wireless networks for cutting-edge applications like VR. The subsequent sections of this
chapter aim to demonstrate how an IRS-aided mmWave network could be used for a VR
environment. The mmWave frequency band, known for its vast bandwidth, stands as an
excellent candidate for VR technologies, yet it faces challenges like severe path loss and
sensitivity to blockages. IRS technology emerges as a solution to these challenges, offering
a means to dynamically control the propagation environment and improve signal coverage
and fidelity. Through exploring this synergy, our goal is to navigate the complex challenges
inherent in mmWave transmissions, thereby laying the groundwork for future VR experiences
that are deeply engaging, immersive, interactive, fluid, and seamless. To the best of our
knowledge, this work represents a pioneering effort to have the design of an IRS-assisted
indoor VR network optimized; This optimization specifically considers the deployment of the
IRS within a constrained three-dimensional space directly influenced by the trajectories of
VR users.

The contributions of the subsequent sections (the VR use case) in this chapter, focusing on
an IRS-enabled multi-user mmWave VR environment, are summarized as follows:

e Introduction of an IRS-enabled multi-user mmWave VR environment setup, where the
IRS is strategically placed on a wall to enhance data transmission from a multi-antenna
Access Point (AP) to single-antenna HMDs.

e Aim to maximize the sum data rate of all HMDs by:
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— Optimizing the IRS’s location to facilitate communication in a confined indoor
environment.

— Optimizing active beamforming at the AP for efficient data transfer.

— Adjusting phase shifts and radiation patterns in response to VR users’ trajectories,
modeled using redirected walking techniques.

e Design of a resource allocation algorithm to maximize the system’s sum data rate,
adhering to peak transmit power feasibility and Quality of Service (QoS) constraints.

e Application of the AO algorithm to segment the non-convex main optimization problem
into four solvable sub-problems:

Identification of MRT as the optimal beamforming strategy at the AP.

Derivation of a closed-form optimal solution for IRS phase shifts using quadratic
transformation.

Global optimization for the IRS's placement based on the first-order derivative
of the objective function.

Determination of the optimal radiation pattern in a closed-form format, using
the monotonicity of the transformed objective function.

e Simulation results underscore the effectiveness of combining passive beamforming at
the IRS with location-based IRS placement and optimal active beamforming at the
AP. This approach significantly enhances data rates over various baseline schemes,
highlighting the impact of IRS technology in improving mmWave VR networks.

The following sections delineate the focus on leveraging IRS technology to overcome mmWave
communication challenges for a VR use case through optimized IRS deployment and func-
tionality. Let’s begin.

7.7 VR IRS-assisted System Model and Problem Formu-
lation

As depicted in Fig. 7.4, we consider an IRS-assisted MISO communication system in which
IRS relays data to a single antenna HMD VR user. The direct LoS link between the transmit-
ter and receiver is considered to be blocked. Doppler effect caused by the HMD's mobility
is presumed to be fully compensated. In this network, an AP with L antennas serves a
set of HMD represented as K = {1, ..., K} using an IRS whose elements are denoted by
M=A{1,..., M3}, Our goal is to fine-tune the IRS’s resource allocation based on a place-
ment optimization problem to achieve maximum SNR over a fixed time span T > 0. The
time duration T is partitioned into N uniformly spaced time intervals, given by T = N&;.
Specifically, &; denotes the length of each individual time slot, and N is defined as the set
of all these time slots, represented by N ={1,..., N}.

To accurately model the spatial dynamics of this system, we employ a 3D Cartesian coordi-
nate framework. The AP is stationed at a fixed point denoted by a = [ax, ay,a,]" € R3*1.
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Figure 7.4: A multi-user IRS-assisted full-immersive VR scenario. The IRS is deployed on one of
the walls, and a multi-antenna AP transmits data indirectly to a set of single-antenna HMD via the
IRS.

In contrast, the HMD users traverse a predefined path on the ground, their movements cap-
tured by the trajectory function w[n, k] = [ux[n, k], u,[n, k], uz[n, k]]T € R®*1, which is guided
by redirected walking principles [250]. The potential locations for deploying IRS resources,
when visualized on a vertical plane, are encapsulated by s[n] = [sc[n],s,[n], s [n]]T € R®*L.
Furthermore, we limit the spatial domain to four distinct vertical planes, labelled 1 through
Ha, each representing a possible region for IRS resource allocation, with H; to Ha being
specified as:

Hi: Ymin < Sy[n] < Ymax: Zmin < Sz[N] < Zmax, Sx[N] = Xmix, VneN, (7.42)
Ho 2 Ymin < Sy[n] < Ymax: Zmin < Sz[N] < Zmax, Sx[N] = Xmax, Vn € N, (7.43)
H3 : Xmin < Sx[N] < Xmax, Zmin < Sz[N] < Zmax, Sy[N] = Ymin, VNEN, (7.44)
Ha : Xmin < Sx[N] < Xmax, Zmin < 57[N] < Zmax, Sy[N] = Ymax, YneN. (7.45)

To provide a comprehensive understanding of the deployment strategy for IRS within an
indoor VR environment, we focus on positioning the IRS on the corner walls of a room.
This strategic placement is illustrated in Fig. 7.4, where we explore the optimal locations for
IRS installation to enhance communication between the AP and HMD. The chosen regions
allow the IRS to effectively manage and redirect signals across the entire room, thereby
mitigating potential signal obstructions and optimizing coverage. Moreover, we consider the
radiation pattern of the IRS in our analysis. The radiation pattern is critical as it determines
the directional distribution of the reflected signal strength, which in turn affects the overall
effectiveness of the IRS in enhancing communication. By analyzing and optimizing the
radiation pattern, we can ensure that the IRS not only boosts the signal strength but also
directs the signal in a manner that maximizes the SINR at the receiver’s end, particularly for
VR users who require high-bandwidth and low-latency connections for immersive experiences.
This consideration is crucial for realizing the full potential of IRS-assisted mmWave networks
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in providing robust and efficient communication pathways in complex indoor environments.
The radiation pattern of the IRS is given by:

cos*(Yi), Yk €[0,7/2], p €[0,27],

(7.46)
0, Py € (w/2, 7], € [0, 2],

F(k, ) = {

where 1, Vk € KU{0}, and ¢ represent the elevation and azimuth angles, respectively,
from the IRS to the AP/HMD link [251]. The radiation pattern, as defined by F(9«, ),
primarily focuses on the elevation angle vy, indicating a strong directional preference of
the reflected signals when vy lies within the range of [0,7/2]. Notably, this pattern is
maintained consistently across various azimuth angles ¢, as evidenced by the function’s
independence from ¢ in the specified range of ¥ [251]. For the sake of simplicity and
to maintain focus on the significant impact of the elevation angle on the IRS's radiation
pattern, we will henceforth use F () in place of F(ik,®) in subsequent discussions and
equations. This simplification allows for a clearer analysis, emphasizing the critical role of
elevation angle in optimizing the IRS’s contribution to the communication link’s quality and
reliability. Given these conditions, the dynamic channel between AP and IRS, and between
IRS and the k-th HMD adheres to the free-space path loss model, which can be detailed
as [252, 8]

Fln =H ﬁO,nF('(pO), VYneN, (7.47)
gk'n :gk'n\/ﬁk'n/:(’l[}k), VkEIC,VI”IEN, (748)
B n=valdw all= %, VK e KU{0}.VneN, (7.49)

where Bo., and Bk , symbolize the path loss with ¢y being the reference channel power at a
distance of 1 meter, while ag and ay,Vk € K are the path loss exponents of AP—IRS and
IRS—k-th HMD links, respectively. Moreover, the small-scale fading of the links between
AP and IRS, (7.47), and between IRS and the k-th HMD, (7.48), are denoted by H € CM*t
and g, € CMx1 respectively 1. Besides, the distance vectors from the IRS to the AP and
k-th HMD, coming from (7.49), are respectively given by:

don,=s[n]—a=

= [s[n] — ax, sy [n] — ay, s:[n] — a:] ",

VneWN, (7.50)
dy.n = s[n] —u[n k] =

— [sulnl = ucln, K. [ — uy . K], 52 [0] — [, K

VkeK,¥neN. (7.51)

Therefore, the received signal of k-th HMD becomes:
Yin =Gl JOHWkby n+ 1, Yk €K, VneN, (7.52)

where b, x is the bearing-information transmitted symbol for the k-th HMD with normalized
power at n-th time slot, wy € CE*1 is the transmit beamforming vector, and ny is the AWGN
noise, which follows a complex normal distribution with zero mean and variance ai. The IRS

1By incorporating the IRS's radiation pattern, F (1), into the path loss model, we refine our understand-
ing of how the IRS can manipulate signal paths to enhance link quality and system performance.
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phase shifts matrix is represented by ©® and is defined as ® =diag (61,65, ..., Oym) € CMxM
where 6, = Qmeﬂ”m € C characterizes the reflection coefficient of the m-th IRS element, in
which o, € [0, 1] is the reflection amplitude?, and 9, € [0, 27] is the phase shifts. Ultimately,
by assuming there is no multi-user interference, we represent the SNR at k-th HMD in time
slot n as:

Bo.nF ($0)Bi.nF (i) |al ,©Hw,|*
o2 '

Vke K,VneN, (7.53)

Ykn(W. 0,8, %) =

where W, 3, and ¥ are the collection of w's, B's and ¢'s according to W £ [wi,...,wk],
B=[Boo..-.Bon - .Brnl and ¥ = [, ..., Px]. Consequently, the achievable data rate
of the k-th HMD during the n-th time slot, measured in [bit/s/Hz], can be expressed as:

R(W,0©,8,%) =l0g2(1+7kn(W,0,8,¥)),
Vke K VneEN. (7.54)

Finally, the sum data rate for all HMD can be written as:

Rit(W.©,8,%)=B ) Y R(W.0,3%), (7.55)
VkeKXYneN

where B represents the bandwidth of the network.

In our pursuit, the primary objective is to elevate the system-level data rate within an IRS-
assisted single-cell multi-user indoor VR network. Achieving this goal necessitates a strategic
approach that leverages the unique capabilities of the IRS. This includes the judicious allo-
cation of IRS resources based on the spatial dynamics of the network environment, which
we refer to as location-based IRS resource allocation. Fine-tuning these parameters is the
aim of our system-level data rate optimization. By meticulously configuring the transmit
beamforming strategies employed at the AP, as well as carefully adjusting the IRS’s phase
shifts and radiation patterns, we can achieve this goal. Consequently, we can frame the sum
data rate optimization problem as:

Pri max  Rir(W.0,8,9), (7.56a)
st.: tr(Wwh) < pmex, (7.56b)
|6m| <1, vme M, (7.56¢)
slnj€Hq,  Vge{l,....4}, (7.56d)
uln k]l €Uy, Vkek, (7.56€)
0 <9 <m/2, Yk e KU{0}. (7.56f)

Constraint (7.56b) guarantees that the total transmission power from the AP does not
exceed predefined maximum levels. This limitation is crucial for adhering to regulatory power

2To maximize reflection efficiency, we assume the amplitudes of all passive elements to be one [3, 12],
i.e., om=1,Yme M.
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standards and for minimizing potential interference with other wireless systems. Constraint
(7.56¢) specifies the bounds within which the reflection coefficient for every IRS element
must operate. By setting these bounds, the constraint ensures that the IRS operates within
its optimal reflection capabilities, thus maximizing the enhancement of signal strength and
coverage. Constraint (7.56d) ensures the IRS is positioned in one of the corner walls of
the room. Next, constraint (7.56f) confines the radiation pattern. This constraint is vital
for ensuring that the IRS's signal reflection does not inadvertently increase interference or
degrade the network’s overall performance. Finally, constraint (7.56e) confirms that each
VR user follows a predefined redirected walking path denoted as Uy [253].

Given the presence of a non-concave objective function and the non-convex nature of con-
straint (7.56¢), the optimization problem laid out in (7.56) is distinctly nonconvex [9]. This
inherent complexity makes it challenging to derive a straightforward solution for the problem.
As a result, AO methods or approximations are needed to address non-convexity effectively
for effectively tackling the non-convex aspects of the problem, paving the way towards iden-
tifying viable solutions for enhancing the VR network's data rate and user experience..

7.8 Location Optimization and Resource Allocation of IRS
in a VR Network

Optimization problem (7.56) exhibits non-convexity primarily due to the highly interdepen-
dent nature of the optimization variables involved. Such non-convex problems typically chal-
lenge conventional solution strategies, often lacking a straightforward well-organized method
for resolution due to their complexity and the intricacies of the variable relationships.

Nonetheless, to navigate through these challenges, we introduce an AO strategy character-
ized by lower computational complexity, where a new objective function was proposed to
avoid the feasibility problem. This approach is designed to iteratively converge towards a sub-
optimal solution by decomposing the original problem into more manageable sub-problems,
each tailored to address specific facets of the optimization problem:

e Initially, we redefine the objective function within the AO framework to circumvent
potential issues related to solution feasibility. This redefinition ensures that the sub-
sequent optimization steps are grounded in a solvable context, enhancing the overall
strategy’s effectiveness.

e For the first and second sub-problems, we derive closed-form solutions for active beam-
forming at the AP and passive beamforming at the IRS, respectively. These solutions
provide precise configurations for both active and passive beamformers, optimizing
signal transmission and reflection to improve network performance.

e The third sub-problem focuses on global optimization concerning the IRS's resource
allocation. This step critically evaluates and adjusts the IRS's resource distribution to
ensure optimal network operation, particularly in terms of enhancing signal coverage
and quality.
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e In the final sub-problem, we examine the radiation pattern exhibited by the IRS. This
investigation aims to understand and optimize the way the IRS manipulates incoming
signals to maximize the system’s data rate and user experience.

By employing this AO approach, we effectively address the inherent non-convexity of the
original problem, facilitating the attainment of sub-optimal solutions that significantly im-
prove the IRS-aided mmWave VR network’s performance.

7.8.1 Step 1: AP Active (transmitter-side) Beamforming

In the first step of our optimization process, we concentrate on the aspect of active beam-
forming at the AP side. To approach this, we initially hold the IRS’s phase shift matrix
©, path loss coefficients B, and the set of elevation angles for IRS radiation pattern ¥
constant. This simplification allows us to isolate the active beamforming component of the
system for targeted optimization. With these parameters fixed, we can then precisely focus
on the optimization of the AP’s active beamforming matrix. This is essential for efficiently
directing the transmitted signal towards the IRS, thereby ensuring that the reflected signals
are optimally relayed to the intended receivers, in this case, the HMDs of the VR users.

Given these considerations, the optimization problem dedicated to active beamforming is
redefined with a transformed objective function. This new formulation is designed to cap-
ture the essence of maximizing the received signal power, subject to power constraints. By
transforming the objective function, we adapt the problem to a more tractable form, facili-
tating the derivation of an optimal or near-optimal solution for the AP’s active beamforming
strategy. This step is crucial for laying the groundwork for subsequent optimization stages.
Thus, the corresponding optimization problem with a transformed objective function can
then be formulated:

Pg: max Y, Y Agvk|gf‘n®Hwk 2 (7.57a)
W vkekvneN
st.: tr(Wwh) < pe, (7.57b)
where . .
, o2

One can readily prove that the optimization problem (7.57) is affine, thus convex. This
intrinsic characteristic of convexity paves the way for employing the well-established theo-
retical and practical tools of convex optimization to discern a closed-form solution that is
globally optimal.

When considering the specific task of optimizing AP active beamforming in the context of
our IRS-assisted mmWave VR network, it emerges that the Maximum Ratio Transmission
(MRT) strategy stands out as the optimal approach [11]. The MRT, renowned for its
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efficiency in maximizing the power of the signal received at the target, aligns perfectly with
our objective to enhance the system’s overall performance. The essence of MRT lies in its
focus on aligning the transmit beamforming vector with the direction of the channel, thereby
amplifying the signal strength at the receiver's end. This method is succinctly captured in
the formula: Therefore, the optimal transmit beamforming can be given by [11]:

wi = /P (o ©H)" /|af! M| vk € k. (7.59)

7.8.2 Step 2: IRS Passive (receiver-side) Beamforming

In the next step of our solution methodology, after establishing the optimal active beam-
forming strategy for AP, attention will be given to the passive beamforming executed by
IRS. This component is pivotal in sculpting the signal path from the AP to the end receivers,
in this case, the HMDs utilized in the VR network. With the active beamforming parameters
now set, along with fixed 8 and ¥, we optimize the IRS's passive beamforming. Given these
fixed parameters, the optimization sub-problem focusing on IRS passive beamforming can
be reformulated as:

7

Po: max Y. ) Aglk’vec(Q)HTn‘z, (7.60a)
VkeKYneN
st |0m=1,Yme M, (7.60b)

\

where we used the following change of variables:
g) ,©OHw =vec(®)" Y, ,, VkeK,VneN, (7.61)
in which
Y, =diag(gx ,)Hwy, VYneN. (7.62)

Despite the non-convex nature of the problem (7.60) due to the unit modulus constraints,
a closed-form solution can be derived based on the quadratic transform method. To do so,
we rewrite the problem into its equivalent form as:

e )

Pio: max ) ) A?,Vk<vec(@)HUvec(G)+23‘E{vec(@)HTn}>, (7.63a)
® vkekvneN

st.: |Oml=1,Yme M, (7.63b)

where U = vec(@)’r,’;’. Now, we obtain the following simpler upper bound to the quadratic
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term vec(©)"Uvec(®):
vec(@®)"Uvec(®) < vec(©)"Qvec(®)
—2R {vec(@)H (Q- U)vec(@t)H}
+vec(®H)"(Q — U) vec(©?), (7.64)

where Q = Amax(U)lys and Amax(U) corresponds to the maximum eigenvalue of the semi-
positive definite matrix U. Additionally, the superscript t indicates the feasible solution
achieved during the t-th iteration. Thus, the objective function of (7.63) can be lower
bounded by:

(~ vec(©®)"Uvec(®) + 2%{vec(®)HT,7}) > —Amax(U) || vec(®|?

+2R {vec(®)" ((Q - U)vec(®) +Y,)}

—vec(®@H" (Q-U)vec(®Y), VneN.
(7.65)

Then, we can reformulate the IRS passive beamforming sub-problem in the following manner:

Pii: max Y Y AY R{vec(®)"T,}, (7.66a)
® vkekvneN
st.: |Oml=1,YVmeM, (7.66b)
where
T'y=(Q—-U)vec(®)+T, VnecN. (7.67)

Ultimately, it can be verified that the optimal solution to (7.66) is expressible in closed-form,
as presented: '
0y = &290m) ym e M. (7.68)

7.8.3 Step 3: IRS Placement at Optimal Locations

In this subsection, we formulate the subproblem wherein the IRS’s placement is optimized
with fixed active beamforming and fixed IRS’s phase shifts and radiation pattern, i.e., W,
W, O are known. The goal here is to determine the most effective positions for the IRS to
maximize the network’s overall SNR efficiency. This involves a careful consideration of how
the IRS's location influences the path loss and signal quality between the AP and the end
users, as well as between the IRS and the end users. Therefore, the optimization problem
for the IRS's location-based resource allocation can be written as:
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BF (o) F (%) |at ,©H|?

P1s: max , (7.692a)
2 el i o3lls[n] — al|2o|[s[] — u[n, k]|

s.t.: s[n] € Hq, Vge{l,..., 431, (7.69b)

u[n k] €Uy, VkeK,VneN, (7.69¢)

\

where 3's are replaced by the IRS' location decision variables, s[n]. It can be seen that
(7.69) is convex. Thus, an optimal solution for the IRS' placement can be found. Assuming
ay =2 and by setting the first-order derivative of the objective function with respect to s[n]
to zero, we obtain the following equalities:

(ax — sx[n])
(ax— SX[”])2 +(ay — Sy[n])2 +(az — Sz[n])2
(sx[n] — uy[n, K])

= (el =y I K2+ (5 ] — o [ K2+ (o] — o, kD2 S KT E N
(7.70)
(ay _Sy[”])
(o) 1 (3 — sy )+ (22— s:[])°
_ (sy[n] — uy[n. K1) VkeK.VneN
(el — [ K+ sy — oK) 1 (sl — a2 e
(7.71)
(az —sz[n])
(ax = sx[n])* + (ay — sy [M)* + (az — 5 [n])°
_ (sz[n] — uz[n, k])
= =y (n, K2+ (5 =ty I, K1+ (5o ] — k)2 ST e
(7.72)

where an iterative approach could be employed to determine the optimal locations for IRS.
With the knowledge of the AP location and the HMDs' trajectory [254], we initialize with
predefined values for s¢[n], s,[n], and s,[n]. From these, we deduce the optimal IRS coor-
dinates iteratively, based on equations (7.70) — (7.72), while simultaneously satisfying the
constraint (7.56d) and (7.56e).

7.8.4 Step 4: IRS Radiation Pattern Optimization

In the final phase of our optimization process, we now consider the last subproblem of opti-
mizing the IRS the radiation pattern. This step ensures that the reflective capabilities of the
IRS are maximally utilized, directing the reflected signals in a manner that optimally sup-
ports the network’s operational requirements and enhances the end-user experience. This can
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significantly impact the network’s overall performance, particularly in environments where
obstacles or physical layout may impede direct signal paths. By fine-tuning the radiation
pattern, we aim to maximize the effective use of the IRS in steering signals toward desired
directions, thereby optimizing the network’s data rate and reliability. Thus, the IRS radiation
pattern ¥ optimization sub-problem with fixed W, ©®, and 8 can be recast as:

Pi3: max Z Z A,17’k cos> (g cos® (), (7.73a)
¥ vkexvneN
st.: 0<Yy <m/2, Vk e CU{0}, (7.73b)

where

. BonBrnlaf ,OHW,|®

ALk = Vke K,VneN. (7.74)

o}
Unlike the preceding sub-problems, where we had to work out how to get to the closed-form
solutions algebraically, obtaining a closed-form solution is markedly more straightforward.
This simplification arises from the inherent monotonic properties of the cosine function that
dominate the objective function in this particular scenario.

The key to this simplification lies in recognizing that the function cos3(«y), for all k in
the combined set of users and the IRS itself XU {0}, exhibits a monotonically decreasing
behavior within the interval 0 < 1, < % This monotonicity facilitates the identification of
the global maximum of the objective function directly by examining the endpoints of the
specified interval in (7.56f). This implies that an optimal elevation angle can be found
that results in the most favorable IRS radiation patterns. The final iterative-based AO
approach is provided in Algorithm 8. This algorithm incorporates the solution from each
sub-problem’s optimization, iteratively refining the system'’s configuration to achieve the best
possible network performance within the constraints of the given IRS-assisted communication
scenario.

7.9 Analyzing Resource Allocation Complexity in IRS-aided
VR Networks

In this section, we conduct an analysis of the computational complexity of our proposed
algorithm. The AO algorithm iteratively tackles the four subproblems related to W, O,
B, and ¥ until convergence is reached. We obtain efficient closed-form solutions for the
first two subproblems, as in (7.59) and (7.68), respectively. The last two subproblems
have been convexified and can be efficiently solved in polynomial time using CVX [3]. The
computational complexities associated with W, @, 3, and ¥ are as follows: O; = O(KL?),
Os = O(K?LNM + K2M? + M?3), O3 = O((3N)(12N +3NK)3), and Oy = O((K +1)3).
Hence, the proposed AO algorithm’s computational complexity can be approximated as
O(KL3+ K2LNM+ K2M? + M3 + N*K3).
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Algorithm 8 Iterative AO algorithm for a Multi-User Indoor mmWave VR Network

Input: Set the iteration index i = 0, set maximum number of iteration /max, and initialize
W=w? 0=0° 3=03° and ¥ =20
1: Repeat
2:  Solve problem Pg (7.57) for given {®'~1, @'~ W'~} and use (7.59) to obtain
the optimal solution W'.
3. Solve problem P11 (7.66) for given {W'~1, 3/=1 W'~11 and use (7.68) to obtain the
optimal solution ©'.
4. Solve problem P15 (7.69) for given {W'=1, @1 ¥'~1} and use (7.70)—(7.72) to
obtain the optimal solution 3'.
5. Solve feasibility problem P13 (7.73) for given {W'~1, ®@'~1, 3~1} to obtain the
optimal solution W'
until / = /1«
. Return {W* ©*,3* ¥*} = {W' @ 3 ¥}

o

7.10 Evaluation Setup and Simulations Results for the IRS-
assisted VR Use Case

We deploy a comprehensive simulation framework to evaluate the AO algorithm'’s efficacy
in enhancing network performance for an IRS-assisted, full-immersive VR environment oper-
ating in the mmWave spectrum. This evaluation considers the spatial arrangement of HMD
used by VR users, the Wireless Fidelity (Wi-Fi) AP, and the IRS within a 3D space. The
strategic deployment of IRS resources plays a pivotal role in our simulation, focusing on the
utilization of the environment's peripheral boundaries — namely, the four outer walls —
while intentionally excluding the floor and ceiling from the IRS’s operational domain. The
AP is centrally placed on the ceiling at a height of 3 meters, ensuring a dominant vantage
point for broadcasting signals to the HMD users below. The virtual environments navigated
by the HMDs are varied in size, encompassing dimensions of 10 x 10, 15 x 15, and 20 x 20
squared meters, to evaluate the system's adaptability and performance across different spa-
tial scales [254]. This varied environmental setup allows us to assess the AO algorithm's
effectiveness in optimizing the IRS's influence on the network, ensuring the delivery of high-
quality, immersive VR experiences under diverse spatial configurations.

The proposed AO algorithm is designed to be flexible, catering to a generic number of
IRS elements. This flexibility allows for the allocation of IRS resources to be dynamically
adjusted based on the evolving data rate requirements of future VR systems. Initially, our
simulations consider the deployment of 200 IRS elements, with each element being sized
at \/5, a dimension that is optimal for enhancing the system's performance [255, 65]. To
rigorously evaluate the performance of our AO algorithm within an IRS-assisted mmWave
network, we utilize discrete-event Network Simulator version-3 (ns-3), specifically its 60
GHz Wi-Fi (WiGig) module. This module is used to facilitate analyzing the performance of
the IEEE 802.11ad/ay protocols, providing a robust framework for assessing high-frequency
mmWave communications [256]. Furthermore, we enhance the ns-3 simulator by integrating
a mmWave propagation model that accounts for the influence of IRS (with its location
dependability) on signal propagation. This model is critical for understanding how the IRS
can modify the signal environment to meet the stringent requirements of high-fidelity VR
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Table 7.1: Overview of Baseline Simulation Parameters for the IRS-assisted mmWave VR Network.

Parameter Value
OnOffApplication

Parameter Name
Application Type

Data Rate 150 Mbps
Flow Direction DL
Payload Size 1448 Bytes

User Datagram Protocol (UDP)

4000 Packets

Aggregated MAC Service Data Unit (A-MSDU) and
Aggregated MAC Protocol Data Unit (A-MPDU)

Transport Protocol
MAC Queue Size
Aggregation Type

MAC/PHY CSMA/CA/SC DMG MCS-10
Transmit Power / Sectors | 10 mW / 8

Receiver Noise Figure 10 dB

Operating Frequency 60.48 GHz

applications [252, 8]. A comprehensive summary of the simulation parameters used in our
study, including the specifics of the IRS elements, the ns-3 configurations, and the mmWave
operational frequency, is detailed in Table 7.1. This table serves as a reference for the
simulation settings of our analysis, ensuring transparency and reproducibility in our findings3.

The “Optimal” approach follows Algorithm 8 for dynamically adjusting the IRS configura-
tion and resource allocation, taking into account the locations of the HMD, AP, and IRS, as
well as the IRS radiation patterns. This method optimizes the IRS's influence on the com-

3The terms “CSMA/CA/SC DMG MCS" refer to a combination of protocols and modulation/coding
schemes used in wireless network technologies, particularly in the context of IEEE 802.11 standards, which
include Wi-Fi technologies. Let's break down each part:

1. CSMA/CA: This stands for Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). It
is a MAC protocol used in many wireless networking standards, including Wi-Fi. Its primary function
is to minimize the risk of collisions by ensuring that a transmitting station listens to the medium
before starting a transmission and by using various mechanisms to avoid simultaneous transmissions
by multiple stations.

2. SC: This typically stands for Single Carrier (SC). In the context of wireless communication, especially
in standards like IEEE 802.11ad (which uses mmWave frequencies), SC refers to a type of transmission
where the data is sent using a single carrier frequency as opposed to multiple carriers (OFDM). It is
often used for simpler, potentially more robust transmissions over certain types of channels.

3. DMG: Directional Multi-Gigabit (DMG). This is a term often associated with the IEEE 802.11ad
amendment, which is part of the broader IEEE 802.11 standard focused on very high-throughput
wireless networks operating in the 60 GHz spectrum. The “directional” part of DMG refers to the
use of directional antennas that focus the energy in specified directions to enhance signal strength
and range, crucial in high-frequency bands like 60 GHz where signal attenuation is significant.

4. MCS-10: Modulation and Coding Scheme (MCS), level 10. MCS levels define the specific modulation
type and coding rate used to transmit data. Each level is a combination that provides a specific data
rate and robustness to signal interference and noise. In the context of IEEE 802.11 standards, MCS-
10 would specify a particular modulation type (e.g., Quadrature Amplitude Modulatiom (QAM)) and
a coding rate, which together determine the transmission speed and reliability. MCS levels can vary
across different amendments of the 802.11 standards (e.g., 802.11n, 802.11ac, 802.11ad).

These technologies collectively describe a communication setup that is capable of supporting very high-speed
data transmission, particularly suited for environments where rapid data transfer is required over relatively
short distances, such as in indoor scenarios or for applications like VR, where latency and throughput are
critical.
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Table 7.2: Summary of Achieved Results: Comparison of Different Approaches Based on Room
Sizes, Average (Avg) Throughput, and Standard Deviation (SD).

Approach | Room size [m?] Avg [Mbps] SD [Mbps]
10 x 10 124,08 68,4051
No IRS 15x 15 112,25 74,7407
20 x 20 98,063 79,2939
10x 10 131,97 60,4667
Random 15x 15 117,58 62,8617
20 x 20 109,40 67,1633
10 x 10 144,97 50,5537
Optimal 15 x 15 125,10 68,5524
20 x 20 115,87 72,2035
10x 10 147,89 40,4191
Oracle 15 x 15 129,34 47,5146
20 x 20 118,74 49,0862
10x 10 148,90 39,1131
Best Path 15x 15 131,34 46,5221
20 x 20 120,73 48,9770

munication network, aiming to meet the high data-rate demands of future VR systems. In
contrast, we explore the IRS's placement in a “Random” location to understand the impact
of non-strategic IRS positioning. Additionally, an “Oracle” scenario is investigated, which
entails determining the IRS’s placement across all potential locations along the room walls
on a 0.1 meter-sized grid. This exhaustive search is conducted for every conceivable HMD
location, providing insights into the optimal positioning of the IRS without the constraints of
real-time adaptability. Furthermore, the “Best path” metric evaluates the combined perfor-
mance of direct AP-HMD and AP-IRS-HMD links. Here, the IRS's placement is determined
using the “Optimal” approach, showcasing the effectiveness of strategic IRS configuration in
enhancing the overall network performance. This comprehensive analysis enables a detailed
understanding of the various factors that influence the efficiency of IRS-assisted networks,
particularly in the context of supporting immersive VR applications.

To evaluate the effectiveness of various IRS configuration strategies, we conduct a detailed
analysis, contrasting average throughput and its Standard Deviation (SD) against a bench-
mark throughput of 150 Mbps per HMD. This evaluation spans scenarios featuring both
single and multiple HMD users navigating through a variety of environments, as outlined in
Table 7.2 and shown in Fig. 7.5. The focal point of this analysis is to discover the impact
of IRS placement and resource allocation on network performance.

Our analysis reveals that the throughput reaches its peak in scenarios where the IRS is
optimally positioned for each HMD, significantly surpassing setups that either lack an IRS
or feature IRS resource allocation at random locations. Interestingly, while an IRS placed
at an oracle-determined location occasionally achieves higher throughput, the AO algorithm
demonstrates a remarkable ability to closely match this performance across the majority of
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(a) 2 HMD users with no IRS in a mmWave VR network.
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(b) 2 HMD users with IRS at an optimal location in a mmWave VR network.

Figure 7.5: SNR variability enhancements due to the utilization of IRS resources at locations
optimized by the proposed AO approach.

HMD locations, despite operating in real-time. Furthermore, the combined average through-
put from the optimal IRS path and the direct AP-HMD link exhibits a performance closely
comparable to that achieved by the oracle, highlighting the effectiveness of strategic IRS
placement and resource allocation (cf., Table 7.2). When analyzing SD, we observe that
the performance variability of the network without IRS support is more pronounced across
different environments, in contrast to scenarios with IRS assistance, where even randomly
allocated IRS resources lead to more consistent throughput levels. The " Optimal” location-
based IRS resource allocation determined through the AO approach, especially when com-
bined with LoS communications, consistently offers stable throughput and minimizes SNR
variability. This robust performance is maintained even in multi-user scenarios, as illustrated
in Fig. 7.5. These findings underscore the critical importance of meticulously strategized IRS
deployment and resource allocation in enhancing network throughput and stability, thereby
enriching the immersive quality of VR experiences in diverse spatial configurations.
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7.11 Conclusion

This chapter embarked on an exploratory journey beginning with a question of whether
active Intelligent Reflecting Surfaces (IRS) are useful within millimeter-Wave (mmWave)
frequencies, a frequency spectrum domain critical for high data-rate applications. Answer-
ing affirmatively, we established that IRS technology, irrespective of being passive or active,
improves mmWave communication frameworks, with active IRS configurations offering su-
perior performance enhancements. Following this initial finding, we ventured into a detailed
examination of a use case involving passive IRS deployment within mmWave frequencies,
specifically in the Virtual Reality (VR) domain. This shift in focus was motivated by the
intent to fully understand the IRS applicability in overcoming the inherent challenges of
mmWave technology, such as its sensitivity to environmental obstructions and the need
for high data transmission capabilities. Our study conclusively found that IRS technology,
in its versatile forms, holds significant promise for advancing the capabilities and reach of
mmWave networks, particularly in enriching VR experiences.

To navigate the complexities of integrating IRS technology into mmWave-supported VR
environments, we developed and implemented an Alternative Optimization (AO) algorithm.
This algorithm was designed to dynamically allocate IRS resources, factoring in the spatial
relationships between Head-Mounted Devices (HMDs), the Access Point (AP), and the IRS.
The primary goal of our algorithm was to augment the immersive quality of VR applications
by capitalizing on the IRS to improve communication coverage and enhance the fidelity
of Virtual Experiences (VEs). The empirical evaluation of our approach demonstrated the
significant impact of IRS-aided networks on expanding signal coverage and enriching the
network's quality of service and user's quality of experiences, particularly in VR scenarios.
These findings affirm the proposed algorithm's effectiveness and highlight the transformative
role of IRS technology in advancing the capabilities of mmWave networks.

As we concluded our exploration of IRS applications in mmWave frequencies in this chapter,
we also set the stage for future investigations into the realm of even higher frequencies,
that is the TeraHertz (THz) frequencies. The next chapter is poised to study this advanced
frequency band, exploring its potential to further elevate the performance and adaptability
of IRS-assisted wireless networks. By venturing into THz frequencies, we aim to uncover
innovative solutions for overcoming the limitations of current technologies and unlocking new
possibilities for new types of applications other than immersive VR experiences and beyond.
This forward-looking perspective emphasizes our commitment to pushing the boundaries of
what's possible in the intersection of IRS technology, mmWave and THz frequencies, and
immersive digital world.
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Energy Efficient THz Miniature UAV
Networks

ERAHERTZ (THz) band communication, a key technology for sixth-Generation (6G)

and beyond mobile networks, has the potential to enhance a wide range of promising
applications. This chapter delves into the optimization of Energy Efficiency (EE) in minia-
ture Unmanned Aerial Vehicle (UAV)-assisted Non-Orthogonal Multiple Access (NOMA)
networks operating within the THz band. Specifically, it explores the deployment of UAVs in
a cooperative THz NOMA network where the UAV, apart from receiving information, also
harvests energy through Simultaneous Wireless Information and Power Transfer (SWIPT)
mechanisms. This dual capability allows the UAV to relay data to a targeted destination
node efficiently using the energy accumulated from the harvesting process. The inherent
uncertainty of the THz channel necessitates a novel framework for UAV deployment and
network resource allocation policy design. Addressing the inherent uncertainty of the THz
channel, the study introduces an innovative framework tailored for the strategic deployment
of miniature UAVs and the formulation of effective network resource allocation policies.
A novel optimization challenge is presented, focusing on maximizing EE by fine-tuning the
NOMA power allocation coefficients, the SWIPT Power-Splitting (PS) ratio, and the trajec-
tory of the UAV. This complex problem is deconstructed into three manageable subproblems,
and each is addressed through an alternating optimization strategy to find a solution. This
study highlights the critical role of various parameters, including UAV mobility, NOMA power
allocation strategies, and SWIPT PS ratios, and their impact on system performance as-
pects such as energy harvesting and service quality at the destination. The findings reveal
the intertwined effects of these factors on the overall EE of the system. The proposed
methodology underscores the significance of meticulous power management, the potential
for energy harvesting, and the optimization of UAV mobility in enhancing the efficiency and
sustainability of future wireless communication infrastructures.

193
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8.1 Introduction

INIATURIZED Unmanned Aerial Vehicles (UAVs) have become a focal point of re-

search and application due to their unparalleled ability to navigate through unexplored
or complex terrains and their agility in tight spaces [257, 258]. These UAVs, with their com-
pact form factor, can act as airborne Base Stations (BSs) or relays, significantly enhancing
wireless network coverage. The predominance of Line of Sight (LoS) links between UAVs
and ground users is a critical factor that facilitates high data rate transmissions, marking a
significant advantage in utilizing UAVs for communication purposes [259].

However, the smaller scale of these UAVs introduces substantial challenges, particularly in
terms of energy constraints. Unlike their larger counterparts, which can house more exten-
sive battery systems and more sophisticated energy solutions, miniature UAVs must adopt
exceedingly efficient energy management strategies to sustain operational viability. This
necessity propels the relevance of Simultaneous Wireless Information and Power Transfer
(SWIPT) in the realm of miniature UAV operations. SWIPT emerges as a pivotal innova-
tion, not only elevating the rate of information exchange but also prolonging the operational
lifespan of these UAVs through enhanced energy transfer efficiencies. The integration of
SWIPT into the UAV network fabric significantly marks a significant leap forward in the
Energy Efficiency (EE) frontier, offering a promising avenue to tackle the energy limitations
inherent to miniature UAVs [260, 261].

The integration of SWIPT into UAV networks, despite facing challenges like the low energy
conversion efficiency of contemporary energy harvesting technologies, offers targeted advan-
tages in several key areas. These applications leverage the unique capabilities of miniature
UAV, enhanced by SWIPT, to fulfill specific needs that outweigh the limitations imposed by
energy conversion inefficiencies. The relevance and value of these applications are particu-
larly pronounced in scenarios where traditional approaches may fall short. Here are some of
the notable application contexts:

1. Small-Scale and Short-Range Operations: The compact nature and agility of minia-
ture UAVs, combined with the capabilities of SWIPT, make them ideal for operations
that require detailed attention within limited geographical extents. Tasks such as
surveillance of critical infrastructure, environmental monitoring in sensitive or inacces-
sible regions, and providing communication links in complex urban or indoor environ-
ments are where these systems shine. Their ability to operate in confined or chal-
lenging areas, where larger UAVs or traditional infrastructure cannot reach, presents
a significant advantage.

2. Research and Experimental Applications: In scenarios where the establishment of
permanent infrastructure is impractical, economically unfeasible, or where existing
networks have been compromised due to natural disasters or human-induced events,
miniature UAV networks equipped with SWIPT technology offer a rapid, flexible so-
lution. They can swiftly provide essential communication and monitoring capabilities,
facilitating disaster response efforts, or extending services to remote and underserved
populations temporarily.
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3. Research and Experimental Applications: Miniature UAVs equipped with SWIPT
technology offer significant potential for research and experimental applications. They
provide a flexible and cost-effective platform for testing new technologies, sensors,
and communication protocols in real-world scenarios. These systems can be used to
gather data, validate theoretical models, and explore innovative uses in various fields,
such as environmental science, urban planning, and emergency management, making
them invaluable tools for scientific advancement and technological innovation.

While acknowledging the limitations imposed by the current state of energy harvesting tech-
nology, it is important to recognize that these limitations also drive innovation. The develop-
ment of more efficient energy harvesting circuits and the integration of emerging technologies
can gradually expand the scope of application for such systems. In the following paragraphs,
we explore the possible synergy between miniature UAVs and emerging technologies.

Non-Orthogonal Multiple Access (NOMA) has emerged as a transformative approach to
significantly enhance Spectral Efficiency (SE) within UAV networks. By allowing multi-
ple user signals to occupy the same resource block simultaneously, NOMA ensures a more
effective utilization of available network resources. This capability is particularly benefi-
cial in UAV-assisted communications, where the dynamic nature of UAVs and the varying
demands of users necessitate efficient resource management. The authors in [262] ex-
plored the effect of NOMA in a multiuser UAV network context, focusing on addressing
the max-min fairness problem. This problem is analyzed taking into account various con-
straints, including the UAV's flight trajectory, total power and bandwidth limitations, as
well as antenna beamwidth considerations, contributing valuable insights into achieving eq-
uitable resource distribution among users under the operational constraints inherent to UAV
networks. Another innovative approach in resource allocation policy design is presented in
[263], where a hybrid UAV-assisted network framework is proposed. This model uniquely
combines Time Division Multiple Access (TDMA) utilized by the UAV with a terrestrial
BS employing NOMA to serve ground users. The study emphasizes optimizing the sum
data rate by carefully managing user scheduling, the UAV's flight trajectory, and precoding
strategies at the BS, demonstrating the potential of hybrid access schemes in maximizing
network throughput. Further extending the applicability of NOMA in UAV networks, the
research outlined in [264] positions the UAV as a NOMA relay. This strategic deployment
aims to extend the coverage area of the UAV network, confirming NOMA's ability to en-
hance connectivity and service reach in UAV-assisted communication systems. Moreover,
the work presented in [265] addresses the challenge of minimizing delay in the context of
millimeter-Wave (mmWave) and Multiple-Input Multiple-Output (MIMO)-NOMA resource
allocation within UAV-assisted caching networks, indicating the critical importance of effi-
cient resource allocation in reducing latency, particularly in networks where high data rate
transmissions and caching capabilities are paramount.

Beyond the pursuit of high SE, EE has emerged as an equally crucial performance metric
for the evolution of sixth-Generation (6G) mobile networks. The limited energy resources
of UAVs and the ground users they serve necessitate innovative solutions like SWIPT to en-
hance network sustainability. As discussed earlier, SWIPT technology not only promises to
extend the operational lifespan of these devices by improving battery life but also contributes
significantly to the overall EE of the network [266, 9]. Research such as the study in [267]
has highlighted the potential of UAV-SWIPT in Internet of Things (loT) scenarios, focusing
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on maximizing the minimum harvested energy of loT devices through the joint optimization
of UAV's transmission power and flight trajectory. The realm of secure transmission within
UAV-assisted SWIPT systems has also been explored, as evidenced by [268], which aimed to
maximize the secrecy rate for the intended Information Decoding (ID) receiver despite the
presence of multiple eavesdroppers. Additionally, the application of SWIPT in UAV networks
extends to enhancing network throughput, where UAVs harvest power wirelessly and utilize
this power for retransmitting information to destination nodes, thereby creating an efficient
cooperative link between the source and destination [269]. Such strategies underscore the
dual role of UAVs in these networks, where they not only act as relay points but also as
dynamic power sources. Further studies have delved into the integration of UAV-assisted
cooperative communication with SWIPT, where the maximization of cooperative through-
put was achieved by leveraging UAV's mobility and the power harvested [270]. Moreover,
the intricate performance dynamics of downlink mmWave NOMA in UAV-assisted SWIPT
systems have been analyzed, focusing on critical aspects such as security, reliability, and
coverage [271]. This comprehensive examination reveals the multifaceted benefits of incor-
porating SWIPT in UAV networks, including enhanced EE, extended device lifespans, and
improved network performance across various dimensions.

Furthermore, the exploration into the TeraHertz (THz) frequency band communication,
ranging from 0.1 to 10 THz, underscores its potential to revolutionize future wireless com-
munications. This band's capability for providing extensive bandwidth and supporting data
transmission rates of Thps, coupled with minimal latency, positions it as a decisive technol-
ogy for the next generation of high-speed wireless networks [272]. Despite its promise, the
application of THz technology within UAV communications remains a relatively untapped
area, with a limited number of studies charting this novel territory [273, 274, 275].

Research endeavors have begun to shed light on the possibilities and challenges associated
with incorporating THz frequencies in UAV-assisted wireless systems. For instance, the study
in [273] outlines a framework for optimizing UAVs deployment strategies, power assignments,
and bandwidth allocations within THz frequency bands. Concurrently, the investigation de-
tailed in [274] presents a novel approach for enhancing THz downlink networks through a
cooperative recharging-transmission strategy facilitated by wirelessly powered UAVs. Fur-
thermore, the exploration in [275] ventures into the realm of NOMA-based UAV integration
within THz networks, highlighting the potential synergies and performance enhancements
that could be realized. Despite these advancements, a comprehensive analysis of NOMA's
application in THz-enabled UAV networks is conspicuously absent. The alliance of NOMA
principles with THz UAV communications could unlock new dimensions of spectral and en-
ergy efficiency, exploiting the vast bandwidths available in the THz band to accommodate a
higher number of users and simultaneously transmit multiple signals more effectively. This
gap in research presents a significant opportunity for further study, particularly in understand-
ing how NOMA techniques can be tailored to leverage the unique properties of the THz band,
thereby enhancing UAV network capabilities, improving throughput, and reducing latency in
ultra-high-speed wireless communications.

Inspired by the aforementioned studies, we contemplate the use of a UAV-assisted coopera-
tive system within the THz frequency band, aiming to improve the reliability of communica-
tion. In particular, a UAV-assisted cooperative network establishes a direct link between the
source and destination nodes. This chapter focuses on the integration of SWIPT in minia-
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ture UAV-assisted networks, addressing the unique challenges posed by their size and energy
constraints. By optimizing energy use through SWIPT, we aim to maximize the operational
capabilities of miniature UAVs, which is a significant departure from the strategies typically
employed in larger UAV networks. The main contributions of this chapter are as follows:

e We study the EE performance analysis of UAV-assisted SWIPT-enabled cooperative
NOMA network in the THz frequency band. The system architecture is carefully
designed, wherein the source node transmits a composite signal that encapsulates data
intended for both the UAV and the destination node, each differentiated by distinct
NOMA power allocation coefficients. The signal received at the UAV is then split into
two components using a Power-Splitting (PS) SWIPT mechanism. One portion of the
signal is dedicated to Energy Harvesting (EH), while the other is used for Information
Decoding (ID). The goal of maximizing EE in this framework encompasses a broad
spectrum of considerations including the UAV's flight dynamics, the Quality of Service
(QoS) requirements of the destination node, the PS ratio, and the distribution of
NOMA power allocation coefficients.

e Subsequently, we introduce and formulate the problem of maximizing the network’s
EE. To navigate through the complexities of this optimization problem, we conceive
an iterative algorithm specifically designed to deconstruct the primary problem into
three more manageable sub-problems, each focusing on a distinct aspect: the PS
ratio, UAV's flight trajectory, and NOMA power management strategies.

e These sub-problems are rigorously analyzed and proven to possess convex properties,
enabling their resolution through established optimization techniques. The empiri-
cal results from this methodological approach underscore a substantial performance
enhancement, revealing up to a 30.3% increase in EE. These findings eloquently em-
phasize the critical role of adept power management, efficient energy harvesting, and
the adaptive mobility of the UAV in significantly elevating the cooperative EE perfor-
mance of the NOMA-SWIPT network in the THz band.

Through this comprehensive analysis in this chapter, we not only elucidate the technical
feasibility and efficiency gains achievable with such an integrated system but also lay the
groundwork for future research directions. By highlighting the nuanced interplay between
NOMA power allocation, SWIPT mechanisms, and UAV trajectory optimization, this study
provides valuable insights into the design and operation of future high-frequency miniature
UAV-assisted communication networks, aiming for unparalleled energy efficiency and service
quality.

This chapter is organized as follows: Section 8.2 introduces the system model for a UAV-
aided SWIPT-NOMA network and defines its performance metric. In Section 8.3, we for-
mulate the EE maximization problem. Section 8.4 presents a two-stage solution to the
EE problem in a miniature UAV network, with a discussion of computational complexity in
Section 8.5. Section 8.6 contains the simulation results, and Section 8.7 outlines the appli-
cability of our design in an IRS-aided network. Finally, Section 8.8 concludes the chapter.

Notations: Matrices and column vectors are denoted by boldface uppercase and lowercase
letters, such as A and a. The Euclidean norm of vector a is expressed as |a|, while the
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Figure 8.1: Miniature UAV-assisted cooperative THz NOMA-SWIPT network. The channel power
gain between source-to-UAV and UAV-to-destination is denoted as hsr(t) and h,q4(t), respectively.
The miniature UAV acts as an energy-harvesting user in the first phase. In the second phase, the
miniature UAV is a relay that uses the harvested energy from the previous phase.

magnitude of a complex number a is denoted by |a]. The transpose and Hermitian of
a matrix are represented as (-)7 and ()", respectively. Additionally, Tr(A) and rank(A)
define the trace and rank of matrix A, respectively. The notation diag(A) denotes a vector
whose elements consist of the main diagonal elements of the matrix A. If A > 0, then A is
a positive semidefinite matrix. CN*M refers to the space of N x M matrices with complex
entries. The set containing elements a and b is represented as {a, b}. Matrix Iy, denotes
an M x M identity matrix. CN(u,X) describes the distribution of a CSCG random vector
with mean p and covariance matrix 3, where ~ indicates "with the distribution of.”

8.2 System Model and Performance Metric

We consider a downlink transmission UAV-aided SWIPT-NOMA system, as shown in Fig. 8.1.
The source node transmits information to two nodes, i.e., a UAV and a destination node.
It is assumed that the UAV node has a better channel condition since it is closer to the
source than the destination node. Hence, the UAV can act as an EH aerial relay to ensure
the high targeted rate of the destination node. Frequency Division Duplex (FDD) mode
with equal bandwidth of B and a 3D Cartesian coordinate system are considered where
the source and destination nodes are placed at s(t) = [sx(t),s,(t), H1]" € R®*! and d(t) =
[dy(t),dy(t),0]T € R3*1, respectively, where [-]T is the transpose operation. The destination
node is static on the ground, while the UAV and source are at a fixed height above the ground.
The instantaneous coordinates of the UAV are given by q(t) = [x(t),y(t), Ho]T € R3*! at
time 0 < t < T. The first and final positions of the miniature UAV are represented by qs
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and qe, respectively. We assume that the UAV's trajectory regularly varies over time, so the
time range T is divided into N\ evenly separated time slots, i.e., T = Nw. In particular, @
represents the duration of each time slot and NE {1,..., N} is the set of time slots, where
q[n] is the sampled trajectory. The constraints related to the position of the miniature UAV
and its maximum speed can be written as:

q[1] = gs, (8.1a)
q[N+1]=ge, (8.1b)
||q[n+1]—q[n]|| < @WVhax, YneN, (8.1C)

where Viay is the maximum flying speed of the miniature UAV. The channel power gain be-
tween source-to-UAV and UAV-to-destination are denoted by hs.[n] and h,4[n], respectively,
which are assumed to follow the free-space path loss model and given by:

hor[] = ——P0 o= Plalri=slril yp e pr (8.2)
llg[n] — s[n]l
B Bo .
llg[n] —d[n]||

where the exponential term is the path loss caused by molecular absorption, in which £(f)
is a molecular absorption coefficient that is influenced by the operating frequency f and the
concentration of water vapor and oxygen molecules [276]. To simplify the notation, we will
henceforth denote £(f) as £. Moreover, By denotes the reference power gain and is equal
to c/4mf, where c is the speed of light [274]. Finally, the channel power gain between the
source-to-destination follows the same structure, as in (8.2) and (8.3), and is denoted by
hsd[n]l-

haln] —*Dllglal-dlnll v e A (8.3)

Our cooperative system is studied in two phases. In the first phase, the UAV employs SWIPT
to harvest energy and decode information from the source node while the destination node
receives its respective data. In the second phase, the UAV acts as a decode-and-forward
(DF) aerial relay to re-transmit the destination node's data by utilizing the harvested power
of the first phase.

8.2.1 Phase One(!: Direct Transmission

In this phase, the source transmits the information to both the miniature UAV and destination
node by exploiting power-domain NOMA, as shown in Fig. 8.2. Hence, the transmit signal

is given by:
s[n] = Vai[n]si[n] + v azsln]s:[n],¥n e N, (8.4)

where s1[n] and sy[n] are transmit symbols during each time slot and assumed to be indepen-
dently Circularly Symmetric Complex Gaussian (CSCG) distributed with zero mean and unit
variance. Moreover, \/a1[n] and y/ax[n] represent the NOMA power allocation coefficients

I1The instantaneous channel power gain between source-to-UAV and UAV-to-destination, denoted by
hsr(t) and h.q(t),0 < t < T, are sampled at the rate §; to generate the discrete instantaneous channel
power gain hs,[n] and h,4[n],Vn € N.
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Figure 8.2: Phase One: Miniature UAV-assisted cooperative THz NOMA-SWIPT network. The
gray link means an inactive link. The source transmits the information to both the miniature UAV
and destination node by exploiting power-domain NOMA. The miniature UAV has not only its own
data in this phase but also the destination node’s data. The miniature UAV decodes the data
intended for the destination node but relays it in the next phase.

in the n-th time slot, which need to satisfy the two following constraints:

a1[n]+az[n] < Ryeak, VN €N, (8.5a)

N
5 Y aalnl + o] < P (8.5b)
n=1

Here P,eak refers to the peak power that can be transmitted by the source node. It denotes
the maximum instantaneous power output that the source is capable of delivering at any
given moment. On the other hand, Pnax represents the maximum power constraint of the
source node over a longer period, which could be a limitation of the total energy consumption
of the source. This parameter is crucial in energy-efficient network designs as it ensures that
the power usage by the source does not exceed a certain threshold, thereby optimizing the
energy consumption over time. The received signal at the UAV can be expressed as:

y(n] = he [n)sin] + 2P [n), ¥n e N, (8.6)

where zfl)[n] ~ N(0,02) is the received CSCG noise at the UAV node. By adopting a
PS-SWIPT architecture, the received signal for ID and EH from the Radio Frequency (RF)
source can be expressed as:

v tn) = /eln] (v ). YneN, (8.7)
Y0 = /1=l (y V() + 27 [], ¥n € N, (8.8)

where 0 < p[n] < 1 is the PS ratio, and z[n] ~ N(0, 03) is the additional noise caused by
the ID receiver. The UAV node employs a successive interference cancellation (SIC) receiver
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to decode the signals. In fact, the UAV first decodes the data of the destination node and
then removes it from its received signal to obtain its own data in a successive manner. The
received Signal-to-Interference-plus-Noise Ratio (SINR) at the UAV to detect sy[n] can be
stated as:

(1= p[n))aa[n]l hse[n]|?
(1= plnDeou[n]|hs[n]|? + N’
where N = (1—p[n])o$[n]+03[n] is the equivalent total noise. Then, the corresponding
SINR to decode UAV's data can be described as:

(1 —pln)eus[n]|hs/[n] |2
N

In our novel approach, the UAV is not just a relay in the communication system; it also acts
as an independent user in Phase One. This means that, unlike typical systems where the
UAV only relays data, in our model, the UAV has its own data to be processed during the
first phase while simultaneously harvesting energy. In the next phase, this harvested energy
is then used to retransmit data in a cooperative fation.

(1)

Yoo, lnl = VneN, (8.9)

D [n] = VneN. (8.10)

According to (8.6) and (8.7), the RF harvested power at the UAV by ignoring the noise
power can be expressed as:

E[n] = neln]|hs:[n]>T[n],Vn € N, (8.11)

where n € (0, 1] is the energy conversion efficiency and 7[n] is the transmission time fraction
for the first phase during the n-th time slot. Besides, it is assumed that the transmission
duration is the same for two phases, i.e., T[n] = % Consequently, the transmit power at the
UAV can be described by [270]:

E[n]

Pe[n] = =i’ vneN. (8.12)
The received signal at the destination can be stated as:
y 1) = heglnlsin] + . Dn], YneN, (8.13)

where v, [n] ~ N(0, 61[n]) is the received noise at the destination node in the first phase.
The SINR at the destination node to decode its own data can be written as:

ao[n] [hsaln]|?

= ol Ihsglnlp 520 "N (8.14)

8.2.2 Phase Two(?: Cooperative Transmission

In the first phase, the UAV harvests energy and decodes information from the source node,
while the destination node simultaneously receives its data. This phase employs power-
domain NOMA, where the source transmits the information to both the miniature UAV and
the destination node. The transmitted signal, s[n], is a combination of two symbols, s1[n]
and sx[n], using power allocation coefficients a1 [n] and ax[n].

The second phase is distinct in its purpose and functionality. Here, the miniature UAV acts
as an aerial relay to re-transmit the destination node's data using the power harvested in
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Figure 8.3: Phase Two: Miniature UAV-assisted cooperative THz NOMA-SWIPT network. The
gray links mean inactive links. The miniature UAV relays the data intended to the destination node
in this phase, using the harvested energy from the previous phase.

the first phase. This phase is designed to enhance the efficiency and reliability of the data
transmission to the destination node, particularly in scenarios where the direct link from the
source to the destination might be weak or unreliable. The reason the source does not
continue transmitting signals directly to the destination in Phase Two is to capitalize on
the enhanced transmission capabilities of the miniature UAV as a relay. Using the UAV as
a relay in Phase Two allows for more efficient use of the harvested energy and a potentially
stronger and more reliable link to the destination?.

Beyond the power consumption associated with source node transmission, if the source node
were to continue transmitting (using NOMA) in the second phase, it would inadvertently
introduce interference, detracting from the network’s overall performance due to the simul-
taneous transmissions from both the miniature UAV and the source node. Consequently, it
is strategically advantageous to forego transmission from the source node in Phase Two,
as the UAV already possesses the data intended for the destination node. This approach
mitigates potential interference, thereby enhancing network efficiency and performance.

In this part of the process, which is illustrated in Figure 8.3, the miniature UAV makes use of
the energy it has harvested to send the data to the intended recipient, the destination node.
As a result, the formula for the signal that the destination node receives can be written as
follows:

y2[n = V/Pelnlheglnlsa[n] + 2@ 0], Yne N, (8.15)

where 1) [n] ~ NV(0, 63[n]) is the received noise at the destination node. The corresponding

2In summary, the design choice in Phase Two of our protocol is based on the strategic use of the miniature
UAV's capabilities as a relay to enhance data transmission to the destination node, making full use of the
energy harvested in Phase One. This approach is tailored to maximize the efficiency and reliability of the
network under the constraints and objectives of our proposed system model.
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SINR reads as:
nplnl|hsq[n]2| hrg[n]?
3 (n]

Y1) = VneN. (8.16)

In the final step of the process, the destination node employs a technique known as Maximal
Ratio Combining (MRC) to merge the signals transmitted during the two phases. This
method optimizes the signal quality by (weighting and) summing multiple received signals
based on their SINR. As a result of this integration, the combined corresponding SINR can
be mathematically represented as follows:

R[] = 4P )+ 4P 1], Vnen. (8.17)

In the context of our study, the miniature UAV is assigned a dual function that is quite
distinctive. During the initial phase, it operates as a conventional user, involved in processing
its own data. In the subsequent phase, it transitions into a relay, tasked with forwarding the
data intended for the destination user. This dual functionality necessitates a unique approach
to calculating the overall data transmission rate. We take into account not only the miniature
UAV's personal data handling in the first phase but also its special role in transmitting the
destination user’s data during the second phase. To achieve this comprehensive evaluation,
we incorporated the MRC technique. MRC is utilized to aggregate the data directed towards
the destination user from both phases along with the UAV's own data from the initial phase.
This method of data integration is crucial for our calculation of the total data rate, as detailed
in the equation presented in (8.17). This approach allows for a more accurate representation
of the system’s performance, accounting for the UAV’'s multifaceted contribution to the
network’s data throughput.

8.2.3 Energy Efficiency Metric in a Cooperative Network

This concept of EE is particularly valuable for our miniature UAVs network for several reasons.
Firstly, these UAV often operate on limited power resources; thus, optimizing energy usage
extends their operational time and ensures they can cover more area or transmit more data
before needing a recharge. Secondly, by maximizing the amount of data transmitted per
unit of power consumed, we can achieve more efficient communication, which is crucial
for applications requiring real-time or near-real-time data exchange. Finally, focusing on
energy efficiency encourages the development of more sustainable UAV networks, reducing
the environmental impact associated with their power consumption. We now define the
network’s EE as the ratio of the sum data rate to the total network's power consumption.

That is: Rl
sum [/
n) = VneN, 8.18
nee(n] Pooml] (8.18)
where the sum data rate and total consumed power of the network are given as follows:
Rsum[n] =10g5(1 -+ [n]) +logs (1 + v R [n]), Vn € N, (8.19)
Poum|[n] =a1[n] + az[n] + Pe — Pe[n], YneN. (8.20)

In the total power consumption formula, (8.20) P, represents the constant power consump-
tion at the source, and P¢[n] represents the power used by the miniature UAV in Phase
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Two, the cooperative transmission phase, which is indeed derived from the energy harvested
in Phase One. Please note P:[n] reduces the source’s energy consumption. The energy
used in Phase Two by the UAV is the energy harvested from the source in Phase One, and
therefore, it does not constitute an additional energy expenditure by the source. That is
why we are subtracting it from the consumed power.

8.3 EE Maximization Problem Formulation

So far, we have studied how the two-phase system works. We explained the source node
transmits data in Phase One to both the destination node and the miniature UAV. We
learned although the miniature UAV has its own data in Phase One, it receives and decodes
the data of the destination node while also harvesting energy. The miniature UAV then
uses the harvested energy in Phase Two to re-transmit data to the destination node. In
this section, we aim to maximize the EE of the miniature UAV network by optimizing the
NOMA power allocation coefficients, PS ratio, and miniature UAV trajectory. Therefore,
the EE optimization problem is formulated as:

N
Py 8.21
1 et el ; neelr (8.212)
N
st — Z P:ln] > = Z Pn], (8.21b)
"Yffl, [n] = Ymin[n], VneN, (8.21c)
YYRE[A] > T i1, Vnen, (8.21d)
0<pln] <1, YneN, (8.21e)
Pln] =0, VneN, (8.21f)
az[n ]‘1'052[’7] < Ppreak,  VneWN, (8.219)
N Z az[n]+oz[n] < Prax, (8.21h)
q[l] = (8.21i)
q[N+ 1] =qe, (8.21))
lg[n+1] — g[n]|| < Vinaxd, Vn € N. (8.21k)

To ensure the effectiveness and reliability of the miniature UAV network, several constraints
are put in place in the EE optimization problem (P1) to manage power consumption, signal
decoding, and SINR, alongside managing the UAV's position and power allocation strategy.
Constraint (8.21b) stipulates that the power harvested by the UAV across all time slots
must exceed a predetermined minimum level, denoted as P[n] = Pgy. This is crucial to
guarantee that the UAV has sufficient power to operate effectively throughout its mission.
Constraint (8.21c) requires that the UAV must be capable of decoding the destination node's
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data with a signal quality of at least ymin[n]. This ensures the reliability of the data relay
process from the UAV to the destination node. Constraint (8.21d) demands that the SINR
at the destination node must surpass a specific threshold, T'min[n]. This criterion is vital
for ensuring that the destination node can accurately receive and interpret the signals sent
from the UAV, maintaining the integrity of the communication link. Constraint (8.21¢)
and (8.21f) illustrate the control over the PS ratio and validate the transmitted power's
feasibility from the miniature UAV. These constraints help optimize the UAV's energy use
and ensure its transmissions are within operational limits. Constraints (8.21g) and (8.21h)
regulate the NOMA power allocation coefficients. This is key for managing how power is
distributed among different communications to maximize efficiency and reduce interference.
Finally, constraints (8.21i), (8.21j), and (8.21k) govern the UAV's positioning and mobility,
ensuring it operates within a designated area and adheres to flight dynamics and safety
regulations.

The observation that a UAV cannot transmit more data to its destination than it has previ-
ously received, can be captured by the relationship 'YEIBr[”] < 'y((f)[n]. This principle forms
what is known as the relay constraint. Addressing this constraint directly within our pri-
mary optimization problem, denoted as P31, significantly complicates the solution process.
This complexity arises from the involvement of product terms of two THz channel gains,
which are influenced by the UAV's trajectory and the NOMA coefficients. To circumvent
this issue, we employ the following approach. The optimization problem P; integrates two
distinct constraints aimed at ensuring QoS of the miniature UAV cooperative network:

A >minln], VneN, (8.22)

VYR >Mminln], ¥R EN. (8.23)

Through a mathematical manipulation, we implicitly account for the relationship fyggr[n] <

'ygz)[n] by ensuring that I min[n] > Ymin[n]. This approach allows us to navigate the complex-
ities associated with directly addressing the relay constraint in our optimization framework.

8.4 A Two-Stage Solution to EE Problem

The difficulty with problem (P1) stems from its non-convex nature, which arises from the
coupling interactions between the variables to be optimized. This complexity poses signif-
icant challenges to the straightforward application of traditional optimization techniques.
In particular, the objective function of (P1) is characterized by a sum of ratios, a format
that complicates the use of the Dinkelbach method. This method is commonly employed
for solving problems involving ratios but struggles with scenarios involving sum-of-ratios, as
highlighted in the referenced literature [3, 209].

To overcome these hurdles, a two-stage algorithm is proposed. This algorithm is designed to
decouple the intertwined optimization variables, allowing for their independent optimization.
The key innovation here is the introduction of a new strategy aimed at transforming the sum-
of-ratios problem into a subtractive form. By doing so, the complex fractional non-linear
problems are broken down into more manageable parts. Specifically, this involves separating
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the numerators and denominators of these fractions, thereby simplifying the optimization
process.

The motivation behind the two-stage optimization approach in this chapter is primarily due
to the nature of the EE problem we are addressing. The problem (P1) is non-convex and
NP-hard due to the coupling of optimization variables, rendering conventional solutions
like the Dinkelbach method ineffective. Thus, the proposed two-stage solution facilitates
the independent optimization of each variable, offering a pragmatic pathway to tackle the
intricacies of (P1). In the first stage of our two-stage approach, we focus on optimizing the
PS ratio and the UAV's trajectory, keeping the NOMA power allocation coefficients fixed.
In the second stage, we then optimize the NOMA power allocation coefficients.

One might ask the question of whether a two-stage optimization causes performance degra-
dation. While it is true that a two-stage optimization might lead to certain performance
losses compared to a holistic approach, it is necessary in this context due to the complexity
and non-convexity of the problem. The decoupling of variables in this manner simplifies
the optimization process and makes it more tractable. There certainly are various methods,
such as other convex optimization algorithms or Al algorithms, that could potentially address
this problem. However, these methods might also face challenges with the complexity and
non-convex nature of the problem. Al algorithms, like deep learning models or reinforce-
ment learning strategies, could provide alternative solutions, but they often require extensive
training data and computational resources. Moreover, the integration of non-convex and
non-linear constraints within Al models presents another layer of complexity. The compu-
tational cost required for training sophisticated Al models is another critical consideration.
Al-based approaches may not always guarantee convergence to the optimal solution, espe-
cially in non-convex settings. Deep learning models, for instance, often require substantial
computational power and storage, necessitating access to high-performance computing sys-
tems — resources that are usually scarce or entirely unavailable. This can further make
Al-driven solutions less accessible, especially in scenarios where no training data is initially
available. Therefore, optimization-driven solutions can be preferred depending on the appli-
cation at hand.

Our two-stage solution is a deliberate effort to balance the need for effective problem res-
olution with the practical limitations of miniature UAV resources. This strategic approach
enables us to manage the complexity of the optimization problem effectively while achieving
a balance between performance and computational tractability.

8.4.1 Stage-one: Optimizing PS ratio and Miniature UAV trajectory

In this phase of the optimization process, we focus on iteratively designing the PS ratio and
the trajectory of the miniature UAV, while keeping the NOMA power allocation coefficients
constant. However, the challenge arises from the sum data rate function's non-convex
nature, attributed to the interaction between the PS ratio and the UAV's trajectory variables.
This coupling complicates direct optimization.

To address this, the optimization problem is approached in an iterative manner. This method
allows for a step-by-step refinement of both the PS ratio and the UAV's trajectory, gradually
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moving towards an optimal solution despite the initial complexity.

However, before iterative optimization can effectively begin, a critical step must be under-
taken: transforming the non-linear fractional objective function into a more manageable
subtractive form. This transformation is crucial as it simplifies the problem, making the
subsequent iterative optimization process feasible. The method for this transformation is
grounded in a theorem from the study by Jong et al. [154]. This theorem provides a mathe-
matical basis for decomposing the fractional objective function into a difference of two terms,
thereby detangling the complex relationship between the numerator and the denominator of
the fractions involved. This approach of transforming and then iteratively optimizing repre-
sents a workaround to the non-convexity and coupling issues, enabling the efficient tackling
of what would otherwise be an intractable optimization problem.

Theorem: Let suppose that p*[n] and g*[n] are the optimal solutions to the problem (P1).
Then, the following optimization problem can provide an optimal solution in the existence
of two vectors, namely, A= [X},... A4]" and ¥ = [¢5, ..., 93] as follows:

N
max Y A [Reum[n] — ¥ (Poum[n])]. (8.24)
elnl.aln]l \=1

Furthermore, p*[n] and g*[n] meet these two following equations:

R;kum[n]_'d/;s('Dsum[n]) =0,YneN, (8.25)
1 =X, (Psuml[n]) =0, YneN. (8.26)
Proof 8 Please refer to [154]. [ |

Specifically, the equivalent subtractive form in (8.24) with the additional parameters {\*, 1"}
has the same optimal solution as (P1) for given az[n] and ax[n]. In particular, the problem
(8.24) can be solved iteratively with a two-layer approach, i.e., inner and outer layers. In
the inner layer, (8.24) is solved under given X and %. Then, the two equations (8.25) and
(8.26) are updated in the outer layer to obtain {A\*,y*}.

8.4.1.1 Inner-layer Problem

In the inner layer of our optimization strategy, addressing the non-convex nature of the
problem requires a segmented approach to manage its complexity effectively. Initially, the
focus is on optimizing the PS ratio, under the assumption that the trajectory of the miniature
UAV and the NOMA power allocation coefficients are predetermined and fixed. This step
involves formulating a specific optimization problem for the PS ratio, carefully designed to
explore the best possible settings for energy harvesting and data transmission efficiency,
given the constraints of the UAV's current flight path and the allocated power coefficients
for NOMA communications. The formulation of the optimization problem for the PS ratio
can be given as follows:
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P5 : max 3 Ah [Reum[n] = W5 (Paum[n])] (8.27a)
1

pln] o=

s.t.: (8.21b) —(8.21e).

J

Upon focusing on the PS ratio, p[n], within the optimization framework, problem (P2)
is revealed to possess a convex structure with respect to this variable. This characteris-
tic significantly simplifies the problem, making it amenable to efficient solution techniques
commonly used in convex optimization. Such efficiency arises from the convex problem's
property, where any local minimum is also a global minimum, ensuring that optimal solutions
for p[n] can be determined straightforwardly and reliably.

Following the determination of the optimal PS ratio, attention shifts to the miniature UAV's
trajectory optimization. This subsequent step maintains the previously optimized PS ratio
settings, integrating them into the conditions under which the UAV's flight path is refined.
By doing so, the approach systematically decouples the coupling between the PS ratio and
the UAV's trajectory, allowing for an iterative optimization process that sequentially finds the
best configuration for each set of variables under the framework of the given optimization
problem. This methodical procedure ensures that both energy efficiency and communication
Therefore, we optimize the trajectory under the optimal PS ratio as follows:

s A

P3 :m[ai< ﬁ A5 [Roum[n] = ¥ (Psuml[n])] (8.28a)
alnl p=1

3 mplnjggetlall-staD N .
o ,7;1 llq[n] — s[n|l? = n;l (n], (8.28b)
az(n]

> Yminln],  VneWN, 8.28¢c
e [7] + x|l q[n] — sl Peclat—sta = [n] (8.28¢)

az[n] |hsaln]|?
a[n] [hsqln][? + 67 [n]
nolnlB  e~¢Ulalrl=slrll+lalo]~dinll)

Bl el — sl et — e = TN (828D

(8.21f), (8.21i) — (8.21k),

where
N

R

When addressing the trajectory optimization in problem (Ps3), it is acknowledged that this
problem maintains a non-convex nature, which poses significant challenges for direct opti-
mization techniques. To navigate this issue, a strategic transformation of problem (P3) is
employed, focusing on reformulating it into an equivalent form that is more tractable for

(8.29)
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optimization. This involves the introduction of slack optimization variables.

These slack variables act as a mathematical tool that simplifies the problem by breaking
down complex non-linear relationships into more manageable components. By doing so,
constraints and objectives that were previously non-convex can often be redefined in ways
that align better with convex optimization methods, or at least become amenable to efficient
approximation techniques. This transformation does not alter the essence of the problem
but reshapes it into a form where advanced optimization algorithms can be applied more
effectively, enhancing the feasibility of finding an optimal or near-optimal solution to the
UAV's trajectory optimization challenge under the given constraints. Hence, we transform
the problem (P3) into its equivalent form by introducing slack optimization variables as
follows:

N
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With the transformation of problem (P3) through the introduction of slack optimization
variables, the resulting objective function and constraints are recast as convex functions.
However, despite this transformation into convexity, the problem, now referred to as (Py),
remains intractable due to its complexity and the computational difficulty in directly solving
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it. To effectively approach this challenge, the method of Successive Convex Approximation
(SCA) is employed, which is particularly adept at handling such scenarios.

SCA is a powerful technique that iteratively refines approximations of the original problem
by employing convex over- or under-estimations of the non-convex parts, allowing for the
application of convex optimization methods at each step. Specifically, for (P4), SCA-based
first-order Taylor expansions are utilized to create these approximations. These expansions
provide a way to linearize the non-linear parts of the objective function and constraints,
essentially converting them into a series of linear problems that can be more easily solved3.
The first-order lower bounds are given by:

el > 21 <1+ea[n] _ ea(k)[n]) A zalnl yp e N, (8.32)

eblnl > b0l (1 + bl — eb(k)[”]) 2 &bl vne N, (8.33)
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e@ln and bl express the Taylor points at iteration k. According to the above trans-
formation, the problem (P4) can be approximated as:

3By using the first-order Taylor expansions, first-order lower bounds for the non-convex parts are gener-
ated. These bounds are crucial as they provide a convex underestimation of the original functions, maintaining
the feasibility and optimality conditions within a controlled approximation error. Through iterative updates
based on these linear approximations, the algorithm converges towards the optimal solution of (P4) by solving
a sequence of convex optimization problems, each drawing the solution closer to the optimal point of the
original non-convex problem. This method ensures a pragmatic and efficient pathway to optimize the UAV's
trajectory and other related variables within the complex operational constraints of the network.
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ea[n]:éa[n]’eb[n]:éb[n]
The problem (Ps) can be solved at iteration k by employing convex optimization solvers,
e.g., CVX [3], a widely recognized tool for solving convex problems. We denote each solution
at k-th iteration as F(X). The proposed SCA iterative methodology is incorporated into the
principal architectural design of our algorithm, as will become evident later.

8.4.1.2 Outer-layer Problem

In this phase of the optimization process, the damped Newton method comes into play
as a sophisticated technique to find the optimal values of {\,1}. This method is well-
regarded for its efficiency in handling non-linear equations by iteratively refining guesses
until convergence to the solution. To facilitate this, two functions ¢,(¥,) and ¢n;(A;) are
defined as follows:

®n(¥n) = Reym[n] — 5 (Paumln]), (8.40)
Onj(N) =1 =X (Paumli])J €{1,.... N}, (8.41)
where ¢,(1,) represents the difference between the optimal sum data rate R, [n] and

activated total power consumption Psum[n] whereas ¢n4;(A;) quantifies how far total power
consumption Psym[j] is from unity. It is demonstrated in [9] that the optimal solution
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{X\*,4p*} is found if and only if (X, ) = [p1,do,....don]” = 0. This condition effectively
means that the optimal solutions {\*,1*} are those that equilibrate the specified functions,
indicating a balance between the sum data rate and power consumption across the system.
Accordingly, the updated value of the A1 and 2+ in the iteration / can be obtained by:

AL =N+ Cwpyggon, (8.42)
P =+ Cwl (8.43)

where w = [¢(X, )] "Lp(X, ¢), and $(A, 2p) is the Jacobian matrix of (X, 1p). This iterative
procedure for updating A and 1 at each iteration is meticulously crafted to edge closer to
this equilibrium.

Moreover, (' is the largest value of = satisfying

|6 +=wiy 1w, ' +="wip) || < (1—e=M) 9N )], (8.44)

where me {1,2,...}, =™ €(0,1), and € € (0,1). By employing the damped Newton method,
adjustments are made based on the current estimates and the method’s insights into the
problem’s curvature, gradually refining these parameters. This iterative adjustment ensures
a precise and convergent path towards identifying the optimal set of {A\*,¥*}, marking a
critical step in optimizing the network’s overall efficiency and effectiveness.

8.4.2 Stage-two: Optimizing power coefficients

In the second stage of the optimization process, attention shifts towards the design of
power allocation coefficients, the last component for enhancing the network’s performance,
particularly in terms of EE in this study. The groundwork for this new framework is laid by
formulating the problem as a sum-fraction problem, which will be adopted later to design
power allocation coefficients. Consider the sum-fraction problem formulated as follows:

(8.45)

where J is the maximum number of fractional terms, and €2 is the optimization variable
vector with the domain of C. A;(€2) and B;(€2) are nominator and denominator of the n-th
fractional term with positive values. The optimization problem (8.45), initially presented as
a sum-fraction problem, is ingeniously restructured into an equivalent form that facilitates
a more straightforward approach to finding the optimal solution. In the following, it is
demonstrated that (8.45) has an equivalent form, which is:

1
QeCiy>0 Z AN Z 40 A2(Q) (8.46)

In fact, the solution to both (8.45) and (8.46) is the same. The equivalent form transforms
the problem into minimizing the sum of two distinct series. The first series scales the square
of the denominator, BJ-Q(Q), by a factor ¢;, while the second series inversely scales the
reciprocal of the squared inverse of the numerator, AJZ(Q), by (4¢;)~L. This transformation
introduces an auxiliary variable, ¢; > 0, for each fractional term, which plays a critical role in
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bridging the original sum-fraction formulation to this new convex format. It is noteworthy
that if A;j(€2) is a concave function and B;(2) is a convex one, then the problem (8.46) is
convex for the given ¢;. Based on the above analysis, the convex problem (8.46) is solved
for a given ¢; = %(97%"31(9)' and then the value of ¢; will be updated in the next iteration.
Consequently, with a specified PS ratio and predefined miniature UAV trajectory, problem
(P1) can be represented in the following equivalent manner:

r

: 1
"o ], aT[lrgL[nbO Z Pl + Z 4L[n] R2,[n] (8.473)
2
2 ol [P > o, VneN,  (@47h)
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(8.21f), (8.21g), (8.21h),

\

where x[n] and ¢[n] are given as follows:
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5201 ., VnewnN, (8.48)

x[n] = [min[n] —
1
SPE R

sum

t[n] = VneN. (8.49)

It can be observed that all constraints are linear and convex. Nevertheless, the objective
function is non-convex due to the non-concavity of the sum data rate function. To deal
with this issue, we utilize the result of the following corollary [3].

Corollary 2 Consider F as a decreasing function, then
A ()
E”G'?:Zf (Bj(r))' (8.50)

is equivalent to the following problem:

— 0°B:
T@Cn%zf 5 (201/4(0) - B(T)). (8.51)
with the updated value of g; = Vl;(j%r).
Proof 9 Please refer to [3]. |

Adopting the results of Corollary 1 allows for the transformation of the non-convex terms
within the objective function of problem (Pg), specifically addressing the complexities in-
troduced by the second term. Corollary 1 suggests a methodology for handling non-convex
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functions within an optimization problem, making it possible to recast them in a manner that
retains the problem’s original intent while rendering it more amenable to solution through
convex optimization techniques. The transformation typically involves introducing auxiliary
variables or applying mathematical operations that expose the underlying convex structure,
allowing for the application of convex optimization solvers. By adopting the result of Corol-
lary 1, the second term of the objective function in (Pg) can be equivalently written as:

- ﬁ L S (8.52)
o [n],az[n],eln] n=1 4[‘[”] ’qum[n] .
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tlogs <1+7§[n] + 20(nl /el ragl? — lnl (s [n] |hsd[n]|2+5%[n]>),
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where
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o= T ThsalnlP + 827

The modified sum data rate /qum[n] is now biconcave with respect to the power allocation
coefficients and g[n]. Accordingly, the multi-convex optimization problem can be formulated
as:

s ")

N N 1 1
Pz: min L[N P2 [n]+ - 8.55a
7 il n;]_ [ ] sum[ ] ,—;1 4L[n] Rszum[n] ( )

s.t.:  (8.21f),(8.21q), (8.21h), (8.47b), (8.47c),

where a[n] = [a1[n], az[n]] € R?*1.

It is worth noting that Pym[n] is a function of power allocation coefficients, and every
coefficient has its own constraint. Hence, the terms of Pym[n] and Ii’sum[n] are decoupled
to optimize Pym[n] distributively. As a result, the Augmented Lagrangian Method (ALM)
is adopted where a penalty term is added to the Lagrange function of the problem (P7) as
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follows:
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Note that it has been determined that the ALM performs better than the traditional sub-
gradient or dual-descent method, as highlighted by Bertsekas [277]. A key advantage of
ALM is its superior performance in navigating the complex landscape of optimization prob-
lems, such as (P7), where it not only facilitates a more efficient search for optimal solutions
but also ensures robust adherence to constraints. One of the significant merits of ALM
is its convergence properties. Unlike some methods that require a large penalty term to
ensure convergence towards an optimal or near-optimal solution, ALM guarantees conver-
gence without necessitating such conditions. This makes ALM particularly appealing for a
wide array of optimization problems where the balance between objective optimization and
constraint satisfaction is delicate and complex.

In the context of (P7), the augmented Lagrangian incorporates a penalty factor, s, along-
side Lagrange multipliers {g,0,0©,u,9}. These components work together to steer the
optimization process towards solutions that are feasible within the problem’s constraints
while penalizing deviations from these constraints to maintain a strict adherence to them.
Each iteration of the optimization, denoted as /, yields a solution G(/), progressively refining
the approach towards an optimal or sub-optimal solution. Finally, our proposed efficient low
complexity sub-optimal algorithm is sketched in Algorithm 9.

8.5 Complexity Analysis

The overall complexity of the proposed two-stage solution is determined by the complexities
of solving three optimization problems: P>, Ps, and P7, associated with finding the optimal
Power-Splitting factor, the miniature UAV trajectory, and the NOMA power coefficients,
respectively. For P, involving 3N constraints and N decision variables, the complexity
aligns with that of an Interior Point Method for convex optimization, expressed as O1 =
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Algorithm 9 Iterative Resource Allocation Algorithm for EE maximization of THz-NOMA
SWIPT-aided Miniature UAV Networks
Input: Set iteration indices i =0,k=0,/=0,
Set the maximum convergence iteration index /max.,
Set the tolerance to €] =€, = 1073,
Initialize X, 4, a®[n], bK) [n], v [n], t®)[n], p, ¢F), e,
Set Lagrange multipliers g,6',©', u/,9', and the penalty factor /.
1: repeat
2 Given {\, v, a[n], q[n]}, solve (P2) to obtain p[n].
3. while |FK) — F(k=D] > ¢; do
4 Given {a[n], p[n]}, solve (Ps) to obtain g(¥)[n].
5 Update b = In(v([n]), atk) = In(t*)[n]) according to (8.34) and (8.35).
6: Set k=k+1.
.
8
9

end while
if (8.44) is satisfied then return (p*[n],g*[n]).
. else Update A and v according to (8.42) and (8.43).
10:  Seti=i+1.
11: until (8.25) and (8.26) are satisfied or i = /max.
12: while |G() —GU=D| > ¢, do
13:  Given {q[n], p[n]}, solve (P7) to obtain «[n].
14:  Update the Lagrange multipliers p/t1 641 @1 [/+1 and 9+,
15:  Update the penalty factor s/t1 =23/,
16:  Set/=/+1.
17: end while
18: return (p*[n], ¢*[n], a*[n]).

O(N(3N)?). Ps has (8N +3) constraints and 5N decision variables. Its complexity, based
on the Successive Convex Approximation methodology, is O, = O((8N +3)(5N)3). The
complexity of P7, following the Augmented Lagrangian Method, is O3 = O(N?). Hence, the
total complexity of the proposed solution is the sum of the individual complexities: Oiota =
O1+ 02+ 03 = O(9N3+ (8N +3)(5N)3 + N?), indicating a polynomial time complexity of
degree four.

8.6 Simulation Results and Discussions

In the context of our simulation framework, we consider a scenario within a defined square
area, each side measuring 30 meters, designed to contain a single user and one miniature
UAV, both of which are positioned in a random manner within this space. To mitigate
the occurrence of peaks in path loss, the selection of the carrier frequency was carefully
made at f = 1.2 THz, coupled with a chosen transmission bandwidth of 10 GHz. Ac-
knowledging the critical role that water vapor plays in influencing molecular absorption loss
in THz channels, our model accounts for the frequency-dependent absorption coefficient,
&(f), by attributing it exclusively to the presence of water vapor molecules, as referenced
in the literature [274, 278, 279]. Furthermore, Vinax =1 m/s, w = 0.1 Sec, T = 45 Sec,
03 =6%[n] = 63[n] = —174 dBm/Hz, Hy =2, Ho = 3 meters, Peak = Pmax =1, Pc =0.52 W,
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Table 8.1: Simulation Parameters for EE maximization of THz-NOMA SWIPT-aided Miniature
UAV Networks.

Parameter Value

Area side length 30 meters
Carrier frequency 1.2 THz
Transmission bandwidth 10 GHz
Absorption coefficient, £(f) Frequency-dependent
Maximum flying speed of the miniature UAV, Vinax | 1 meter/Sec
Duration of each time slot, @ 0.1 Sec
Miniature UAV Operation time, T 45 Sec

Noise power spectral density —174 dBm/Hz
Source Node altitude, H; 2 meters
Miniature UAV altitude, H> 3 meters

Peak power, Fpeak 1w

Circuit power, P 0.52 W

following the guidelines set forth in referenced studies[270, 274].

We have derived all statistical results based on the aggregation of data obtained from
an extensive series of simulation trials, generating numerous random realizations of the
channel gains. This methodical approach allows for a comprehensive understanding of the
dynamics involved in the deployment and operation of the miniature UAV within the specified
environmental conditions, offering valuable insights into the optimization of UAV-assisted
communication networks. All simulation parameters are also summarized in Table 8.1.

To rigorously evaluate the effectiveness of our proposed resource allocation algorithm, we
conducted a comparative analysis against a set of benchmark methods, each designed to
highlight different aspects of system performance under varied conditions:

e Method A: Evaluates the proposed algorithm under a NOMA framework with a static
NOMA power coefficient.

e Method B: Compares the system's performance under dual access mechanisms (NOMA
vs. Orthogonal Multiple Access (OMA)) to determine which is superior.

e Method C: Analyzes the proposed algorithm assuming a pre-defined UAV flight course.
e Method D: Considers a scenario with uniform PS factors (p[n] =0.5,Vn € N).

e Method E: Utilizes a fractional programming approach from [280] without optimizing
PS factors.
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Figure 8.4: The effect of average network transmit power, psum, on EE of THz-NOMA SWIPT-
aided miniature UAV networks.

Fig. 8.4 presents the EE dynamics as influenced by the average network transmission power,
denoted by psum = Pmax+ Fpeak + Pc — Pen. Within this representation, the curve labeled
"Initial” sketches out the EE performance following an initial, non-optimized (random) setting
of the miniature UAV flight path. A noteworthy observation from our investigation is the
consistent outperformance of our proposed algorithm over various benchmark algorithms.
This superiority becomes even more pronounced with an increase in psym, indicating a relative
expansion in performance disparity.

In a parallel comparison depicted in Fig. 8.4, we examined the average EE performance
across these five distinct methodologies. The results demonstrated the superiority of our
proposed strategy, showing performance enhancements of:

30.3% compared to Method A (static NOMA power coefficient)

23.0% compared to Method B (NOMA vs. OMA)

21.2% compared to Method C (pre-defined UAV flight course)

18.1% compared to Method D (uniform PS factors)

7.26% compared to Method E (fractional programming without PS optimization).

This empirical evidence firmly establishes the proposed algorithm’s capability to significantly
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Figure 8.5: The trajectory of miniature UAV in the cooperative THz NOMA-SWIPT network.

enhance EE, highlighting its utility and effectiveness within miniature UAV-assisted commu-
nication frameworks.

Fig. 8.5 presents the results of trajectory optimization for the miniature UAV, showcas-
ing the paths that have been refined for enhanced operational efficiency. Moving forward,
Fig. 8.6 embarks on a detailed analysis of how the duration of the mission, i.e., the miniature
UAV's operational time, denoted by the parameter T, impacts the EE of various benchmark
schemes. An interesting pattern emerges from this examination: as mission time extends,
there’s a notable improvement in EE for schemes operating under fixed trajectories (Method
D) and those initiated with non-optimal, feasible configurations (labelled 'Initial’). This up-
ward trend in EE, attributable to prolonged communication opportunities and the flexibility
to adjust flight parameters over time, is not uniformly observed across all methods. Specif-
ically, Methods A, B, and C do not exhibit this consistent rise in EE with an increase in
T. Quantitatively, the extension of mission time is associated with significant boosts in EE
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Figure 8.6: The EE vs. the miniature UAV'’s operational time in the THz-enabled SWIPT network.

performance, enhancing it by at least 37.1%, 26.8%,22.8%, and 16.5%, 12.8% respectively.
This enhancement suggests that longer mission times offer a strategic advantage by allow-
ing for more optimal communication strategies and flight parameters’ adjustment, thereby
improving overall efficiency. However, the relationship between mission time and EE is nu-
anced. The interaction among optimization variables results in a non-linear, albeit generally
increasing, trend in EE as mission time is extended. This phenomenon indicates the complex
dynamics at play when optimizing for EE, where certain adjustments can lead to significant
gains in efficiency. The observation that mission time can have such a profound impact
on EE underscores an intriguing challenge: minimizing the task completion time for UAV
relay systems to meet specific EE criteria. This challenge points towards a delicate balance
that must be struck between operational efficiency and the urgency of mission completion,
highlighting a fertile ground for further research and exploration in optimizing UAV-based
communication networks.

Figure 8.7 demonstrates the intricacies of how the molecular absorption coefficient — a
fundamental factor in THz communication systems — affects EE under a variety of environ-
mental conditions. A salient observation from this figure is the evident inverse relationship
between the molecular absorption coefficient and the EE across different communication
schemes. Specifically, as the absorption coefficient increases, signifying higher propaga-
tion losses, there is a noticeable decrement in EE for all analyzed methods. This trend is
primarily ascribed to the aggravated signal attenuation caused by environmental variables
such as humidity and temperature, which intensify molecular absorption. This increase in
molecular absorption, while potentially minimizing information leakage from the miniature
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Figure 8.7: The EE vs. molecular absorption in the THz-enabled miniature UAV network.

UAV, simultaneously impairs the quality of signal reception at the intended destination node.
Such a degradation has a direct adverse impact on the overall EE. Remarkably, even under
these challenging environmental conditions, the proposed solution distinctly surpasses the
performance of baseline methods. This underscores the resilience and effectiveness of our
proposed algorithm, adeptly counteracting the detrimental effects of increased molecular
absorption to sustain higher EE levels in networks that are empowered by THz technology
and UAV integration. This consistency in outperforming baseline approaches underlines the
adaptability and superiority of the proposed solution in maintaining optimal communication
efficiency, regardless of the environmental constraints encountered.

8.7 IRS-based UAV with Underlaid D2D Users in THz
Networks

Throughout our journey in this chapter, we have pioneered a groundbreaking concept, the
'miniature’ UAV, envisioned as a mobile relay akin to an IRS with the unique ability to change
its location dynamically. Recognizing that an IRS fundamentally acts as a relay by reflecting
and manipulating signal paths, the miniature UAV (as a relay but not generally) takes this
concept airborne, offering a new dimension of flexibility and adaptability in network topology.

This dissertation has been devoted to a deep dive into IRS technology, probing its capabilities,
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Figure 8.8: Model of the UAV with underlaid device-to-device (D2D) communications network.
The system model of an uplink single macro cell OFDMA-based cellular network with one base
station to serve M CUs and K DUs. In this figure, the green arrow shows the cellular transmission
link between the base station and the CUs, while the dotted line indicates the D2D links.

limitations, and applications. Hence, a natural progression for our work involves examining
the practical integration of such miniature UAVs into IRS-aided networks. The intriguing
question we pose is: How can we leverage the agility and dynamism of miniature UAVs to
enhance IRS functionality within complex network environments?

To avoid redundancy, we have deliberately chosen not to repeat system models previously
discussed. Instead, we propose that future studies should build upon the established sys-
tem model, extending it to incorporate the unique characteristics of miniature UAVs. This
innovative approach opens up a plethora of opportunities for improving network coverage,
optimizing signal quality in real-time, and delivering robust wireless communication in sce-
narios where fixed IRS installations might fall short.

In essence, the inclusion of miniature UAVs into our system model ushers in a novel era
of dynamic, aerial IRS solutions that could transform the infrastructure of modern wireless
networks. It invites a fascinating research avenue that promises to push the boundaries of
current wireless communication technologies and pave the way for unprecedented advance-
ments in the field.

Taking Device-to-Device (D2D) communication as an example to explore the possible inte-
gration of miniature UAVSs, its integration with UAVs can redefine the operational efficiency
of wireless communication systems, particularly in regions where conventional communica-
tion infrastructure is sparse or non-existent for D2D services [1]. UAVs serve not only as agile
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aerial platforms enhancing coverage but also as spectrum-sharing facilitators that can signif-
icantly boost network throughput. This innovative model allows for a dual-communication
modality where some users can establish direct D2D links while others are served through
the UAV, resulting in a versatile and high-performing network.

Recent research has studied the optimization of UAV-D2D integrated networks [281, 282,
283, 284, 125, 285, 286, 287, 288, 289]. Studies have highlighted the delicate balance
between leveraging UAVs for extended coverage and the efficient use of D2D communica-
tion for localized data exchange. These investigations consider crucial parameters such as
data rate, coverage, power control, and the strategic deployment of UAVs to augment the
network’s capabilities [281, 284]. For example, one study examined the pivotal interplay be-
tween the altitude of UAV and the density of D2D pairs, unpacking their collective influence
on network coverage and data-rate performance [282]. Another research effort provided
insights into the multi-hop capabilities of D2D pairs under the watchful guidance of a UAV,
particularly within the context of loT networks [289]. Further research optimized the power
control in UAV-aided D2D communications, focusing on maximizing throughput while adher-
ing to interference constraints [283]. Additionally, the efficacy of employing NOMA within
UAV-aided networks was scrutinized, revealing the potential for power control optimization
to mitigate outage probabilities for both cellular users and D2D pairs, thus enhancing overall
communication reliability [283].

These pioneering studies underscore the potential of integrating UAVs with D2D commu-
nication,a synergy that not only extends the reach of networks but also fine-tunes their
performance across diverse scenarios. This research trajectory is especially pertinent as we
steer towards a future where the harmonization of aerial and ground-level communication
frameworks will be paramount. The continued exploration and advancement in this domain
promise to fortify the robustness of wireless systems, ensuring connectivity resilience even
in the most challenging environments.

We propose an innovative approach that leverages miniature UAVs operating in the THz
frequency network as transmitters (the miniature UAV we developed earlier is not a relay
anymore but rather an aerial base station). In this scheme, the IRS is employed as a strategic
enhancer of signal coverage. This proposition stands at the confluence of advanced aerial
mobility and cutting-edge reflective technology, potentially ushering in an era of communi-
cation networks characterized by expanded reach and improved signal fidelity. To explore
further, we consider a downlink UAV-NOMA system with an underlying D2D communication
network, as shown in Fig 8.8. As seen, the operational region is a circular domain of radius
R. The network hosts single-antenna CUs and DU pairs, succinctly represented by sets
K={U;,...Ux}={1,....K} and M ={D1,....Dy} ={1,..., M}, respectively. The users
are randomly placed within the circular region, with CU users engaged in communication
with a THz-enabled UAV. This UAV, pivotal in our system model, is complemented by an
IRS to enhance its communication capabilities. Ensuring unobstructed interaction between
the IRS, the UAV, and the terrestrial CUs, the IRS is strategically positioned at the service
area's periphery, enabling an omnidirectional perspective over the ground users. The IRS
is constructed from L = L, x L, Passive Reflection Units (PRUs), which collectively form
a Uniform Linear Array (ULA). The ensemble of IRS elements is encapsulated by the set
L={1,..., L}

The architecture of our system further entails an underlay strategy for D2D communications,
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where each D2D receiver is subject to interference originating not only from the UAV but
also from other D2D transmitters. Conversely, CU must contend with interference from
all D2D transmitters. A three-dimensional Cartesian coordinate framework serves as our
mathematical canvas, allowing for precise representation of the nodes’ positions without
sacrificing generality. The UAV's trajectory in this spatial tapestry is articulated as q(t) =
[x(t),y(t),z(t)]" € R3*L, while the coordinates of CUs and DUs are defined by ck(t) =
[cx k (1), Cy'k(t),O]T €R3*1 Yk € K and vy, (t) = [vie.m(1), vyym(t),O]T eR3*1, ¥Yme M for
the duration 0 < t < T, respectively. The IRS location is denoted by s = [sy, s, s,]" € R3*L.

We postulate that the incorporation of IRS into the miniature UAV THz network infrastruc-
ture will significantly enhance network performance, benefiting both DUs and CUs in terms
of spectral efficiency. This improvement is not limited to data transmission rates alone; we
also anticipate a notable boost in the overall energy efficiency of the network. The IRS
achieves this by smartly redirecting and focusing the signal energy, which otherwise might
dissipate or not reach the intended users effectively, thereby optimizing the use of available
spectral resources and reducing the energy required for transmissions.

This hypothesis rests on the ability of the IRS to manipulate electromagnetic waves in a
controlled manner, thus enabling a more directed and efficient signal propagation. For DUs,
this means an enhanced user experience with faster data rates and reduced latency. For
CUs, the benefits include improved coverage and reliability, even at the network’s edge or in
traditionally challenging environments for signal penetration. The cumulative effect of these
enhancements is a network that not only performs better in delivering services to its users
but does so with greater energy parsimony.

The anticipated improvements in spectral and energy efficiency underscore the transforma-
tive potential of IRS technology. By bridging the gap between the increasing demand for
high-quality wireless communication services and the imperative for energy conservation,
the IRS emerges as a pivotal technology in the sustainable evolution of wireless network
infrastructures. This is also expected in a miniature UAV THz network.

8.8 Conclusion

In this chapter, we have tackled the intricacies of enhancing the efficiency of a cooperative
TeraHertz (THz) Non-Orthogonal Multiple Access (NOMA) supported miniature Unmanned
Aerial Vehicle (UAV) network integrated with Simultaneous Wireless Information and Power
Transfer (SWIPT). This work commenced with the formulation of an Energy Efficiency (EE)
optimization problem aimed at refining the network’s resource allocation scheme. A novel
deployment strategy for the miniature UAV was introduced, tailored to augment wireless
THz connectivity. This strategy is distinctive in its meticulous consideration of the molecular
absorption phenomenon, a critical factor in the THz-enabled UAV path loss channel gain
model.

Building upon this foundation, we crafted an optimization problem with the goal of im-
proving EE within a NOMA-SWIPT cooperative UAV framework, ensuring compliance with
stringent Quality of Service (QoS) benchmarks. The crux of this optimization problem was
the strategic modulation of decision variables, including the UAV's positioning, the Power-
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Splitting (PS)-SWIPT ratio, and the NOMA power allocation coefficients, all of which play
pivotal roles in the network’s operational efficiency.

To navigate the complexities of the EE optimization, we devised an iterative solution method-
ology. This method decomposes the problem into three more manageable sub-problems,
solved using a two-stage framework. This procedural innovation not only facilitated a more
streamlined solution process but also showcased its effectiveness through compelling numer-
ical outcomes. These results proved the resource allocation algorithm's superiority by com-
paring it against baseline scenarios that did not incorporate optimizations related to minia-
ture UAV trajectory, NOMA power, or SWIPT PS. Such comparative analysis illuminated
our proposed strategy's significant contributions to enhancing the network’s performance
efficiency. It underscored notable advancements in miniature UAV endurance and battery
longevity, marking a substantial leap forward in the operational capabilities of THz-NOMA-
enabled miniature UAV networks with SWIPT. This work not only expands the frontier of
(miniature) UAV network optimization but also sets a precedent for future research in the
domain, promising more resilient, efficient, and sustainable aerial communication networks.
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Conclusion

N this dissertation, we embarked on an in-depth exploration of Intelligent Reflecting Sur-

faces (IRSs) and their transformative impact on the enhancement of wireless network
capabilities. Our examination of IRS technology proved its revolutionary role in enhancing
networks' key performance indicators (KPIs) (such as data rate, power, spectral, and energy
efficiencies) and optimizing resource allocation, thereby illuminating its substantial influence
on the evolving landscape of wireless communications. Our analytical (sometimes math-
ematically involved) approach revealed the unique benefits that laser-aided systems offer,
notably through the advanced beamforming capabilities for amplifying desired signals and
the dynamic suppression of co-channel interference. This is achieved by the IRS’s ability to
sense the surrounding wireless environment and adjust its reflection coefficients in real time
to optimize signal quality.

Throughout this research, we ventured into the integration of IRS with a variety of ser-
vice types, including Machine Type Communications (MTC), Ultra-Reliable Low-Latency
Communication (URLLC), Internet of Things (loT) deployments, and Mobile Edge Com-
puting (MEC). This exploration demonstrated IRS setups could open up new perspectives
to enhance the efficiency and reliability of these services. We introduced and developed
several innovative, low-complexity algorithms designed to establish (sub-)optimal resource
allocation policies in GLSS-aided networks. Our analytical insights were validated through
extensive simulations, providing a strong foundation for the practical implementation of IRS
in real-world scenarios.

As we conclude this dissertation, we present a comprehensive summary of our findings, re-
flections on the journey undertaken, and the broader conclusions drawn from our research.
Moreover, we offer a few potential future directions for IRS-aided wireless communication
networks, highlighting the untapped possibilities and emerging challenges that await. Our
discussion extends to envisage the integration of IRS with emerging technologies, anticipat-
ing the innovative applications and solutions that IRS technology could unlock in the quest
for more efficient, reliable, and versatile wireless communication systems. This final chapter
serves not only as a closure to our current research endeavors but also as a beacon guiding
future explorations in the ever-evolving domain of IRS-enhanced wireless networks.
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9.1 Main findings

Now we can look at an Intelligent Reflecting Surface (IRS) as an innovative technology de-
signed to enhance wireless network performance by smartly manipulating the propagation of
ElectroMagnetic (EM) waves. Comprising numerous passive or active reflecting elements,
an IRS can adjust the phase shifts of incoming signals, thereby directing them toward specific
receivers to improve signal strength, coverage, and overall network efficiency. This disser-
tation has delved deeply into the exploration, analysis, and application of IRS technology,
recognizing its potential to revolutionize the field of wireless communications. Focusing on
the myriad ways IRS can be integrated into existing or future networks to address current
challenges and optimize performance, the study has unfolded various dimensions of this
cutting-edge technology.

In the following paragraphs, we will outline the key contributions of this study, highlighting
the significant strides made in advancing our understanding and application of IRS within
wireless communication systems.

Contribution 1

Optimizing Power Efficiency in SWIPT Networks through Advanced Beamforming and
Antenna Selection

The initial contribution of this dissertation sets the stage for subsequent explorations by
focusing on the optimization of power efficiency within single-cell networks that incorpo-
rate multi-antenna and multi-user configurations, specifically focusing on the integration of
Simultaneous Wireless Information and Power Transfer (SWIPT). By tackling the dual objec-
tives of maximizing energy harvested and minimizing power consumption, we introduced an
optimization strategy that navigates the complexities of beamforming and antenna selection.
This foundational contribution not only establishes the theoretical background necessary for
optimizing SWIPT-enabled networks but also demonstrates, through extensive simulations,
the potential enhancements in power and energy efficiencies. The development and vali-
dation of low-complexity, locally optimal solutions signify a major step towards balancing
energy conservation and operational efficiency in future wireless communication networks,
serving as the baseline upon which further IRS-related investigations are based.

Contribution 2
Enhancing URLLC with IRS: A Leap Towards Ultra-Reliable Communications

The second major contribution is the utilization of IRS within multi-user Multiple-Input
Single-Output (MISO) systems to significantly enhance Ultra-Reliable Low-Latency Com-
munication (URLLC) services. By aiming to reduce total transmission power through the
simultaneous optimization of active and passive beamformers, we designed an advanced Al-
ternating Optimization (AO) algorithm. Our approach not only illuminates the intricate rela-
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tionship between active and passive beamforming but also highlights the substantial promise
the IRS holds for refining URLLC systems. Supported by simulation studies, this contribu-
tion underscores the efficiency and effectiveness of the proposed solutions, marking a pivotal
step towards harnessing the full capabilities of the IRS in future wireless communications.

Contribution 3
IRS-Assisted MTC Systems: Bridging loT Connectivity with Energy Efficiency

We explored the dynamics of integrating Machine Type Communication (MTC) technol-
ogy within a multi-user MISO system, enhanced through the deployment of an IRS. We
optimized the system'’s total Energy Efficiency (EE) while maximizing the serviceability of
loT users through a strategic joint optimization of active and passive beamformers. The
introduction of another AO algorithm highlighted the IRS’s significant impact on improv-
ing system efficiency and its ability to accommodate a larger number of users within loT
frameworks. Through this exploration, a delicate balance emerges between EE and Spectral
Efficiency (SE), revealing the potential of IRS technology in optimizing the performance of
MISO MT C-enabled networks.

Contribution 4

Leveraging IRS for Computational Offloading in MEC-Enabled Multiuser MTC Net-
works

The next contribution of this dissertation delved into the synergy between MEC and multiuser
MTC scenarios. We underlined the pivotal role of the IRS in facilitating computational
offloading to improve latency and reliability for MTC devices. By optimizing the joint radio
resource allocation and edge offloading decisions within an IRS-aided network, we presented a
novel approach toward enhancing the efficiency of edge computing for MTC environments.
Through the development of an efficient iterative algorithm and supported by simulation
results, we extended the utility of IRS beyond signal enhancement, illustrating its capacity
to significantly impact the computational aspects of wireless networks.

Contribution 5

Active IRS in mmWave Networks: Pushing the Boundaries of High-Frequency Wireless
Communication

While the previous contributions primarily focused on Frequency Range 1 (FR1), delving
into the potentials and challenges within sub-6 GHz bands, we ventured into uncharted ter-
ritory with our fifth contribution. Our next contribution marks our inaugural exploration
into Frequency Range 2 (FR2), specifically within the high-frequency spectrum of mmWave
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wireless networks. To this end, we investigated an active IRS-assisted MISO system operat-
ing in mmWave frequencies. We addressed the challenge of optimizing the system sum rate
by exploring the unique advantages offered by active IRS configurations. By formulating
a comprehensive optimization problem and introducing two low-complexity algorithms, we
showcased the potential of active IRS in enhancing network performance and also set a new
benchmark for the application of IRS technology in mmWave spectra, opening new avenues
for research and development.

Contribution 6

UAV-Assisted NOMA Networks in the THz Band: Maximizing Energy Efficiency
through Strategic Deployment

Pushing the boundaries even further in the frequency spectrum, this contribution explores the
realm of Unmanned Aerial Vehicle (UAV)-assisted Non-Orthogonal Multiple Access (NOMA)
networks that operate in the TeraHertz (THz) band, a domain known for its potential to
revolutionize high-speed wireless communication. We introduced a novel framework de-
signed to optimize energy efficiency through meticulously planned miniature UAV trajectory
deployment and the formulation of an effective network resource allocation strategy. We
studied the critical role of miniature UAV mobility, NOMA power allocation strategies, and
SWIPT Power-Splitting (PS) ratios in influencing the overall system performance. By in-
troducing an innovative optimization approach and demonstrating the intertwined effects of
these parameters on energy efficiency, this contribution advances the understanding of THz
band communication and its implications for future wireless networks.

Each of these contributions represents a significant advancement in the field of wireless
communications, reflecting four years of dedicated research, continuous effort, and fruitful
collaboration with globally recognized scientists. Together, they encapsulate a comprehen-
sive exploration of IRS technology and its potential to redefine the landscape of wireless
network capabilities.

0.2 Future Research Directions

In this final section, we discuss potential directions for future research based on the results
obtained in this dissertation.

e Frequency-Dependent Response Model for IRSs: The assumption of a uniform re-
sponse from IRS elements across the spectrum is increasingly untenable as we extend
the frequency range of next-generation wireless networks. Beginning in the sub-6 GHz
range, where IRS technology has traditionally proposed, the expansion into mmWave,
terahertz, and even higher frequency domains, 430 THz to 790 THz, such as Optical
Wireless Communications (OWC) and Visible Light Communication (VLC) presents
new challenges and opportunities. The interaction between electromagnetic waves and
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Figure 9.1: Illustration of the Optical IRS (OIRS)-supported OWC network, where the I-th LED
and its reflection are symmetrically positioned across the x'y'z' plane. We consider the downlink of
an OIRS-aided cell-free OWC system, where L LEDs serve K PD users (or photodetectors), with
an OIRS with N units enhancing communication.

IRS elements in these higher frequencies is vastly different, necessitating sophisticated,
empirically informed IRS models that can accurately reflect frequency-dependent be-
haviors. Such advanced modeling is essential for fine-tuning the IRS's phase shift ca-
pabilities across these diverse frequency bands, optimizing performance from the well-
established sub-6 GHz spectrum to the frontier territories of OWC and VLC. In these
higher bands, the potential of IRS to reshape wireless communications is particularly
pronounced, with applications ranging from enhancing indoor penetrations to providing
high-capacity, low-latency communications in densely populated urban centers. Fig 9.1
shows a generic optical IRS setup, where the LEDs transmits information symbols both
directly and indirectly through the IRS to PDs. Research in this area must continue
to push the boundaries of frequency utilization, ensuring that the deployment of IRS
technology keeps pace with the rapid evolution of wireless standards and the growing
demand for bandwidth and connectivity. By addressing the unique propagation char-
acteristics and interaction mechanisms of each frequency band, IRS technology can be
harnessed to its full potential, facilitating a seamless wireless future that spans across
a wide spectrum of frequencies [290, 291, 292, 293, 294, 295, 296, 297, 298, 299].

Near-Field Modeling for IRS: As the deployment scenarios for the IRS become more
varied, including close proximity indoor environments like manufacturing plants or of-
fices, the traditional far-field models become less applicable. Near-field effects, char-
acterized by spherical wavefronts rather than planar ones, significantly impact the
performance of the IRS. Future investigations should delve into analyzing IRS' aper-
ture at high frequencies and creating accurate near-field models for IRS, focusing on
the distinct propagation characteristics and their implications on IRS-assisted com-
munication. Understanding near-field interactions is crucial for accurately configuring
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IRS in environments where users are within a few wavelengths of the surface, ensuring
optimal signal enhancement or suppression as required [300, 301, 302, 303, 304, 305,
306, 307, 308].

e Low-Complexity Optimization Techniques for IRS: Current optimization algorithms
for configuring IRS elements often come with high computational complexity, making
them less viable for dynamic or real-time applications with user mobility. The next
leap in IRS research should involve the development and integration of low-complexity,
possibly machine learning-driven, optimization techniques. These algorithms should
aim at real-time adaptability, enabling the IRS to adjust dynamically to changing envi-
ronmental conditions and user demands with minimal computational overhead. Such
advancements are essential for the seamless integration of the IRS into future net-
works, where flexibility and responsiveness are key [309, 310, 311, 312, 313, 314, 315,
316, 317, 318, 319].

e Leveraging Statistical CSI in IRS-Enhanced Networks: In dynamic wireless envi-
ronments, acquiring instantaneous Channel State Information (CSI) can be challenging
and resource-intensive, particularly for the IRS, which has a large number of elements.
A promising research direction involves leveraging statistical CSI to guide the configu-
ration of the IRS. This approach can mitigate the need for constant channel updates,
reduce overhead, and enable more efficient IRS operations. Developing frameworks
and algorithms that can effectively utilize statistical CSl to optimize IRS settings will
be crucial. This strategy not only enhances network performance under practical con-
straints but also aligns with the envisioned 6-th Generation (6G) networks' emphasis
on intelligence and efficiency [170, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329,
330, 331, 332, 333].

e Advanced Material Science for IRS Enhancement — Expanding the Boundaries
of Wireless Communication: The exploration of novel materials and metamaterials
presents an exciting frontier in enhancing the efficiency and responsiveness of IRS.
By delving into materials boasting superior refractive indices, minimal loss factors,
and the ability to dynamically alter electromagnetic properties in response to external
stimuli, such as electrical or thermal changes, we stand on the verge of revolutioniz-
ing IRS technology. The key lies in understanding the intricate interactions of these
advanced materials across diverse frequency spectra, particularly in the mmWave and
terahertz domains. This endeavor could usher in a new era of IRS designs, offering
unparalleled precision and control over the behavior of electromagnetic waves. As
we envision the future integration of IRS technology into the very fabric of our built
environment, one transformative application emerges: the incorporation of IRS into
the facades of bundling or skyscrapers, as shown in Fig 9.2. Consider the glass in-
dustry, a sector that has seen minimal innovation over decades. The potential for
IRS to become an integral component of high-rise building glass represents a pro-
found shift, not just for wireless communications but also for architectural design and
functionality. Such integration would not only enhance the aesthetic appeal of these
structures but also turn them into active participants in the wireless ecosystem, signif-
icantly boosting signal quality and network coverage in urban landscapes. This vision
for IRS-embedded building facades invites us to reimagine the possibilities for urban
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Figure 9.2: Envisioning the Future of Connectivity: A cityscape where skyscrapers are embedded
with Intelligent Reflecting Surfaces (IRS), enhancing the coverage and the boundaries of next-
generation wireless networks. — Generated by OpenAl.

development and connectivity. By transforming skyscrapers into giant, interactive
nodes within the wireless network, we could effectively eliminate coverage dead zones
and dramatically improve the efficiency of urban communications infrastructure. This
is the future we should strive for, a world where advanced material science and IRS
technology converge to redefine the boundaries of wireless communication and urban
living [334, 335, 336, 337, 338, 339, 340, 341].

Integration of IRS with Non-Terrestrial Networks (NTNSs): Exploring the poten-
tial of IRS to enhance Non-Terrestrial Networks (NTNs), including satellite and UAV
communication systems. IRS could be used to improve ground-satellite or UAV com-
munication links by mitigating signal attenuation and interference, thus enabling more
robust and extensive coverage. Research could focus on the design and placement of
IRS on terrestrial structures or directly on airborne/spaceborne platforms to optimize
the link quality in NTNs [342, 343, 344].
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e Energy Harvesting and Self-Sustaining IRS Systems: Developing self-sustaining
IRS panels through the integration of energy-harvesting technologies. This includes
leveraging solar panels, piezoelectric materials, or RF energy harvesting to power the
IRS’s active components, such as tunable elements and sensors. Research in this area
would contribute to deploying IRS in remote or power-constrained environments, ex-
panding their applicability and sustainability. Enhancing WPT and energy harvesting
techniques with IRS technology could significantly improve wireless networks' sustain-
ability and autonomy. Research could focus on developing IRS-assisted WPT systems
that maximize energy transfer efficiency across various environments and distances.
Additionally, investigating the IRS's role in ambient energy harvesting from diverse
sources (e.g., solar, electromagnetic) could further augment the energy efficiency of
wireless devices, extending their operational lifespan and reducing their environmental
impact. This could include reinforcement learning algorithms that continuously learn
and improve IRS settings for optimal performance, predictive modeling to anticipate
network demands and unsupervised learning techniques for clustering and anomaly de-
tection within IRS-enhanced networks [345, 346, 347, 348, 349, 350, 351, 352, 353,
354, 355, 356, 357].

e Advanced Optimization Techniques for IRS Placement and Configuration —
Polyhedron Approach and Al-Driven Solutions: In our pursuit to further refine and
enhance the operational efficiency of IRS within wireless networks, we have identified
and are exploring several cutting-edge optimization techniques. Beyond the tradi-
tional methods, the authors have envisioned the use of the Polyhedron technique as
a particularly intriguing approach for determining optimal IRS placements. This novel
Polyhedron approach, as shown in Fig. 9.3, which has not been studied in the realm of
IRS optimization, is currently under rigorous investigation in our team. Its potential
extends beyond merely strategic IRS placements; it could revolutionize the planning
and deployment of other network infrastructures, such as access points, base stations,
UAVs, and drones. By employing this method, we anticipate uncovering new dimen-
sions of network optimization that have remained undeveloped, thereby enhancing
overall network performance and efficiency.

Furthermore, we recognize the power of Artificial Intelligence (Al) and Machine Learn-
ing (ML) in optimizing IRS configurations. Al and ML algorithms are at the forefront
of enabling intelligent, dynamic, and autonomous optimization of IRS configurations.
The development of Al-driven predictive models is central to our approach, allowing
for the accurate anticipation of optimal IRS settings in response to fluctuating environ-
mental conditions, user movements, and varying network demands. By leveraging Al
and ML, we aim to substantially reduce the complexity and computational demands
traditionally associated with managing and optimizing large-scale IRS deployments.
These Al-driven optimization strategies are not only fascinating for their ability to
adapt and learn but also for their potential to offer innovative solutions for resource
allocation decision policies across the network. Combining the exploratory potential
of the Polyhedron approach with the dynamic adaptability of Al and ML methods
opens up a broad spectrum of possibilities for IRS optimization. These advancements
promise to elevate the capabilities of wireless networks, ensuring that they are more
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Figure 9.3: lllustration of a polyhedron P as the intersection of five half-spaces, with outward
normal vectors a1, ...,a5. The red segments are the possible locations of IRSs in each half-space.

efficient, responsive, and capable of meeting the ever-growing demands of modern
communication systems. As we delve deeper into these optimization techniques, our
goal is to pave the way for a future where wireless networks are not only more inter-
connected but also significantly more intelligent and adaptable to the needs of their
users [358, 359, 360, 361, 362, 363, 364, 364, 365, 366, 367, 368, 369, 370, 371,
372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383].

e Integration of IRS with Quantum Communication: Investigating the potential
integration of IRS with quantum communication technologies presents a novel re-
search avenue. Quantum communication promises unparalleled security and data
transmission capabilities. Exploring how IRS can be optimized to improve quan-
tum signal fidelity and extend quantum communication range could potentially en-
able secure and efficient wireless networks that are resistant to eavesdropping and
offer high data integrity. This integration could involve studying the effects of IRS
on quantum entanglement distribution and Quantum Key Distribution (QKD) proto-
cols [384, 377, 385, 386, 387, 388, 389, 390].

These research directions are a short list of possible continuations or improvements with
respect to the contribution of this dissertation. They highlight the importance of advancing
IRS technology to meet the evolving demands of future wireless networks. By addressing
the unique challenges associated with high-frequency operation, near-field interactions, opti-
mization complexity, and CSI utilization, the research community can pave the way for more
sophisticated, efficient, and adaptable IRS solutions. These advancements will undoubtedly
contribute to the broader goal of creating more robust, high-performing wireless ecosystems
that leverage the full potential of IRS technology.
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Optimization Techniques

In this appendix, we introduce the foundational principles of convex functions, which are
central to the thematic exploration of this thesis. Convex functions are distinguished by a
defining characteristic: any line segment joining two points on the graph of the function
remains either above or precisely on the graph, a property that significantly influences their
application in optimization and mathematical modeling. These functions are integral in
various fields, including economics, engineering, and machine learning, due to their desirable
properties that facilitate problem-solving and analysis.

Understanding the basic properties of convex functions, such as the non-negativity of the
second derivative (in the one-dimensional case or positive semi-definiteness of the Hessian
in the high-dimensional cases), Jensen's inequality, and the Duality theorem, equips us with
the analytical tools needed to approach complex optimization problems with greater effi-
cacy. These properties ensure that local minima are also global minima, simplifying the
optimization process and making it more predictable and efficient.

The exploration of convex optimizations in this context is inspired by the seminal work of
Boyd and Vandenberghe (2004) in their comprehensive guide on convex optimization [197].
Their work provides a solid foundation for appreciating the importance of convexity in opti-
mization theory and its applications across various disciplines.

A.1 Convex Analysis

Convex analysis is a branch of mathematics that studies convex sets and convex functions.
At its core, convex analysis focuses on the properties and behaviors of convex functions,
which are functions where the line segment between any two points on the graph of the
function lies above or on the graph itself. This characteristic leads to numerous useful
properties, such as the existence of unique global minima for optimization problems under
certain conditions [391, 197].
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A.1.1 Definitions

Let f(-) : R" — R be a convex function. Then, f(-) is convex, if for each X € [0, 1], we have:
F(Axy 4+ (1 =X)x2) < AfF(x1)+(1—N)f(x2), (A1)

for all x1, xo € R". Geometrically speaking, the above inequality states that the line segment
between (x1,f(x1)) and (x2,f(x2)), which is the chord from x; to x», lies on top of the
graph of (). A function f(-) is said to be strictly convex if (A.1) holds with strict inequal-
ity. Moreover, supposing that 7(-) is differentiable, i.e., its gradient exists, then each convex
function satisfies the following inequality:

F(x) > F(X)+ Vi f (X)) (x—%), (A.2)

where V, is the gradient vector with respect to x at X, and 07 is the transpose operation
on 0. The inequality (A.2), known as the first-order condition for convexity, asserts that for
a convex function, a global underestimator of the function can be easily derived via its first-
order Taylor approximation. Consequently, the first-order Taylor approximation of a convex
function is always a global underestimator of the function. This inequality additionally
confirms that global information of a convex function can be obtained through its local
information, i.e., its value and derivative at a point.

A.2 Duality Theorem

Duality is a powerful concept in mathematical optimization that provides a framework for
understanding and solving optimization problems from a different perspective. The theory of
duality involves the formulation of a secondary problem, known as the dual problem, which
is intrinsically linked to the original optimization problem, referred to as the primal problem.
The relationships between the solutions of these two problems offer deep insights into the
nature of the optimization problem in question.

The duality theorem, a cornerstone of this theory, states that under certain conditions, the
solution to the dual problem provides bounds on the solution to the primal problem. For
convex optimization problems, these conditions are often satisfied, and the duality theorem
assures that the optimal value of the primal problem is equal to the optimal value of the
dual problem. This equivalence is known as strong duality. Let's now mathematically define
this theorem.

We consider the following optimization problem, also known as the primal problem, written
in its general form as:

min £(x) (A.3)

s.t.ogi(x) <0, Vi=1,....1/,
h(x)=0, vI=1,..,L,

where f(-): R"” — R is the objective function, and x € R" is the vector of optimization
variables inside the feasible set X’. This optimization problem has / inequality constraints
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and L equality constraints. Furthermore, we also refer to p* as the optimal value of the
optimization problem in (A.3).

The Lagrangian duality of the objective function of (A.3) is given by:

I L
L(x, p,v)="Ff(x)+ Z wigi(x) + Z vihi(x), (A4)
i=1 I=1
where p and v are called the vector of Lagrangian multiplier or the dual variables with respect
to inequality and equality constraints associated with the problem (A.3) that have u;'s and
v)'s as the elements of the corresponding vectors. The essential purpose of Lagrangian
duality is to get somehow rid of the constraints in (A.3) by adding a weighted sum of
the constraint functions to the objective function. We can now define the corresponding
Lagrange dual function (or just dual function), which is formally stated as:

D(p,v)= ir;f/j(x,u,u). (A5)

Note that even though the primal problem could be non-convex, the dual problem is always a
convex optimization problem since the dual function is a point-wise infimum. This infimum
can be seen as the greatest lower bound of a family of affine functions with respect to u
and v.

The Lagrange dual function in (A.5) gives us a lower bound on the optimal value p* of the
primal problem (A.3). In order to find the best lower bound for the primal problem, the
following optimization problem can be defined from the Lagrange dual function:

rDan D(p,v). (A.6)

This problem is known as the Lagrange dual problem corresponding to the primal problem.
Moreover, if u* and v* are the optimal values for the Lagrange dual problem in (A.6),
they are traditionally called dual optimal or optimal Lagrange. It should also be noted since
the objective to be maximized is concave in (A.6), the Lagrange dual problem is a convex
optimization problem no matter the primal problem in (A.3) is convex or not.

A.2.1 Weak Duality and Duality Gap

Weak duality refers to the relationship between the optimal solutions of the primal and dual
problems. Specifically, in the context of a minimization problem, it states that the objective
function value of any feasible solution to the dual problem provides an upper bound on the
objective function value of any feasible solution to the primal problem. For maximization
problems, this relationship is reversed, and the dual provides a lower bound on the primal.
Mathematically, let x* be a feasible solution for the primal problem, i.e., p* and (u*,v*) are
a feasible solution to the dual problem, that is, d*. According to weak duality, we have the
following inequality for a general (possibly non-convex) problem:

d* <p*. (A7)

It must be noted that the weak duality inequality also holds when d* and p* are infinite. On
the other hand, the difference between the primal optimal value and dual primal value, i.e.,
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p* —d* is called the optimal duality gap. It should be stated that the optimal duality gap
is always non-negative. Since the dual problem is always convex, and often can be solved
efficiently to determine d*, the inequality in (A.7) is quite useful in finding a lower bound
on the optimal value of a problem that is difficult to solvel.

A.2.2 Strong Duality and Slater condition

The significance of strong duality and the Slater condition lies in their ability to guarantee
that the optimal value of a primal optimization problem is equal to the optimal value of its
dual problem. This equivalence facilitates the solution of the primal problem by solving its
dual, which can be computationally more efficient or analytically more tractable in certain
cases. Furthermore, strong duality provides a powerful framework for sensitivity analysis and
for deriving optimality conditions, which are pivotal for designing and analyzing algorithms
for solving optimization problems. Let us now define them formally.

If the duality gap is zero, i.e., p* = d*, the strong duality holds. The strong duality indicates
that the best bound that can be achieved from the Lagrange dual function is tight. Moreover,
in strong duality, since the gap between primal and dual is zero, solving the dual problem is
equivalent to solving the primal problem.

A sufficient condition for strong duality to hold for a convex optimization problem is the
Slater condition or Slater’s condition. In particular, if the Slater condition holds for the primal
problem, then the duality gap is zero, which implies strong duality for convex problems. And
if the dual optimal value is finite, then it is attained, i.e., a dual feasible (p*, v*) exists that
satisfies D(u*,v*) = d* = p*. In general, there exist many results that establish conditions
on the optimization problem that yield strong duality. These conditions are coined constraint
qualifications, where the Slater condition is only a simple specific example of many.

A.3 Lagrangian

In order to study duality in optimization models, two approaches exist historically, and the
duality results are manifested as referred to as: i) Classical Lagrangian and ii) Abstract
Lagrangian.

Classical Lagrangian: In classical optimization, particularly in the context of calculus of
variations and classical mechanics, the Lagrangian refers to a function that describes the
dynamics of a system. It is defined as the difference between the kinetic and potential
energies of the system. In optimization, the classical Lagrangian L(x,\) for a problem is
constructed by adding the product of Lagrange multipliers (\) and the constraint functions

LIn an ideal scenario, especially for convex optimization problems, this gap is zero, indicating that the
solutions to the primal and dual problems coincide (this is known as strong duality). However, in non-convex
problems or in instances where certain regularity conditions are not met, there may be a positive duality gap.
This means that the best solutions to the primal and dual problems do not achieve the same objective value,
and the gap quantifies the difference between these two values. A nonzero duality gap indicates a lack of
optimality or a limitation in the tightness of the dual problem as a bound on the primal problem.
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to the objective function. This approach is used to find the stationary points of L under the
constraints, which correspond to the optimal solutions of the original problem.

Abstract Lagrangian: The concept of an abstract Lagrangian extends the classical idea
to a broader set of problems, including those in convex analysis and functional analysis. It
involves constructing a Lagrangian function that incorporates both the objective function
and the constraints in a more general form, allowing for the analysis and solution of more
complex or abstract optimization problems.

Among these two forms, the classical Lagrangian form is more extensively used in the lit-
erature. What we have discussed so far is indeed the classical Lagrangian form of duality.
As seen, classical Lagrangian typically starts from a primal problem while the Lagrangian
and the Dual Lagrangian problems are established. However, at a more abstract level, an
abstract Lagrangian function is used to derive the primal and dual optimization problems.
Here, we briefly discuss an abstract version of Lagrangian duality that is elaborated in more
significant detail in [392]. In this version, through a certain real-valued abstract Lagrangian
function, the primal and dual costs are taken into account, such that:

(Primalproblem) min F(x) where F(x) = sup L(x,y),
XEX yeY

(Dualproblem) max G(y) where G(y) = inf L(x,y),
yey xXEX

where £: X x)Y — R is the abstract Lagrangian function pertaining to X and ) as appropri-
ate domains defined in some primal and dual spaces, respectively. Moreover, the supremum
can be seen as the least upper bound of a family of affine functions with respect to x and
y. This approach to duality is based on conjugate duality, where a convexity assumption is
always made [393]. This approach also puts a strong emphasis on the minimax and saddle
point theorems, which are given below.

e Minimax Theorem: This theorem provides the condition that guarantees the strong
max-min property or the saddle point as follows:

supyey infxex H(x,y) = infxex supyey H(x,y). (A.8)

It should be noted that the above equality, strong max-min property, holds only in special
cases. This is, in particular, true, when for example, H : X x Y — R is the Lagrangian of
a problem where the strong duality holds.

e Saddle Point Theorem: Under suitable conditions, there exists a saddle point for S(-)
referred to as a pair (x*,y*) € X x Y such that for all (x,y) € X x Y:
S(x*,y) <S(x*,y") <S(x,y"). (A.9)

In (A.9), S§: X x)Y — R is the Lagrangian of a problem where the strong duality holds. In
other words, S(x*,y*) = supycy S(x,¥*), and S(x*,y*) = inf,cx S(x*,y). This indicates
that the strong max-min property (A.8) holds with the common value of S(x*,y*).

A.3.1 Augmented Lagrangian Method

The augmented Lagrangian method is an extension of the classical Lagrangian technique,
designed to improve the convergence properties when solving constrained optimization prob-
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lems, especially those with equality and inequality constraints. The augmented Lagrangian
function includes an additional term that penalizes violations of the constraints, effectively
augmenting the original Lagrangian with a quadratic penalty term. This method works
by iteratively solving an unconstrained optimization problem for the augmented Lagrangian
and updating the Lagrange multipliers and penalty parameters until convergence to an op-
timal solution of the original constrained problem is achieved [394]. Consider a constrained
optimization problem of the form:
iy 79
st.igi(x)<0, i=1,...,m, (A.10)

n(x)=0, j=1...p,

where f(x) is the objective function to be minimized over the variable X € R", g;(x)
are inequality constraints, and h;(x) are equality constraints. The Augmented Lagrangian
La(Xx, \, w,r) for this problem is given by:

Lax, A, p,r)="1f(x)

m p
+ Y XNgi(x)+ Y wihi(x)
i=1 =1

LY max(0.g,00) + - Y ()2, (A.11)
243 23

where A= (A1,...,Am) and p = (u1,...,4p) are vectors of Lagrange multipliers for the
inequality and equality constraints, respectively, and r > 0 is a penalty parameter. The key
features of the Augmented Lagrangian method include:

Penalty for Constraint Violation: The addition of gmax(O,g,-(x))2, the quadratic penalty
terms, for inequality constraints and ghj(x)2 for equality constraints. These terms impose
a penalty on the violation of constraints, which becomes more severe as the value of r
increases.

Adaptive Penalty Parameter: The penalty parameter r is typically updated (usually in-
creased) iteratively, which helps in driving the solution towards feasibility with respect to the
constraints.

Dual Update: The Lagrange multipliers A and p are updated at each iteration based on
the degree of violation of the constraints, facilitating the convergence towards the optimal
dual variables.

The Augmented Lagrangian method iteratively solves a sequence of unconstrained or easier-
to-handle constrained optimization problems, adjusting the penalty parameter r and updating
the Lagrange multipliers as it progresses. This approach effectively bridges the gap between
feasibility and optimality, ensuring that the solution satisfies both the objective function
minimization and the constraints. The augmented Lagrangian method is particularly useful
for problems where direct application of the classical Lagrangian method is difficult due
to the nature of the constraints or where the convergence of classical methods is slow.
By penalizing constraint violations more strongly, the augmented Lagrangian method often
leads to faster convergence and more robust solutions, making it a powerful tool in the
optimization toolkit.
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A.4 Complementary Slackness and KKT Optimality Con-
ditions

Complementary Slackness and the Karush-Kuhn-Tucker (KKT) are integral to both the
theoretical understanding of optimization and its practical applications. Complementary
Slackness provides a direct link between the primal and dual formulations of an optimization
problem. It defines that for every constraint in the problem, the product of the constraint's
Lagrange multiplier and the slack in the constraint must equal zero. This implies that if
a constraint is not active (meaning it does not directly influence the optimal solution), its
corresponding Lagrange multiplier is zero, highlighting which constraints are critical at the
optimum.

Mathematically, suppose that both the primal and dual optimal values exist and are equal.
This means the strong duality holds. We further assume that x* and (u*, v*) to be a primal
optimal and a dual optimal point, respectively. Therefore, we have

L

/
F(x) =D(u" V") < F(x) + Y uigi(x)+ Y v hi(x*) < F(x7). (A.12)
i=1 I=1

The first inequality in (A.12) holds since the infimum of the Lagrangian over x is less than
or equal to its value at x = x*. However, the last inequality follows from p,;‘ >0, gi(x*) <
0,Vi={1,....1}, and h/(x*) <0, VI=1,...,L. An important conclusion that one can make
from (A.12) is that

uigi(x*)=0, Vi=1,..,1/ (A.13)

This condition is called the complementary slackness. It confirms that one can go from the
optimal primal solution to the optimal dual solution, and vice versa, if the strong duality
holds. Moreover, the complementary slackness verifies that a solution is optimal, by checking
if there is a dual solution [395, 396].

The KKT conditions extend the idea of Lagrange multipliers to include inequality constraints,
offering a comprehensive set of criteria that must be met for a solution to be deemed optimal.
These conditions encapsulate stationarity, primal and dual feasibility, and complementary
slackness. In essence, the KKT conditions ensure that the gradient of the objective function,
adjusted for the weighted gradients of the constraints, vanishes at the optimum, affirming
that no feasible direction can lead to improvement. They also ensure that all constraints are
satisfied (primal feasibility), the multipliers for inequality constraints are non-negative (dual
feasibility), and complementary slackness holds.

Mathematically, suppose that all the functions both in the objective and the constraints in
(A.3) are differentiable. Just the same as was assumed in (A.12), let’s also suppose the
primal and dual variables at the optimum point, for which strong duality obtains, are x* and
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(p*,v*), respectively. The KKT conditions have the following properties

gi(x*) <0, Vi=1,...,1, (A.14a)

h(x*)=0, VI=1,...,L, (A.14b)

wi >0, Vvi=1,..,1/, (A.14¢)

wigi(x*)=0,vVi=1,...1, (A.14d)
/ L

Vuf () + Y i Vegi(x) + Y vf Vi (x*) =0, (A.14e)
i=1 =1

where u¥ and v are the elements of Lagrangian vectors u* and v*, respectively. Also, Vy
denotes the gradient of a function with respect to x in (A.14e). Note that the KKT con-
ditions are necessary and sufficient conditions for the optimality of the convex optimization
problem with differentiable objective and constraint functions. However, if the problem is
non-convex, the KKT conditions would only provide the necessary conditions for optimality,
given that the objective and constraints are differentiable.

In practice, the KKT conditions and complementary slackness are used to identify optimal
solutions to constrained optimization problems. By examining these conditions, one can de-
termine whether a candidate solution is truly optimal. In algorithm design, for instance, these
conditions guide the iterative steps towards an optimal solution, ensuring that adjustments
to the variables respect the constraints and move towards satisfying the KKT conditions.
Moreover, in sensitivity analysis, they provide insights into how changes in the problem’s
parameters might affect the solution, based on the relationship between the primal and dual
problems elucidated by complementary slackness. The KKT conditions and complementary
slackness not only facilitate the identification and verification of optimal solutions but also
enrich the understanding of the problem's structure and the interplay between its constraints
and objectives [397].

A.5 Interior-Point Methods

Interior-Point Methods are a class of algorithms designed to solve linear and nonlinear opti-
mization problems, particularly those involving constraints. These methods are distinguished
from other optimization techniques, like simplex methods for linear programming, by their
approach of traversing the interior of the feasible region to reach an optimal solution, rather
than moving along the boundary.

The term “interior-point” refers to the strategy of these methods to start from a point
within the interior of the feasible region of the optimization problem and iteratively move
towards the optimal solution, while staying within the feasible region. This is in contrast to
methods that operate on the boundary of the feasible region or explore the vertices of the
feasible region, such as the simplex method in linear programming.

Developed in the mid-1980s, Interior-Point Methods gained prominence through Karmarkar's
algorithm for linear programming. They have since been extended to various types of opti-
mization problems, including nonlinear programming, semidefinite programming, and convex
optimization. The key idea behind these methods is to solve a sequence of approximations of
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the original problem that makes the barrier to leaving the feasible region infinite, effectively
“pushing” the solution towards optimality while remaining in the interior [398].

To understand this approach, let’s consider a basic form of an optimization problem and how
Interior-Point Methods are applied, especially focusing on linear optimization for clarity. A
typical linear optimization (Linear Programming (LP)) problem can be formulated as follows:

min ¢’ x

xeX
s.t.: Ax=Dh, (A.15)

x>0,

where x € R” is the vector of decision variables, ¢ € R" is the coefficient vector for the
objective function, A is a m x n matrix representing the linear constraints, and b € R is
the right-hand side vector. The goal is to find the vector x that minimizes the objective
function while satisfying the constraints.

Interior-Point Methods solve such a problem by starting from a point within the feasible
region (hence "interior”) and iteratively moving towards the optimum. One key concept
used in these methods is the logarithmic barrier function, which allows the method to handle
the non-negativity constraints x > 0 by incorporating them into the objective function. An
example of a barrier function that might be added to the objective is:

f/,l,iln(x,-), (A.16)
i=1

where x; are the components of the decision variable vector x. The modified objective
function becomes:

min ch—uiln(x,), (A.17)

=1

where 1 is a positive parameter controlling the influence of the barrier. As the algorithm
progresses, u is gradually reduced, steering the solution toward the boundary of the feasible
region and the optimal solution. At each iteration, the method solves a system of equations
derived from the KKT conditions, adjusting the variables and pu to move closer to the
optimum. The KKT conditions for the modified problem incorporate both the gradient of
the objective function (including the barrier term) and the feasibility conditions. The central
path, which is a trajectory that the solutions follow as u decreases, leads to the optimal
solution as u — 0, ensuring that the iterates remain in the interior of the feasible region.

This mathematical framework allows Interior-Point Methods to efficiently navigate the fea-
sible space, exploiting the curvature of the barrier function to avoid the pitfalls of boundary
navigation and to leverage more direct paths toward the optimum. This approach is not
only applicable to linear programming but also extends to nonlinear and convex optimization
problems, where similar barrier methods are utilized to handle constraints and guide the
solution process.

Appendix A. Optimization Techniques J. Jalali



246 Appendix A. Optimization Techniques

Algorithm 10 Interior-Point Method Algorithm with Barrier Function for LP
1: Initialize
Choose an initial feasible point xg such that Axg =b and xg > 0.
Set an initial barrier parameter pg > 0 and a parameter 6 € (0,1) to reduce w in each
iteration.
while not converged do
For the current value of , solve (A.17).
Reduce the barrier parameter for the next iteration, typically using u < 6u.
until some convergence criterion is met
return optimal x

o U AN

A.6 MM Approach and DC Programming

MM algorithms are an appropriate tool to reduce a given optimization problem into a series
of simpler problems. In this sense, an MM algorithm is not an algorithm, but rather an appro-
priate principal way of designing optimization algorithms for high dimensional settings, where
the classical methods of optimization do not work well. MM algorithms are not new. The
celebrated Expectation Maximization algorithm is a particular case of MM algorithms that is
extensively used in electrical engineering applications and in other fields. The reason for se-
lecting the MM acronym is two-fold. An MM algorithm operates on a more straightforward
and simpler surrogate function that majorizes/minorizes (the first M of MM) the objec-
tive function in a minimization/maximization (the second M of MM) optimization problem.
Thus, the MM stands for either Majorization Minimization or Minorization Maximization,
depending on the application. In the next few paragraphs, we consider a majorization mini-
mization problem to explain how the algorithm works. The process involves two steps:

Majorization: Given the current estimate, find a surrogate function that is easier to optimize
and that upper bounds the original objective function while being tangent to it at the current
estimate.

Minimization: Minimize this surrogate function to obtain a new estimate. This sequence of
majorization and minimization is repeated until convergence. The MM algorithm is particu-
larly useful because it can convert non-convex problems into convex optimization problems
at each iteration, making it easier to find global or local optima.

Consider the following optimization problem

>r<12|)r} f(x), (A.18)

where x is the optimization variable vector belonging to the feasible set X'. In order to
majorize the function f(x) at x", there exists a surrogate function g(x|x") that satisfies two
conditions

fF(x") = g(x"|x"), (A.19)
f(x) <g(x|x"), x#x" (A.20)

The first condition (A.19) is called the tangency condition at the current iteration step.
This condition grantees g(x"|x") is tangent to f(x) at x". The second condition, on the
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other hand, (A.20) makes sure the g(x|x") is dominant in a sense that it always lies above
the surface of f(x) except at x”. Besides, if a function g(x|x") majorizes the function f(x)
at x”, it can be easily perceived that -g(x|x") minorizes -f(x).

Another very important result of the MM algorithms is the descent property. Starting from
x? € X as an initial point for the feasible set X', an MM algorithm generates a sequence of
feasible point x"”. At point x” in the majorization step, a continuous surrogate function is
constructed that satisfies the domination condition in (A.20)

g(x|x") > F(x) + g(x"|x") — F(x"), x#x". (A.21)
Hence, in the minimization step, the following update rule can be applied

x" ¢ )r(réi/’rgg(x|x”). (A.22)

It is easy to show that the generated sequence f(x") is non-increasing. Thus, we have
FOXT) < g(x™Hx") — g(x"x") + F(x") < g(x"x") — g(x"|x") + F(x") = F(x"), (A.23)

where the first inequality comes from (A.21), and the second inequality is the direct conse-
quence of (A.22). The property in (A.23), the descent property, gives a remarkable numerical
stability to MM algorithms. Hence, instead of minimizing the cost function f(x) directly,
the MM algorithms stably optimize a sequence of tractable approximate surrogate objective
functions g(x|x") that minorize f(x) as tightly as possible.

The MM algorithms can easily be connected to other algorithmic frameworks [207, 399, 400].
One of the application areas of the MM algorithms is in Difference of Convex functions (DC)
programming problems. The general form of DC functions is

mxin fo(x) — ho(x) (A.24)
st fi(x)—hi(x) <0, Vi=1,...m, (A.25)

where fi's and h;'s are all convex functions. We further assume that f;'s and h;'s are twice
differentiable, and are strictly convex without loss of generality according to (A.1). Among
various algorithms having desirable properties for the solution of DC problems, the MM
scheme, which solves a sequence of convex problems acquired by linearizing non-convex parts
in the objective function as well as the constraints, is preferred. Accordingly, an approximate
solution can be found that iteratively solves (A.24) through defining the following convex
subproblem

mXin go(x|x™) (A.26)
s.t.ogi(x|x") <0, Vi=1,....m, (A.27)

where
gi(x|x™) = f;(x) — (h[(x”)+Vxh,(x”)T(x—x”)), vie{0,...,m}. (A.28)

The aforementioned approximation satisfies the MM principle and is a tight upper bound of
f; — h; with equality achieved at x = x". This technique is used several times throughout
the thesis. Moreover, the solution methodology for the MM algorithm is summarized in
Algorithm 11. A valid question to be asked at this point would be how good the convergence
behaviors of the MM algorithms are. For the answer, the interested reader is referred to
[401, 402, 403].
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Algorithm 11 The MM (Majorization Minimization or Minorization Maximization) algorithm

1: Initialize
Iteration index n = 0 with the maximum number of iteration Npax
and find a feasible point x°.

2: repeat

3 Find x" by solving the optimization problem (A.22) and store as x.

4. Setn=n+1and x"=x.

5: until some convergence criterion is met or N = Nyax

6: return optimal x

A.7 Optimization Packages

The field of optimization encompasses a diverse array of tools and packages, each tailored
to address the complexities of various optimization problems at hand. This overview briefly
highlights some of the most prominent optimization packages while also shedding light on
additional tools that play a crucial role in the optimization landscape.

The GNU Linear Programming Kit (GLPK) [404] stands out for its capacity to tackle large-
scale Linear Programming (LP), Mixed Integer Programming (MIP), and related problem
types, providing a robust framework for dealing with complex optimization tasks.

Gurobi[405] Optimizer emerges as a leading commercial solver, acclaimed for its efficiency in
solving LP, Quadratic Programming (QP), and MIP challenges, including specialized forms
such as Mixed Integer Linear Programming (MILP), Mixed Integer Quadratic Programming
(MIQP), and Mixed Integer Quadratically Constrained Programming (MIQCP). Its reputa-
tion for speed and reliability makes it a preferred choice among professionals.

Mosek [406] offers another powerful optimization solution, with capabilities that extend to
LP, QP, MIP, Second-Order Cone Programming (SOCP), and Semi-Definite Programming
(SDP), making it a versatile tool for a wide range of optimization problems.

SeDuMi [407] and SDPT3 [408, 409] are distinguished for their focus on Semi-Definite
Programming (SDP), offering advanced solutions for problems within this domain.

Beyond these mentioned tools, the optimization field is rich with other noteworthy packages,
each designed to meet specific needs:

e CVX [410, 175]: A Matlab-based software for convex optimization that provides
an easy-to-use interface for specifying and solving convex programs. It automates
the transformation of high-level convex optimization problems into standard form,
leveraging solvers like SeDuMi, SDPT3, and Mosek for efficient problem-solving.

e CVXPY [411]: Inspired by CVX, this Python-based framework offers similar function-
alities, enabling users to formulate and solve convex optimization problems through a
high-level API. It supports various solvers, including MOSEK, Gurobi, and SCIP, and
extends its applicability to disciplines beyond Matlab's reach.

e YALMIP [412]: Primarily developed for Matlab, YALMIP is a high-level modeling tool
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that simplifies the task of formulating and solving optimization problems. It acts as an
interface between the user's problem formulation and the solver, capable of handling
a broad spectrum of optimization tasks and integrating with several solvers, such as
Gurobi, Mosek, and GLPK.

e OSQP [413] (Operator Splitting Quadratic Program (OSQP)): Specializes in solving
large-scale quadratic programming problems, particularly useful in areas like control
systems and finance. Its emphasis on scalability and efficiency makes it an essential
tool for certain optimization challenges.

e COIN-OR [414] (Common Optimization INterface for Operations Research (COIN-
OR)): An initiative to foster the development of open-source software for the opera-
tions research community, offering a collection of packages that cover various aspects
of optimization, from linear and integer programming to more specialized areas.

The continuous evolution of optimization tools and packages, alongside the introduction of
new solutions, ensures that researchers and practitioners have access to the cutting-edge
technologies required to tackle problems of ever-increasing complexity. The goal of employ-
ing these tools is not to contribute to their development but to leverage their capabilities
to address the specific optimization challenges at hand, underscoring a distinct domain of
research dedicated to creating and refining these sophisticated solvers.
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